首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
l -ascorbyl-2-polyphosphate (ApP) was used as a vitamin C source to investigate the ascorbic acid (AsA) requirements on growth performance and stress resistance of the larval white shrimp, Litopenaeus vannamei . Five isoenergetic and isonitrogenous fish meal-fish protein hydrolysate-based diets with five levels of ApP, AsA equivalent to 91.8, 188, 271, 360 and 436 mg kg−1 diet were fed to triplicate groups of L. vannamei (mean initial wet weight 1 mg) for 32 days. The diet with AsA 91.8 mg kg−1 showed high cumulative mortality after 10 days of feeding. After the 32-day trial, the shrimp that fed the diet had significantly lower survival and weight gain (WG, %) than those that fed 188, 271, 360 and 436 mg AsA kg−1 diets. Specific growth rate (SGR, % day−1) and final body wet weight (FBW, mg) showed the same pattern as WG (%). There were no significant differences in growth performance (FBW, WG and SGR) among the groups that fed 188, 271, 360 and 436 mg kg−1 of AsA at the termination of feeding trial. Broken-line regression analysis on WG indicated that 191 mg AsA kg−1 in the diet was the optimum for larval L. vannamei . On the contrary, dietary level of more than 360 mg AsA kg−1 was needed to ensure high resistance to stressful conditions such as low dissolved oxygen stressors.  相似文献   

2.
This study was conducted to evaluate the effect of dietary levels of vitamins C (0, 100 and 2000 mg kg−1), E (0, 50 and 500 mg kg−1) and their interaction on the growth performance, liver contents of ascorbic acid and α-tocopherol, haematology and immune response of channel catfish, Ictalurus punctatus . Each diet was fed to catfish in triplicate aquaria to apparent satiation twice daily for 12 weeks. The results indicate that the amount of vitamin E contained in the basal diet (23.1 mg kg−1) was sufficient to promote good growth, feed efficiency and survival, but its supplementation was needed to maintain high haematological values and liver vitamin E. Supplementation of vitamin C (100 mg kg−1) to the basal diet containing 10.5 mg kg−1 was required for good growth, feed efficiency, survival and prevention of vertebral deformity and optimum haematological indices. Liver storage of ascorbic acid and α-tocopherol increased with increasing dietary levels of each vitamin. Dietary vitamin E levels had no effect on liver ascorbic acid content, but increasing dietary vitamin C increased liver α-tocopherol. Some measured immune parameters (serum protein and superoxide anion production) were enhanced by supplementation of vitamin C or E. Chemotaxis ratio and phagocytosis were not affected by treatments.  相似文献   

3.
Atlantic halibut larvae (120 mg) were weaned to formulated diets with different supplementations of ascorbate- poly-phosphate, ApP (300, 2000 and 3000 mg ascorbic acid (AA) equivalents kg−1 diet). The experiment lasted for 50 days with cofeeding of enriched Artemia and formulated diets during the first 30 days. During the last 20 days, only formulated diets were offered to the fish. One control group was fed only Artemia (770 mg AA kg−1 dry weight) during the entire experimental period. The specific growth rate during the 50 days was ≈ 4.5% day−1 and the mean weights in all dietary groups were ≈ 1 g when the experiment was terminated. No differences in mean weight and mortality were observed between the groups fed formulated diets and that fed Artemia during the experiment. The fish size in the groups fed formulated diets ranged between 0.10 and 3.05 g and this differed from the Artemia group where the size ranged between 0.35 and 1.35 g. Dietary levels of ApP had no positive effect on growth and survival. The retention of AA was significantly higher in the groups fed high dietary levels of ApP. Apparently, the bioavailability of high dietary levels of ApP appeared to be low for young halibut. After stressing the fish using a high-salinity challenge test, no significant difference in survival occurred among the dietary groups. Cortisol levels in plasma recorded 3 h post stress was significant lower in the Artemia group compared with the groups fed the formulated diets.  相似文献   

