首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective—To compare recovery from sevoflurane or isoflurane anesthesia in horses. Study Design—Prospective, randomized cross-over design. Animals—Nine Arabian horses (3 mares, 3 geldings, and 3 stallions) weighing 318 to 409 kg, 4 to 20 years old. Methods—Horses were anesthetized on three occasions with xylazine (1.1 mg/kg), Diazepam (0.03 mg/kg intravenously [IV]), and ketamine (2.2 mg/kg IV). After intubation, they were maintained with isoflurane or sevoflurane for 90 minutes. On a third occasion, horses were maintained with sevoflurane and given xylazine (0.1 mg/kg IV) when the vaporizer was turned off. Horses were not assisted in recovery and all recoveries were videotaped. Time to extubation, first movement, sternal, and standing were recorded as was the number of attempts required to stand. Recoveries were scored on a 1 to 6 scoring system (1 = best, 6 = worst) by the investigators, and by three evaluators who were blinded to the treatments the horses received. These blinded evaluators assessed the degree of ataxia present at 10 minutes after each horse stood, and recorded the time at which they judged the horse to be ready to leave the recovery stall. Results—Mean times (± SD) to extubation, first movement, sternal, and standing were 4.1 (1.7), 6.7 (1.9), 12.6 (4.6), and 17.4 (7.2) minutes with isoflurane; 3.4 (0.8), 6.6 (3.1), 10.3 (3.1), and 13.9 (3.0) minutes with sevoflurane; and 4.0 (1.2), 9.1 (3.3), 13.8 (6.5), and 18.0 (7.1) with sevoflurane followed by xylazine. Horses required a mean number of 4 (2.3), 2 (0.9), and 2 (1.6) attempts to stand with isoflurane, sevoflurane, and sevoflurane followed by xylazine respectively. The mean recovery score (SD) for isoflurane was 2.9 (1.2) from investigators and 2.4 (1.1) from blinded evaluators. For sevoflurane, the mean recovery score was 1.7 (0.9) from investigators and 1.9 (1.1) from evaluators, whereas the recoveries from sevoflurane with xylazine treatment were scored as 1.7 (1.2) from investigators and 1.7 (1.0) from blinded evaluators. Conclusions—Recoveries appeared to vary widely from horse to horse, but were significantly shorter with sevoflurane than isoflurane, although sevoflurane followed by xylazine was no different from isoflurane. Under the conditions of the study, recoveries from sevoflurane and sevoflurane followed by xylazine were of better quality than those from isoflurane. Clinical Relevance—Sevoflurane anesthesia in horses may contribute to a shorter, safer recovery from anesthesia.  相似文献   

2.
Objective To determine the minimum alveolar concentration (MAC) of isoflurane in cattle.
Study design Prospective study.
Animals Sixteen healthy adult female Holstein-Friesian cattle weighing 612 ± 17 kg (× ± SEM) and aged 5.7 ± 0.9 years old.
Methods The unsedated cattle were restrained in right lateral recumbency using a rope harness technique. Anaesthesia was induced with isoflurane (ISO) in oxygen via a face mask connected to a large-animal, semiclosed anaesthetic circle system. Each cow was intubated with a cuffed orotracheal tube (25 mm ID). Inspired and end-tidal ISO were monitored using a calibrated infra red analyser with a methane filter. The MAC of ISO that prevented gross purposeful movement in response to a tail and dewclaw clamp was determined. The time from the start of ISO administration to intubation, the time interval between discontinuance of ISO and the time the animal regained sternal recumbency, were recorded. Time to standing and quality of recovery were also recorded.
Results The time from the start of ISO administration to tracheal intubation was 18.68 ± 2.77 minutes. The MAC of ISO in these cattle was 1.27 ± 0.03% (1.14 ± 0.01% corrected to sea level). Time to sternal recumbency after 90 ± 16 minutes of anaesthesia from intubation was 4.60 ± 0.58 minutes and time to standing was 6.70 ± 1.02 minutes. All cattle were extubated when they regained sternal recumbency.
Conclusion The MAC of isoflurane in these cattle was 1.27 ± 0.03% (1.14 ± 0.01% corrected to sea level). ISO provided a smooth induction to, and rapid recovery from, anaesthesia.
Clinical relevance Knowledge of the MAC of ISO in cattle will facilitate its appropriate clinical use.  相似文献   

3.
Peripheral vasoconstriction and plasma catecholamine concentrations were studied in 37 dogs after cervical disc fenestration and salivary gland excision, laparotomy for intestinal anastomoses and cystotomy, or laparotomy for repair of diaphragmatic rupture, gastrotomy, and pyloromyotomy. Meperidine (4.4 mg/kg) was administered before extubation of 12 dogs undergoing laparotomy. Heart rate, respiratory frequency, indirect blood pressure, rectal temperature, toe web temperature, and plasma concentrations of epinephrine and norepinephrine were determined before induction of anesthesia, after intubation, after extubation, at sternal recumbency, and at standing. All dogs were hypothermic during surgery. After surgery, peripheral hypothermia (large rectal-toe web temperature gradients) increased from a mean of 4.6 degrees C after intubation to a mean of 10.4 degrees C when the dogs initially stood. Heart and respiratory rates and blood pressures during recovery were similar to those before anesthesia. Mean plasma catecholamine concentrations were neither significantly higher during recovery than before surgery nor were they increased in any surgical group, including the dogs not treated with meperidine. After anesthesia, 15% of the epinephrine and 12% of the norepinephrine samples were more than two standard deviations above the mean of the preanesthetic concentrations of all dogs. The ratio of all dogs with an epinephrine concentration more than two standard deviations above the mean of baseline epinephrine concentrations was greater at sternal recumbency than before anesthesia and the ratio of dogs with an increased epinephrine concentration at sternal recumbency was greater in the laparotomy dogs (9 of 24) than in the cervical surgery dogs (0 of 12).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
OBJECTIVE: To determine the effects of nitrous oxide (N2O) on the speed and quality of mask induction with sevoflurane or isoflurane in dogs. ANIMALS: 7 healthy Beagles. PROCEDURE: Anesthesia was induced with sevoflurane or isoflurane delivered in 100% oxygen or in a 2:1 mixture of N2O and oxygen via a face mask. Each dog received all treatments with at least 1 week between treatments. Initial vaporizer settings were 0.8% for sevoflurane and 0.5% for isoflurane (0.4 times the minimum alveolar concentration [MAC]). Vaporizer settings were increased by 0.4 MAC at 15-second intervals until settings were 4.8% for sevoflurane and 3.0% for isoflurane (2.4 MAC). Times to onset and cessation of involuntary movements, loss of the palpebral reflex, negative response to tail-clamp stimulation, and endotracheal intubation were recorded, and cardiopulmonary variables were measured. RESULTS: Administration of sevoflurane resulted in a more rapid induction, compared with isoflurane. However, N2O had no effect on induction time for either agent. Heart rate, mean arterial blood pressure, cardiac output, and respiratory rate significantly increased and tidal volume significantly decreased from baseline values immediately after onset of induction in all groups. Again, concomitant administration of N2O had no effect on cardiopulmonary variables. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of N2O did not improve the rate or quality of mask induction with sevoflurane or isoflurane. The benefits provided by N2O attributable to concentrating and second gas effects appear minimal in healthy dogs when low solubility inhalation agents such as isoflurane and sevoflurane are used for mask induction.  相似文献   

5.
OBJECTIVE: To compare the anesthetic index of sevoflurane with that of isoflurane in unpremedicated dogs. DESIGN: Randomized complete-block crossover design. ANIMALS: 8 healthy adult dogs. PROCEDURE: Anesthesia was induced by administering sevoflurane or isoflurane through a face mask. Time to intubation was recorded. After induction of anesthesia, minimal alveolar concentration (MAC) was determined with a tail clamp method while dogs were mechanically ventilated. Apneic concentration was determined while dogs were breathing spontaneously by increasing the anesthetic concentration until dogs became apneic. Anesthetic index was calculated as apneic concentration divided by MAC. RESULTS: Anesthetic index of sevoflurane (mean +/- SEM, 3.45 +/- 0.22) was significantly higher than that of isoflurane (2.61 +/- 0.14). No clinically important differences in heart rate; systolic, mean, and diastolic blood pressures; oxygen saturation; and respiratory rate were detected when dogs were anesthetized with sevoflurane versus isoflurane. There was a significant linear trend toward lower values for end-tidal partial pressure of carbon dioxide during anesthesia with sevoflurane, compared with isoflurane, at increasing equipotent anesthetic doses. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that sevoflurane has a higher anesthetic index in dogs than isoflurane. Sevoflurane and isoflurane caused similar dose-related cardiovascular depression, but although both agents caused dose-related respiratory depression, sevoflurane caused less respiratory depression at higher equipotent anesthetic doses.  相似文献   