4.
The objective of the present study was to investigate the effect of dietary phospholipid (PL) level on growth and feed intake of juvenile amberjack ( Seriola dumerili ) fed non-fishmeal (non-FM) diet containing alternative protein sources; soybean protein isolate, tuna muscle by-product powder and krill meal. Three non-FM diets were prepared to contain three levels (14, 37 and 54 g kg−1 dry diet) of PL (soybean lecithin acetone insoluble, 886 g kg−1) and growth performance was monitored in a 30-day growth trial by using 2.6 g of fish. The results indicated that final body weight, weight gain and feed intake significantly increased with increasing dietary PL level. At the highest dietary PL level (54 g kg−1 dry diet), the fish consumed 14.8% and 10.2% as much feed as those fish fed diets containing 14 g kg−1 dry diet and 37 g kg−1 dry diet PL, respectively. An increasing tendency with increasing dietary PL level on feed efficiency was observed. In conclusion, the present study demonstrated that dietary PL supplementation could increase feed intake, and improve the growth of juvenile S. dumerili fed non-FM diets. Therefore, purified PL might be a good candidate to stimulate the growth of fish through enhancing the feed intake when they are fed diets containing alternative protein sources.  相似文献   

5.
This study was conducted to determine the dietary vitamin E requirement of juvenile hybrid striped bass ( Morone chrysops female ×  Morone saxatilis male). Semi-purified diets supplemented with 0.2 mg Se kg−1 from Na2SeO3 and either 0 (basal), 10, 20, 40, 60, or 80 mg vitamin E kg−1 as  DL -α-tocopheryl acetate were fed to hybrid striped bass initially averaging 1.8 ± 0.1 g (mean ± SD) for 12 weeks. Fish fed the basal diet, which contained 5.8 mg α-tocopherol kg−1 dry weight, were darker in colour and had reduced weight gain, as well as generally reduced haematocrit values compared with fish fed diets supplemented with vitamin E. In addition, fish fed diets containing less than 20 mg supplemental vitamin E kg−1 had significantly ( P  < 0.05) reduced weight gain and feed efficiency compared with those fed diets supplemented with vitamin E at 20–80 mg kg−1. Dietary supplementation of vitamin E caused incremental increases in the concentration of α-tocopherol in both plasma and liver tissues. However, hybrid striped bass fed graded levels of vitamin E did not exhibit a dose response in terms of ascorbic acid-stimulated lipid peroxidation of hepatic microsomes. Regression analysis of weight gain data using the broken-line model indicated a minimum vitamin E requirement ( ±  SE) of 28 ( ±  3) mg kg−1 dry diet. Based on these data, the dietary vitamin E requirement of hybrid striped bass appears to be similar to that determined for other fish species.  相似文献   

6.
In a 80-day feeding trial, a total of 1050 juvenile Jian carp ( Cyprinus carpio var. Jian) with an average initial weight of 10.71 ± 0.05 g were fed semi-purified diets containing seven graded levels of pyridoxine (0.20, 1.71, 3.23, 4.96, 6.32, 8.58 and 12.39 mg pyridoxine kg−1 diet). Results indicated that with increasing dietary pyridoxine levels up to 4.96 mg kg−1 diet, percent weight gain (PWG) and specific growth rate (SGR) were improved, and no differences were found with further increase of pyridoxine levels. Feed intake also followed the similar pattern to that observed with PWG and SGR when dietary pyridoxine levels were ≤6.32 mg kg−1 diet. But feed efficiency and protein efficiency ratio were not affected by pyridoxine levels. Crude protein of carcass, productive protein value and plasma ammonia concentration were improved with increasing dietary pyridoxine levels up to 4.96 mg kg−1 diet. Amylase activities in the intestine were improved with increasing dietary pyridoxine levels up to 4.96 mg kg−1 diet, but protease and lipase activities in the intestine were not affected by pyridoxine levels. Na+, K+-ATPase and Gamma-glutamyl transpeptidase activities in proximal intestine, mid intestine (MI) and distal intestine (DI) were lowest when fed the diet containing 1.71 mg pyridoxine kg−1 diet. The alkaline phosphatase activities in MI and DI followed the same pattern. The dietary pyridoxine requirement of juvenile Jian carp based on PWG estimated by broken line model was 6.07 mg pyridoxine kg−1 diet.  相似文献   