6.
OBJECTIVE: To determine induction characteristics and the minimum alveolar concentration (MAC) at which consciousness returned (MACawake) in dogs anesthetized with isoflurane or sevoflurane. ANIMALS: 20 sexually intact male Beagles. PROCEDURES: In experiment 1, 20 dogs were randomly assigned to have anesthesia induced and maintained with isoflurane or sevoflurane. The MAC at which each dog awoke in response to auditory stimulation (MACawake-noise) was determined by decreasing the end-tidal concentration by 0.1 volume (vol %) every 15 minutes and delivering a standard audible stimulus at each concentration until the dog awoke. In experiment 2, 12 dogs received the same anesthetic agent they were administered in experiment 1. After duplicate MAC determination, the end-tidal concentration was continually decreased by 10% every 15 minutes until the dog awoke from anesthesia (MACawake). RESULTS: Mean induction time was significantly greater for isoflurane-anesthetized dogs (212 seconds), compared with the sevoflurane-anesthetized dogs (154 seconds). Mean+/-SD MACawake-noise was 1.1+/-0.1 vol % for isoflurane and 2.0+/-0.2 vol % for sevoflurane. Mean MAC was 1.3+/-0.2 vol % for isoflurane and 2.1+/-0.6 vol % for sevoflurane, and mean MACawake was 1.0+/-0.1 vol % for isoflurane and 1.3+/-0.3 vol % for sevoflurane. CONCLUSIONS AND CLINICAL RELEVANCE: Sevoflurane resulted in a more rapid induction than did isoflurane. The MACawake for dogs was higher than values reported for both agents in humans. Care should be taken to ensure that dogs are at an appropriate anesthetic depth to prevent consciousness, particularly when single-agent inhalant anesthesia is used.  相似文献   

7.
In the present study the influence of three volatile agents (halothane, isoflurane and sevoflurane) in oxygen at two concentrations [1.5 and 2 minimum alveolar concentration (MAC)] on non-invasive cardio-respiratory parameters (heart and respirators rates, non-invasive blood pressures at 15, 30, 60 min and after extubation) and on the recovery times (appearance of the first eyelid reflex, emergence time) after clinical anaesthesia was studied. After premedication with fentanyl-droperidol (5 microg/kg and 0.25 mg/kg, intramuscularly) and induction with propofol (5 mg/kg, intravenously) six dogs were randomly anaesthetized for 1 h for a standard neurologic stimulation test. A wide individual variation in respiration rate (induced by an initial hyperpnea) was observed in the 1.5 MAC protocols, without significant differences. Heart rate was significantly lower during 1.5 and 2 MAC halothane when compared to isoflurane and sevoflurane. An increase from 1.5 to 2 MAC induced significant decreases in diastolic (DAP) and mean arterial blood pressure in all groups without significant changes in the systolic arterial pressures. Only DAP in sevoflurane protocol was significantly different at 1.5 and 2 MAC compared to halothane. Time had no significant influences in the non-invasive blood pressures in all protocols. Extubation induced a significant increase of all parameters in all protocols. The time for a first eyelid reflex was significantly longer after 2 MAC compared to the 1.5 MAC protocol. There was no significant difference between the three anaesthetic agents. Although emergence time was longest for halothane at both anaesthetic concentrations, no significant difference in emergence time was observed for the three volatile agents.  相似文献   