7.
An 8-week feeding trial was conducted to determine the threonine requirement of juvenile Pacific white shrimp Litopenaeus vannamei (Boone) in low-salinity water (0.50–1.50 g L−1). Diets 1–6 were formulated to contain 360 g kg−1 crude protein with fish meal, wheat gluten and pre-coated crystalline amino acids with six graded levels of l -threonine (9.9–19.0 g kg−1 dry diet). Diet 7, which was served as a reference, contained only intact proteins (fish meal and wheat gluten). Each diet was randomly assigned to triplicate groups of 30 shrimps (0.48±0.01 g), each four times daily. Shrimps fed the reference diet had similar growth performance and feed utilization efficiency compared with shrimps fed the diets containing 13.3 g kg−1 or higher threonine. Maximum specific growth rate (SGR) and protein efficiency ratio were obtained at 14.6 g kg−1 dietary threonine, and increasing threonine beyond this level did not result in a better performance. Body compositions, triacyglycerol and total protein concentrations in haemolymph were significantly affected by the threonine level; however, the threonine contents in muscle, aspartate aminotransferase and alanine aminotransferase activities in haemolymph were not influenced by the dietary threonine levels. Broken-line regression analysis on SGR indicated that optimal dietary threonine requirement for L. vannamei was 13.6 g kg−1 dry diet (37.8 g kg−1 dietary protein).  相似文献   

8.
Soft-shelled turtles, Pelodiscus sinensis , with an average weight of 5.55 g, were fed diets supplemented with eight levels of ferrous sulphate for 8 weeks. The analysed iron content ranged from 50.8 to 482.9 mg kg−1. Growth rate of turtles fed the control diet with no iron supplementation was the lowest among all dietary groups. Haematological parameters including red blood cell, haemoglobin, haematocrit, mean corpuscular volume, mean corpuscular haemoglobin and mean corpuscular haemoglobin concentration of the turtles fed the control diet were also significantly ( P  < 0.05) lower relative to the other groups. Thus, dietary iron at 50.8 mg kg−1 (no supplemented iron) was deemed deficient for growth and ineffective at preventing anaemia in juvenile soft-shelled turtle. Whereas, a supplementation of 50 mg kg−1 ferrous sulphate (a total dietary iron of 91.8 mg kg−1) was enough to normalize the haematological values of soft-shelled turtles to the level similar to other iron supplement-fed groups. Within the tested dietary iron range, liver iron content curve-linearly ( r 2 = 0.99) increased with increasing dietary iron level. Furthermore, thiobarbituric acid-reactive substances in liver tissues of the turtles have also increased when liver iron content increased. The dietary iron requirement of soft-shelled turtle is 120–198 mg kg−1 when ferrous sulphate is used as the source of iron.  相似文献   

9.
This study was conducted to evaluate the effects of dietary myo -inositol (MI) on the antioxidant status of juvenile Jian carp ( Cyprinus carpio var. Jian). A total of 1050 Jian carp (22.28±0.07 g) were randomly distributed into seven groups of three replicates each, feeding diets containing graded levels of MI (163.5, 232.7, 384.2, 535.8, 687.3, 838.8 and 990.3 mg kg−1 diet) for 60 days. Results indicated that the malondialdehyde content was the lowest for fish fed diets containing ≥384.2 mg MI kg−1, and the highest for fish fed the MI-unsupplemented basal diet ( P <0.05). The protein carbonyl content was decreased with increasing dietary MI levels up to 535.8 mg kg−1 diet, and no differences were found with a further increase in the MI concentration. The anti-superoxide anion capacity (ASA) and anti-hydroxyl radical capacity (AHR) were increased with increasing MI levels up to 535.8 mg kg−1 diet, and plateaued thereafter. The superoxide dismutase and glutathione- S -transferase activities showed the same tendency with the ASA capacity. Catalase, glutathione peroxidase and glutathione reducase activities were improved with increasing MI levels up to 838.8, 384.2 and 687.3 mg kg−1 diet, respectively, and remained nearly constant thereafter. These results suggested that MI could inhibit oxygen radical generation, increase enzymatic antioxidant capacity and prevent oxidative damage of carp. Dietary MI requirements for ASA and AHR activities of juvenile Jian carp were 567.94 and 517.22 mg MI kg−1 diet respectively.  相似文献   