8.
Objective To compare recovery times and quality following maintenance of anaesthesia with sevoflurane or isoflurane after a standard intravenous induction technique in horses undergoing magnetic resonance imaging (MRI). Study design Prospective, randomised, blinded clinical study. Animals One hundred ASA I/II horses undergoing MRI. Materials and methods Pre‐anaesthetic medication with intravenous acepromazine and romifidine was followed by induction of anaesthesia with diazepam and ketamine. The animals were randomised into two groups to receive either sevoflurane or isoflurane in oxygen. Horses were subjectively scored (0–5) for temperament before sedation, for quality of sedation, induction and maintenance and anaesthetic depth on entering the recovery area. Recoveries were videotaped and scored by an observer, unaware of the treatment, using two scoring systems. Times to the first movement, head lift, sternal recumbency and standing were recorded along with the number of attempts to achieve sternal and standing positions. Variables were compared using a Student t‐test or Mann–Whitney U‐test (p < 0.05), while the correlation between subjective recovery score and other relevant variables was tested calculating the Spearman Rank correlation coefficient and linear regression modelling performed when significant. Results Seventy‐seven horses entered the final analysis, 38 received isoflurane and 39 sevoflurane. Body mass, age and duration of anaesthesia were similar for both groups. There were no differences in recovery times, scoring or number of attempts to achieve sternal recumbency and standing between groups. Weak, but significant, correlations were found between the subjective recovery score for the pooled data from both groups and both temperament and time in sternal recumbency. Conclusions No differences in recovery times or quality were detected following isoflurane or sevoflurane anaesthesia after intravenous induction. Clinical relevance Sevoflurane affords no obvious advantage in recovery over isoflurane following a standard intravenous induction technique in horses not undergoing surgery.  相似文献   

9.
Objective To test the hypothesis that hypercapnic hyperpnea produced using endotracheal insufflation with 5–10% CO2 in oxygen could be used to shorten anesthetic recovery time in horses, and that recovery from sevoflurane would be faster than from isoflurane. Study design Randomized crossover study design. Animals Eight healthy adult horses. Methods After 2 hours’ administration of constant 1.2 times MAC isoflurane or sevoflurane, horses were disconnected from the anesthetic circuit and administered 0, 5, or 10% CO2 in balance O2 via endotracheal tube insufflation. End‐tidal gas samples were collected to measure anesthetic washout kinetics, and arterial and venous blood samples were collected to measure respiratory gas partial pressures. Horses recovered in padded stalls without assistance, and each recovery was videotaped and evaluated by reviewers who were blinded to the anesthetic agent and insufflation treatment used. Results Compared to isoflurane, sevoflurane caused greater hypoventilation and was associated with longer times until standing recovery. CO2 insufflation significantly decreased anesthetic recovery time compared to insufflation with O2 alone without significantly increasing PaCO2. Pharmacokinetic parameters during recovery from isoflurane with CO2 insufflation were statistically indistinguishable from sevoflurane recovery without CO2. Neither anesthetic agent nor insufflation treatment affected recovery quality from anesthesia. Conclusions and clinical relevance Hypercapnic hyperpnea decreases time to standing without influencing anesthetic recovery quality. Although the lower blood gas solubility of sevoflurane should favor a shorter recovery time compared to isoflurane, this advantage is negated by the greater respiratory depression from sevoflurane in horses.  相似文献   

10.
Objective— Recovery is one of the more precarious phases of equine general anesthesia. The quality and rate of recovery of horses from halothane and isoflurane anesthesia were compared to determine differences in the characteristics of emergence from these commonly used inhalant anesthetics. Experimental Design— Prospective, randomized blinded clinical trial. Sample Population— A total of 96 Thoroughbred and 3 Standardbred racehorses admitted for elective distal forelimb arthroscopy. Methods— All horses were premedicated with intravenous xylazine, induced with guaifenesin and ketamine, and maintained on a large animal circle system fitted with an out of the circle, agent specific vaporizer. Recoveries were managed by a blinded scorer with a standardized protocol. A 10 category scoring system was used to assess each horse's overall attitude, purposeful activity, muscle coordination, strength and balance from the time of arrival in recovery to standing. Times to extubation, sternal recumbency and standing were recorded. Median recovery scores and mean times to extubation, sternal and standing were compared using the Mann‐Whitney U test and student's t test, respectively. Results— The median score for horses recovering from halothane was lower (20.0; range, 10 to 57) than that for horses recovering from isoflurane (27.5; range, 10 to 55). Horses in the two groups were extubated at similar mean times (halothane, 11.3 ± 5.5 and isoflurane, 9.5 ± 5.2 minutes ) but horses recovering from isoflurane achieved sternal recumbency (halothane, 37.7 ± 12.1 and isoflurane, 24.7 ± 8.8 minutes ) and stood (halothane, 40.6 ± 12.9 and isoflurane, 27.6 ± 9.6 minutes ) sooner than those recovering from halothane. Conclusions— The recovery of horses from isoflurane anesthesia was more rapid but less composed than that from halothane. Clinical Relevance— The quality of recovery following isoflurane was worse than after halothane anesthesia using the criteria chosen for this study. However, the range of recovery scores was similar for both groups and all horses recovered without significant injury.  相似文献   