10.
Juvenile yellow perch Perca flavescens were fed semipurified diets with varying protein to metabolizable energy ratios (PME, g protein MJ−1 metabolizable energy) and nutrient densities in three experiments to determine recommended dietary protein and energy concentrations. Experiment 1 fish (18.6 g) were fed diets containing 450 g crude protein kg−1 dry diet and 14.5–18.8 MJ ME kg−1 dry diet for 10 weeks. No differences were found in the growth of experiment 1 fish fed the different diets. Experiment 2 fish (21.9 g) were fed diets containing 15.7 MJ ME kg−1 dry diet and 210–420 g crude protein kg−1 dry diet for 8 weeks. Fish fed the diet containing 340 g kg−1 protein (diet PME = 22) exhibited the greatest weight gain. Experiment 3 fish (27.1 g) were fed diets with a PME of 22 and varying nutrient density (yielding 205–380 g crude protein kg−1 dry diet) for 8 weeks. No differences were found in the growth of experiment 3 fish. Yellow perch fed the semipurified diets exhibited increased liver fat content, liver size and degree of liver discoloration compared with fish fed a commercial fish meal-based diet. Liver changes may have resulted from high dietary carbohydrate levels. We conclude that a protein level of 210–270 g kg−1 dry diet is suitable for juvenile yellow perch provided that the dietary amino acid profile and carbohydrate content are appropriate for yellow perch.  相似文献   

11.
Three isolated marine diatoms ( Amphora , Navicula and Cymbella ) grown on substrate were evaluated as feed supplement for Penaeus monodon postlarvae (PL) in hatchery system for a period of 19 days without changing water. Specific growth rate (day−1) (0.27 ± 0.0) and survival (%) (56.3 ± 1.8) of PLs were significantly higher ( P  < 0.05) in treatment tanks when compared with the control (0.20 ± 0.0; 36.0 ± 1.5, respectively). Shrimp PLs reared in substrate-based tanks had significantly higher ( P  < 0.05) levels of protein, lipid (521.0 ± 7.0; 304.0 ± 2 g kg−1 dry weight, respectively), ecosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (189.0 ± 2.0; 176.0 ± 2 g kg−1 of total fatty acid, respectively) than the control (435.0 ± 22.0; 258.0 ± 22 g kg−1 dry weight; 172.0 ± 5.0; 152 ± 2 g kg−1 total fatty acid, respectively). The periphytic diatoms contained protein and lipid (430–490; 230–260 g kg−1 dry weight, respectively), EPA (30–150 g kg−1 of total fatty acids), DHA (20–30 g kg−1 of total fatty acids) and nine essential amino acids. The results showed that isolated marine periphytic diatoms grown on substrate could be used as feed supplement in enhancing the growth and survival of P. monodon postlarvae.  相似文献   

12.
Growth, survival, tissue ascorbate concentration and collagen content were studied in fast-growing Penaeus monodon fed two ascorbic acid (AA) derivatives. Prior to the experimental trial, shrimp (initial body weight: 0.9 ± 0.4 g) were fed on a diet lacking vitamin C for 5 weeks. During the following 13-week experiment, the shrimp (initial body weight: 8.2 ± 0.7 g) were given one of five squid-meal-based diets. The dietary treatments consisted of a diet lacking vitamin C, two diets supplemented with either 500 or 1000 mg AA kg−1 in the form of silicone-coated AA, and two diets supplemented with either 500 or 1000 mg AA kg−1 in the form of ascorbyl-2-polyphosphate. Shrimp gained 18.3 g in 13 weeks. The AA-free diet group exhibited the lowest growth rate, feed intake and survival (26.8%) after 4 weeks. Hepatopancreatic ascorbate and muscle collagen content were significantly ( P < 0.05) lower in AA-deprived shrimp. At the end of the feeding trial, growth rate and survival were not significantly ( P > 0.05) different among groups fed AA-supplemented diets. Hepatopancreatic and haemolymphatic ascorbate concentrations were significantly ( P < 0.05) higher in groups given ascorbyl-2-polyphosphate than in groups given silicone-coated AA. A supplement of 500 mg AA kg−1 diet in the form of either silicone-coated AA or ascorbyl-2-polyphosphate was adequate for optimal growth. But ascorbate concentrations in tissues remained much below saturation levels with a supplement of 1000 mg AA kg−1 diet. It is questionable whether the established vitamin C requirements for P. monodon are adequate to maintain tissue ascorbate in fast-growing juveniles.  相似文献   