11.
OBJECTIVE: To evaluate the respiratory effects occurring during administration of sevoflurane or isoflurane to the upper airway in dogs. STUDY DESIGN: A prospective, randomized study. ANIMALS: Twelve healthy adult beagles (6 males, 6 females). METHODS: At least 2 weeks after undergoing permanent tracheostomy, dogs were premedicated with acepromazine-buprenorphine, and anesthesia was induced with thiopental and maintained with alpha-chloralose. The upper airway was functionally isolated so that the inhalant could be administered to the upper airway while dogs were breathing 100% O2 via the tracheostomy. Respiratory reflexes in response to the administration of sevoflurane or isoflurane at concentrations of 1.2, 1.8, and 2.4 times the minimal alveolar concentration (MAC) (administered in 100% O2 at a flow rate of 5 L/min) were recorded. Reflexes in response to administration of each anesthetic were also recorded following upper-airway administration of lidocaine. RESULTS: Respiratory reflexes elicited by upper-airway administration of each anesthetic were characterized by a dose-dependent increase in expiration time, with a resultant decrease in respiratory minute ventilation and increase in end-tidal PCO2. The magnitude of these responses was greater with isoflurane than with sevoflurane at 1.8 and 2.4 MAC. These reflexes were abolished after lidocaine nebulization into the upper airway. CONCLUSION: Isoflurane induces greater reflex inhibition of breathing than does sevoflurane when the anesthetic is inhaled into the upper airway at concentrations used for mask induction.  相似文献   

12.
ObjectiveTo compare the recovery after anaesthesia with isoflurane, sevoflurane and desflurane in dogs undergoing magnetic resonance imaging (MRI) of the brain.Study designProspective, randomized clinical trial.AnimalsThirty‐eight dogs weighing 23.7 ± 12.6 kg.MethodsFollowing pre‐medication with meperidine, 3 mg kg?1 administered intramuscularly, anaesthesia was induced intravenously with propofol (mean dose 4.26 ± 1.3 mg kg?1), the trachea was intubated, and an inhalational anaesthetic agent was administered in oxygen. The dogs were randomly allocated to one of three groups: group I (n = 13) received isoflurane, group S (n = 12) received sevoflurane and group D (n = 13) received desflurane. Parameters recorded included cardiopulmonary data, body temperature, end‐tidal anaesthetic concentration, duration of anaesthesia, and recovery times and quality. Qualitative data were compared using chi‐squared and Fisher's exact tests and quantitative data with anova and Kruskal–Wallis test. Post‐hoc comparisons for quantitative data were undertaken with the Mann–Whitney U‐test.ResultsThe duration of anaesthesia [mean and standard deviation (SD)] in group I was: 105.3 (27.48) minutes, group S: 120.67 (19.4) minutes, and group D: 113.69 (26.68) minutes (p = 0.32). Times to extubation [group I: 8 minutes, (interquartile range 6–9.5), group S: 7 minutes (IQR 5–7), group D: 5 minutes (IQR 3.5–7), p = 0.017] and to sternal recumbency [group I: 11 minutes (IQR 9.5–13.5), group S: 9.5 minutes (IQR 7.25–11.75), group D: 7 minutes (range 3.5–11.5), p = 0.048] were significantly different, as were times to standing. One dog, following sevoflurane, had an unacceptable quality of recovery, but most other recoveries were calm, with no significant difference between groups.Conclusions and clinical relevanceAll three agents appeared suitable for use. Dogs’ tracheas were extubated and the dogs recovered to sternal recumbency most rapidly after desflurane. This may be advantageous for animals with some neurological diseases and for day case procedures.  相似文献   

13.
Objective To compare isoflurane, sevoflurane and desflurane for inhalant anesthesia in red‐tailed hawks (Buteo jamaicensis) in terms of the speed and characteristics of induction; cardiovascular and respiratory parameters while anesthetized; and speed and quality of recovery. Study design Prospective, cross over, randomized experimental study. Animals 12 healthy adult red‐tailed hawks. Methods Anesthesia was induced with isoflurane, sevoflurane or desflurane in oxygen via face mask in a crossover, randomized design with a 1 week washout period between each treatment. Hawks were tracheally intubated, allowed to breathe spontaneously, and instrumented for cardiopulmonary monitoring. Data collected included heart rate, respiratory rate, end‐tidal CO2, inspired and expired agent, SpO2, temperature, systolic blood pressure, time to intubation and time to recovery (tracking). Recovery was subjectively scored on a 4 point scale as well as a summary evaluation, by a single blinded observer. Results No significant difference in time to induction and time to extubation was noted with the administration of isoflurane, sevoflurane or desflurane. Time to the ability of the bird to follow a moving object with its eyes (tracking) was significantly faster with the administration of sevoflurane and desflurane. All recoveries were scored 1 or 2 and were assessed as good to excellent. No significant difference was noted in heart rate, blood pressure and temperature among the three inhalants. Administration of isoflurane resulted in lower respiratory rates. Conclusions and clinical relevance Overall, although isoflurane remains the most common inhaled anesthetic in avian practice, sevoflurane and desflurane both offer faster time to tracking, while similar changes in cardiopulmonary function were observed with each agent during anesthesia of healthy red‐tailed hawks.  相似文献   

14.
OBJECTIVE: To compare induction and recovery characteristics and cardiopulmonary effects of isoflurane and sevoflurane in bald eagles. Animals-17 healthy adult bald eagles. PROCEDURES: Anesthesia was induced with isoflurane or sevoflurane delivered in oxygen via a facemask in a crossover design with 4 weeks between treatments. Eagles were intubated, allowed to breathe spontaneously, and instrumented for cardiopulmonary measurements. Time to induction, extubation, and recovery, as well as smoothness of recovery, were recorded. RESULTS: Administration of sevoflurane resulted in a significantly quicker recovery, compared with isoflurane. Temperature, heart rate, and respiratory rate significantly decreased over time, whereas systolic (SAP), diastolic (DAP), and mean arterial blood pressure (MAP) significantly increased over time with each treatment. Temperature, heart rate, SAP, DAP, and MAP were significantly higher with isoflurane. Blood pH significantly decreased, whereas PaCO(2) significantly increased over time with each treatment. Bicarbonate and total carbon dioxide concentrations significantly increased over time with each treatment; however, there was a significant time-treatment interaction. The PaO(2) and arterial oxygen saturation increased over time with isoflurane and decreased over time with sevoflurane with a significant time-treatment interaction. Six eagles developed cardiac arrhythmias with isoflurane, as did 4 with sevoflurane anesthesia. CONCLUSIONS AND CLINICAL RELEVANCE: Isoflurane and sevoflurane administration resulted in smooth, rapid induction of and recovery from anesthesia similar to other species. Isoflurane administration resulted in tachycardia, hypertension, and more arrhythmias, compared with sevoflurane. Sevoflurane was associated with fewer adverse effects and may be particularly beneficial in compromised bald eagles.  相似文献   

15.
The anesthetic potency and cardiopulmonary effects of sevoflurane were compared with those of isoflurane and halothane in goats. The (mean +/- SD) minimal alveolar concentration (MAC) was 0.96 +/- 0.12% for halothane, 1.29 +/- 0.11% for isoflurane, and 2.33 +/- 0.15% for sevoflurane. Cardiopulmonary effects of sevoflurane, halothane and isoflurane were examined at end-tidal concentrations equivalent to 1, 1.5 and 2 MAC during either spontaneous or controlled ventilation (SV or CV). During SV, there were no significant differences in respiration rate, tidal volume and minute ventilation between anesthetics. Dose-dependent decreases in both tidal volume and minute ventilation induced by halothane were greater than those by either sevoflurane or isoflurane. Hypercapnia and acidosis induced by sevoflurane were not significantly different from those by either isoflurane or halothane at 1 and 1.5 MAC, but were less than those by halothane at 2 MAC. There was no significant difference in heart rate between anesthetics during SV and CV. During SV, all anesthetics induced dose-dependent decreases in arterial pressure, rate pressure product, systemic vascular resistance, left ventricular minute work index and left ventricular stroke work index. Systemic vascular resistance with isoflurane at 2 MAC was lower than that with sevoflurane. During CV, sevoflurane induced dose-dependent circulatory depression (decreases in arterial pressure, cardiac index, rate pressure product, systemic vascular resistance, left ventricular minute work index and right ventricular minute work index), similar to isoflurane. Halothane did not significantly alter systemic vascular resistance from 1 to 2 MAC.  相似文献   