13.
This study was conducted to determine the effects of feeding increasing lipid concentrations (310, 380 and 470 g kg–1 lipid on dry weight) in diets based mainly on herring byproducts to Atlantic salmon Salmo salar . The diets were isonitrogenous, varying in dietary lipid content at the expense dietary starch. Average fish weight increased from 1.2 kg in April to 2.2–2.7 kg at the end of the feeding trial in September. Significantly greater growth was found in fish fed either the 380 g kg−1 or the 470 g kg−1 lipid diets compared with the 310 g kg−1 lipid diet. Muscle lipid content increased in all dietary groups on a wet weight basis from 7.7 ± 1.4% to 12 ± 3% in salmon fed the 310 g kg−1 lipid diet, and to 16 ± 2% in salmon fed the 380 g kg−1 and 470 g kg−1 lipid diets. In fish of similar weight there was a positive correlation between dietary lipid and muscle lipid concentrations. Low concentrations of muscle glycogen were detected in fish fed each of the diets, while muscle vitamin E concentrations slowly decreased as muscle lipid increased. Muscle fatty acid composition reflected dietary fatty acid profiles, containing similar percentages of total saturated, monoenic and n-3 fatty acids (20:5n-3 and 22:6n-3) in fish from all dietary treatment groups. However, a higher ratio of n-3/n-6 was found in muscle from fish fed the 470 g kg−1 lipid diet compared with the other two groups. Blood chemistry values varied somewhat, but all values were within normal ranges for Atlantic salmon of these sizes.  相似文献   

14.
Non-faecal phosphorus (P) was determined for large yellowtail to estimate a minimum available P requirement (Experiment  1) and to justify inorganic P supplementation in a fish meal-based diet (Experiment 2). In Experiment 1, purified diets with incremental P concentrations were fed to yellowtail (mean weight 917 g) at a feeding rate of 1.5% of body weight. The peaks of non-faecal P excretion appeared 5–6 h after feeding in fish fed more than 4.5 g available P kg−1 dry diet. Broken-line analysis indicated that the minimum available P requirement was 4.4 g kg−1 dry diet. In Experiment 2, a purified diet (PR) containing 6.5 g available P kg−1 and a fish meal-based diet with (F1) and without (F0) additional phosphorus were fed to yellowtail (mean weight 1.1 kg) at 1.5% (PR) and 2% (F0 and F1) feeding rates respectively. There was no significant difference in P excretion between fish fed the F0 (5.5 g soluble P kg−1 dry diet) and the PR diet. However, significantly higher (34.5%) amounts of non-faecal P excretions (7.4 g soluble P kg−1 dry diet) were found in fish fed F1 compared with the F0 diet. This suggested that there was an excess of dietary P in the F1 diet and that supplementation is not needed in fish meal-based diets for large yellowtail.  相似文献   