16.
The effects of halothane, isoflurane and sevoflurane anaesthesia on hepatic function and hepatocellular damage were investigated in dogs, comparing the activity of hepatic enzymes and bilirubin concentration in serum. An experimental study was designed. Twenty-one clinically normal mongrel dogs were divided into three groups and accordingly anaesthetized with halothane (n = 7), isoflurane (n = 7) and sevoflurane (n = 7). The dogs were 1-4 years old, and weighed between 13.5 and 27 kg (18.4 +/- 3.9). Xylazine HCI (1-2 mg/kg) i.m. was used as pre-anaesthetic medication. Anaesthesia was induced with propofol 2 mg/kg i.v. The trachea was intubated and anaesthesia maintained with halothane, isoflurane or sevoflurane in oxygen at concentrations of 1.35, 2 and 3%, respectively. Intermittent positive pressure ventilation (tidal volume, 15 ml/kg; respiration rate, 12-14/min) was started immediately after intubation and the anaesthesia lasted for 60 min. Venous blood samples were collected before pre-medication, 24 and 48 h, and 7 and 14 days after anaesthesia. Serum level of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and gamma-glutamyltransferase (GGT), lactate dehydrogenase (LDH GGT) activities and bilirubin concentration were measured. Serum AST, ALT and GGT activities increased after anaesthesia in all groups. In the halothane group, serum AST and ALT activities significantly increased all the time after anaesthesia compared with baseline activities. But in the isoflurane group AST and ALT activities increased only between 2 and 7 days, and in the sevoflurane group 7 days after anaesthesia. GGT activity was increased in the halothane group between 2 and 7 days, and in the isoflurane and sevoflurane groups 7 days after anaesthesia. All dogs recovered from anaesthesia without complications and none developed clinical signs of hepatic damage within 14 days. The results suggest that the use of halothane anaesthesia induces an elevation of serum activities of liver enzymes more frequently than isoflurane or sevoflurane from 2 to 14 days after anaesthesia in dogs. The effects of isoflurane or sevoflurane anaesthesia on the liver in dogs is safer than halothane anaesthesia in dogs.  相似文献   

17.
The objective of this paper was to evaluate romifidine as a pre-medicant in dogs prior to propofol-isoflurane anaesthesia, and to compare it with medetomidine. For this, eight healthy dogs were anaesthetised. Each dog received three pre-anaesthetic protocols: R40 (romifidine, 40 microg/kg, IV), R80 (romifidine, 80 microg/kg, IV) or MED (medetomidine, 10 microg/kg, IV). Induction of anaesthesia was delivered with propofol and maintained with isoflurane. The following variables were studied before sedative administration and 10 min after sedative administration: heart rate (HR), mean arterial pressure (MAP), systolic arterial pressure (SAP) and diastolic arterial pressure (DAP) and respiratory rate (RR). During maintenance, the following variables were recorded at 5-min intervals: HR, MAP, SAD, DAP, arterial oxygen saturation (SpO(2)), end-tidal CO(2)(EtCO(2)), end-tidal concentration of isoflurane (EtISO) required for maintenance of anaesthesia and tidal volume (TV). Time to extubation, time to sternal recumbency and time to standing were also registered. HR and RR experimented a significantly decreased during sedation in all protocols respect to baseline values. Mean HR, MAP, SAP, DAP, SpO(2), EtCO(2), and TV during anaesthesia were similar for the three protocols. End tidal of isoflurane concentration was statistically similar for all protocols. Recovery time for R40 was significantly shorter than in R80 and MED. The studied combination of romifidine, propofol and isoflurane appears to be an effective drug combination for inducing and maintaining general anaesthesia in healthy dogs.  相似文献   