15.
Five iso-nitrogenous (300 g protein kg−1 diet) and iso-lipidic (80 g kg−1 diet) semi-purified experimental diets with variable energy levels of 10.5 (D-1), 12.5 (D-2), 14.6 (D-3), 16.7 (D-4) and 18.8 (D-5) MJ kg−1 diets were fed to Puntius gonionotus fingerlings (average weight 1.79 ± 0.02 g) in triplicate groups (15 healthy fishes per replicate) for a period of 90 days to assess the optimum dietary energy level and protein-to-energy ratio (P/E). Fifteen flow-through cement tanks of 100 L capacity with a flow rate of 0.5 L min−1 were used for rearing the fish. Maximum specific growth rate, protein efficiency ratio, protein productive value, RNA : DNA ratio, whole body protein content, digestive enzyme activity and minimum feed conversion ratio was found in fish-fed diet D-3 with 14.6 MJ kg−1 energy level. There were no improvements in all these parameters with the further rise in dietary energy level. Hence, it may be concluded that the optimum dietary gross energy level for maximum growth and nutrient utilization of silver barb is 14.6 MJ kg−1 diet with a resultant P/E ratio of 20.2 g protein MJ−1 diet, when the dietary protein and lipid are maintained at optimum requirement levels of 300 and 80 g kg−1 diet, respectively, for this species.  相似文献   

16.
Two growth studies were conducted to determine the dietary threonine requirement of reciprocal cross hybrid striped (sunshine) bass. Semipurified diets were prepared with crystalline amino acids and lyophilized fish muscle to supply 350 g crude protein kg−1 diet. The basal diet contained 4.9 g threonine kg−1 from fish muscle, and test diets were supplemented with graded levels of L-threonine. In the first experiment, fish initially averaging ≊ 9.8 g each were fed diets containing threonine levels of 4.9, 7.5, 10.0, 12.5, 15.0 and 17.5 g kg−1 dry diet for 7 weeks. Weight gain, feed efficiency and protein efficiency ratio (PER) were significantly ( P < 0.01) influenced by dietary threonine level. Based on weight-gain responses, a threonine requirement (± SE) of 8.4 (± 0.8) g kg−1 dry diet was determined, and dietary threonine levels of 10.0 g kg−1 diet or greater resulted in the highest levels of free threonine in plasma.
Based on the results of the first experiment, a second feeding trial was conducted with diets containing threonine levels of 4.9, 6.5, 8.0, 9.5, 11.0 and 12.5 g kg−1 dry diet. Fish initially averaging ≊ 3.0 g each were fed each diet for 8 weeks. Weight gain, feed efficiency and PER values of fish were markedly improved, with increases in dietary threonine up to 8.0 g kg−1 dry diet. Regression analysis of weight gain, feed efficiency and PER data using the broken-line model resulted in threonine requirement estimates of 9.7, 8.5 and 8.6 g kg−1 dry diet, respectively. Based on these data, the threonine requirement of juvenile sunshine bass was determined to be ≊ 9.0 g kg−1 dry diet or 26 g kg−1 of dietary protein.  相似文献   

17.
An 8-week feeding experiment was conducted to determine the effect of dietary methionine supplementation on intestinal microflora and humoral immune of juvenile Jian carp (initial weight of 9.9 ± 0.0 g) reared in indoor flow-through and aerated aquaria. Eight amino acid test diets (350 g kg−1 crude protein, CP), using fish meal, soybean-condensed protein and gelatin as intact protein sources supplemented with crystalline amino acids, were formulated to contain graded levels of methionine (0.6–22.0%) at a constant dietary cystine level of 3 g kg−1. Each diet was randomly assigned to three aquaria. Growth performance and feed utilization were significantly influenced by the dietary methionine levels ( P  < 0.05). Maximum weight gain, feed intake occurred at 12 g kg−1 dietary methionine ( P  < 0.05). Methionine supplementation improved hepatopancreas and intestine weight, hepatosomatic and intestine index, intestinal γ-glutamyltransferase and creatine kinase activity, Lactobacillus count, Bacillus count, lysozyme activities, lectin potency, sim-immunoglobulin M content, addiment C3,C4 contents and serum total iron-binding capacity and declined Escherichia coli and Aeromonas counts. Quadratic regression analysis of weight gain against dietary methionine levels indicated that the optimal dietary methionine requirement for maximum growth of juvenile Jian carp is 12 g kg−1 of the dry diet in the presence of 3 g kg−1 cystine.  相似文献   

18.
We wanted to create functional seafood with high concentrations of organic selenium (seleno-methyl-selenocysteine and γ-glutamyl-seleno-methyl-selenocysteine) with anti-carcinogenic properties for human consumers. Garlic containing high concentrations of these organic selenium compounds was used as a selenium source in five experimental feeds for African catfish (1.9, 2.8, 3.9, 5.1 and 8.5 mg kg−1 Se); a sixth experimental feed was formulated without garlic (1.9 mg kg−1 Se). The experimental feeds were fed to African catfish [initial mean (SD) weight 100.7 (2.7) g] for 43 days with three replicates per treatment. Whole fish fillets were sampled for total selenium analysis (start and end) and selenium speciation (end). We found a positive linear relationship between dietary and fillet concentrations for total selenium and selenomethionine. The dietary total selenium concentration of 8.5 mg kg−1 resulted in a total selenium concentration of 0.9 mg kg−1 in the fillet (wet tissue). The majority of the selenium compounds recovered in an extract made from the fillet consisted of selenomethionine, considered to be important from a nutritional point of view. Seleno-methyl-selenocysteine, one of the organic selenium species to which superior anti-carcinogenic properties are attributed, was detected in the fillet but could not be quantified.  相似文献   

19.
A 12-week feeding trial was conducted to establish the minimum dietary vitamin E requirement of juvenile red drum by broken-line regression analysis. The semi-purified basal diet was supplemented with 10, 20, 30, 40, 60 or 80 IU vitamin E kg−1 as all-rac -α-tocopheryl acetate. Juvenile red drum were conditioned by feeding the basal diet for 8 weeks prior to the feeding trial to reduce whole-body vitamin E levels. Then, fish initially averaging 12.2 ± 0.4 g fish−1 (mean ± SD) were fed the experimental diets at a rate approaching apparent satiation for 12 weeks. Weight gain and feed efficiency responses of fish fed diets were significantly ( P  < 0.01) altered by the level of vitamin E supplementation but not strictly in a dose-dependent manner. Vitamin E concentrations in liver and plasma also were significantly ( P  < 0.001) influenced by dietary vitamin E level. Plasma ascorbic acid in fish fed the basal diet tended ( P  = 0.066) to be lower than in fish fed diets containing the various levels of vitamin E. In addition, fish fed the basal diet showed edema in the heart, while fish fed all other diets were normal. Fish fed 60 or 80 IU all-rac -α-tocopheryl acetate kg−1 diet had significantly higher respiratory burst of head kidney macrophages than fish fed all other diets, although dietary effects on hematocrit and neutrophil oxidative radical production were not significant. The minimum dietary vitamin E requirement of juvenile red drum was established based on broken-line regression of liver thiobarbituric acid reactive substances to be 31 mg all-rac -α-tocopheryl acetate kg−1 diet.  相似文献   

20.
In a 8-week production-scale experiment at a commercial trout farm, the effects of dietary lipid level and phosphorus level on phosphorus (P) and nitrogen (N) utilization of rainbow trout (initial mean weight 99 g) were assessed. A low-phosphorus, high-lipid experimental diet (457 g protein, 315 g lipid, 9.1 g P  kg–1 dry diet) was compared with a commonly used commercial diet (484 g protein, 173 g lipid, 13.6 g P  kg–1 dry diet). P and N budgets were constructed using data from the production-scale experiment and digestibility data for the two diets. In addition, orthophosphate and ammonia-N waste were measured in effluent over one 24-h period. Relative to the commercial diet, the experimental diet resulted in significantly increased feed efficiency ratio, N retention and P retention, and substantially reduced dissolved, solid and total P waste (g kg–1 dry feed). Although N retention resulting from the experimental diet was higher, this was attributable to higher N (protein) digestibility of the experimental diet. Solid N waste (g kg–1 dry feed) resulting from the experimental diet was substantially lower, but dissolved N waste (g kg–1 dry feed) was not significantly different relative to the commercial diet. Mean effluent orthophosphate production (mg day–1 kg–1 fish) of fish fed the experimental diet was substantially lower than that of fish fed the commercial diet ( P  < 0.05), but effluent ammonia-N production (mg day–1 kg–1 fish) was not significantly affected by dietary treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号