18.
OBJECTIVE: To determine the relationship between bispectral index (BIS) and minimum alveolar concentration (MAC) multiples of isoflurane after IM injection of medetomidine or saline (0.9% NaCl) solution in anesthetized dogs. ANIMALS: 6 dogs. PROCEDURE: Each dog was anesthetized 3 times with isoflurane. First, the MAC of isoflurane for each dog was determined by use of the tail clamp method. Second, anesthetized dogs were randomly assigned to receive an IM injection of medetomidine (8 microg x kg(-1)) or an equal volume of isotonic saline (0.9% NaCl) solution 30 minutes prior to beginning BIS measurements. Last, anesthetized dogs received the remaining treatment (medetomidine or isotonic saline solution). Dogs were anesthetized at each of 4 MAC multiples of isoflurane. Ventilation was controlled and atracurium (0.2 mg/kg followed by 6 microg/kg/min as a continuous infusion, IV) administered. After a 20-minute equilibration period at each MAC multiple of isoflurane, BIS data were collected for 5 minutes and median values of BIS calculated. RESULTS: BIS significantly decreased with increasing MAC multiples of isoflurane over the range of 0.8 to 2.0 MAC. Mean (+/- SD) MAC of isoflurane was 1.3 +/- 0.2%. During isoflurane-saline anesthesia, mean BIS measurements at 0.8, 1.0, 1.5, and 2.0 MAC were 65 +/- 8, 60 +/- 7 52 +/- 3, and 31 +/- 28, respectively. During isoflurane-medetomidine anesthesia, mean BIS measurements at 0.8, 1.0, 1.5, and 2.0 MAC were 77 +/- 4, 53 +/- 7, 31 +/- 24, and 9 +/- 20, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: BIS monitoring in dogs anesthetized with isoflurane has a predictive value in regard to degree of CNS depression. During isoflurane anesthesia, our results support a MAC-reducing effect of medetomidine.  相似文献   

19.
The Minimum Alveolar Concentration (MAC) of desflurane was measured in five male adult Beagle dogs using a supramaximal electrical stimulus. The value for MAC was found to be 10.32 ± 0.14 SEM % (range 9.83 -10.6%). Addition of 50% nitrous oxide to the carrier gas lowered the value of MAC to 7.99 ±0.57 % (range 6.7 -9.13%).
Anaesthetic induction with desflurane was rapid, and any excitement period seen was brief. Side effects noted were opposition to mechanical ventilation (all dogs); episodes of second degree heart block with multifocal ventricular ectopic depolarisations (2 dogs) and transient muscle rigidity (4 dogs). Maintenance of body temperature was difficult, episodes of both hyperthermia and hypothermia occurring. Recovery from anaesthesia was rapid and smooth, the time from extubation to standing being 6 ± 1.27 minutes (range 3–9 minutes).  相似文献   

20.
The aim of the present study was to compare the safety and efficacy of sevoflurane and isoflurane during low flow anaesthesia (fresh gas flow (FGF) 14 ml/kg/min) as well as to compare the consumption of both anaesthetics. Data were gathered from 60 dogs assigned for surgery under general anaesthesia with an expected duration of 75 minutes or longer. All dogs were induced with 0.6 mg/kg (maximum 25 mg) l-methadone and 1 mg/kg (maximum 25 mg) diazepam i.v.. Anaesthesia was maintained with isoflurane (group 1) or sevoflurane (group 2) in a mixture with 50% O2 and 50% N2O as carrier gases, under controlled ventilation. Monitoring included electrocardiogram, body temperature, the temperature of in- and exspired gases, arterial oxygen saturation, arterial blood pressure as well as a continuous monitoring of inhaled and exhaled gas concentrations (O2, N2O, CO2, isoflurane, sevoflurane). The consumption of isoflurane and sevoflurane as well as the dogs' recovery times were evaluated for both groups. In all groups the inspired oxygen concentrations ranged above the minimum value of 30 Vol% during low flow anaesthesia, with an arterial oxygen saturation above 97%. End tidal concentration of CO2, heart rate and arterial blood pressure were within the physiological ranges and showed no differences between the two groups. Recovery time was significantly shorter after sevoflurane compared to isoflurane anaesthesia, whilst the consumption of sevoflurane was higher than that of isoflurane. Sevoflurane appears to be as clinically safe as isoflurane in low flow anaesthesia. Even considering that sevoflurane is more expensive than isoflurane, the use of the low flow technique decreases the cost of anaesthesia due to the reduced volatile anaesthetic consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号