首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study sought to improve the reproductive performance of anoestrous high-producing dairy cows by including equine chorionic gonadotrophin (eCG) after progesterone-releasing intravaginal device (PRID) removal. In Experiment I, 806 cows at 51-57 days post-partum were randomly assigned to a PRID (treated with PRID), PRID-500 (treated with PRID plus 500 IU of eCG) or PRID-750 (treated with PRID plus 750 IU of eCG) group. In Experiment II, 422 cows showing a long anoestrus period (animals with no oestrus signs nor luteal tissue 35 days before treatment) were randomly assigned to the PRID, PRID-500 or PRID-750 groups. The dependent variables considered in binary logistic regression analyses for both experiments were the rates of oestrus, ovulation and conception after treatment, the cumulative conception rate on Day 120 post-partum and pregnancy loss. In Experiment I, interaction between treatment and season showed a significant effect on the oestrous response. Thus, during the warm season, PRID group cows were 8.9 times more likely to express oestrus than the remaining cows. Moreover, inseminated cows with two or more corpora lutea 8-14 days after treatment were more likely to become pregnant (by a factor of 2.4) than cows with a single corpus luteum. Finally, cows without luteal structures treated with PRID were 0.4 less likely to be pregnant on Day 120 post-partum, compared with the remaining cows. In Experiment II, cows in the PRID group treated during the warm or cool season were less likely to exhibit oestrus (by a factor of 0.06 or 0.2, respectively) or ovulate (by a factor of 0.004 or 0.14, respectively) than the remaining cows. In conclusion, in anoestrous cows in both experiments, the addition of eCG to the use of an intravaginal progesterone device to induce oestrus was beneficial. The recommended dose of eCG is 500 IU.  相似文献   

2.
This study compared the responses shown by lactating dairy cows to four different P4-based protocols for AI at estrus. Cows with no estrous signs 96 h after progesterone intravaginal device (PRID) removal were subjected to fixed-time AI (FTAI), and their data were also included in the study. In Experiment I, follicular/luteal and endometrial dynamics were assessed every 12 h from the beginning of treatment until AI. The estrous response was examined in Experiment II, and fertility was assessed in both experiments. The protocols consisted of a PRID fitted for five days, along with the administration of different combinations of gonadotropin releasing hormone (GnRH), equine chorionic gonadotropin and a single or double dose (24 h apart) of prostaglandin F. In Experiment I (40 cows), animals receiving GnRH at the start of treatment showed a significantly higher ovulation rate during the PRID insertion period while estrus was delayed. In Experiment II (351 cows), according to the odds ratios, cows showing luteal activity at the time of treatment were less likely to show estrus than cows with no signs of luteal activity. Treatment affected the estrous response and the interval from PRID removal to estrus but did not affect conception rates 28–34 days post AI. Primiparous cows displayed a better estrous response than multiparous cows. Our findings reveal acceptable results of 5-day P4-based protocols for AI at estrus in high-producing dairy cows. Time from treatment to estrus emerged as a good guide for FTAI after a 5-day P4-based synchronization protocol.  相似文献   

3.
The study compared response to prostaglandin F2α (PG), synchrony of ovulation and pregnancy per AI (P/AI) in a 5‐ vs a 7‐day Ovsynch + PRID protocol and investigated whether the initial GnRH affects P/AI in lactating dairy cows. Two hundred and seventy‐six cows (500 inseminations) were assigned to one of four timed‐AI (TAI) protocols: (i) PRID‐7G; 100 μg GnRH im, and a progesterone‐releasing intravaginal device (PRID) for 7 days. At PRID removal, PG (500 μg of cloprostenol) was given im. Cows received the second GnRH treatment at 60 h after PRID removal and TAI 12 h later. (ii) PRID‐5G; as PRID‐7G except the duration of PRID, treatment was 5 days and PG was given twice (12 h apart). (iii) PRID‐7NoG; as PRID‐7G except the initial GnRH, treatment was omitted. (iv) PRID‐5NoG; as PRID‐7NoG except the duration of PRID, treatment was 5 days. Response to treatments and pregnancy status at 32 and 60 days after TAI was determined by ultrasonography. The percentage of cows ovulating before TAI was greatest in PRID‐7G (17.1%), and the percentage of cows that did not have luteal regression was greatest in PRID‐5G (9.5%). The overall P/AI at 32 and 60 days did not differ among TAI protocols. However, during resynchronization, cows subjected to the 5‐day protocols had greater (p < 0.05) P/AI (45.3% vs 33.6%) than cows subjected to the 7‐day protocols. Pregnancy loss between 32 and 60 days tended (p = 0.10) to be greater in cows that did not receive initial GnRH (14.8%) compared to those that received GnRH (8.2%). In conclusion, the PRID‐5G protocol resulted in fewer cows responding to PG, but P/AI did not differ among TAI protocols. A 5‐day protocol resulted in more P/AI in resynchronized cows, and cows that did not receive initial GnRH tended to experience more pregnancy losses.  相似文献   

4.
The aim of this study was to investigate the effect of applying a progesterone‐based oestrous synchronization protocol at 51–57 days postpartum in high‐producing dairy cows. The data analysed were derived from 1345 lactating cows. Cows between 51 and 57 days postpartum were assigned to the groups: control, PRID (receiving a progesterone‐releasing intravaginal device for 9 days, and prostaglandin F 24 h before PRID removal) or GnRH–PRID (the same as the PRID group plus GnRH at PRID insertion). Oestrus was detected by using pedometers and confirmed by examination of the genital tract at AI. Oestrous and conception rates before days 71–77 postpartum, pregnancy loss in early pregnant cows or the cumulative conception rate registered on day 120 postpartum were considered as the dependent variables in four consecutive logistic regression analyses. Based on the odds ratios, the oestrous rate increased by a factor of 1.73 in cows showing oestrus before treatment for each unit increase in the number of previous oestruses; decreased by a factor of 0.44 in the control group with respect to the treatment groups; and by a factor of 0.61 in cows without luteal structures at treatment with respect to cows with corpora lutea. The conception rates of cows inseminated before days 71–77 postpartum remained similar across the groups, whereas the likelihood of pregnancy loss for cows becoming pregnant during this period was 0.11 times lower in the PRID group than in the control. Based on the odds ratio, the likelihood of a higher cumulative conception rate on day 120 postpartum: increased in cows showing oestrus before treatment by a factor of 1.41 for each unit increase in the number of previous oestruses, was reduced 0.56‐fold in control cows compared with treated cows, and was also reduced by a factor of 0.98 for each kilogram of milk production increase recorded at treatment. In conclusion, although oestrous synchronization programmes performed in this study did not improve fertility, cows treated with progesterone could be inseminated earlier than untreated cows, such that the treatments increased the cumulative pregnancy rates determined on day 120 postpartum. In addition, fewer pregnancy losses were observed in early pregnant cows in the PRID group than the GnRH–PRID group.  相似文献   

5.
The objectives of this study were to evaluate replacing GnRH with hCG and the effects of 48-h calf removal (CR) on pregnancy rates of cows synchronized with the CO-Synch protocol. Suckled beef cows (n = 467) at two locations were assigned to treatment by breed, age, and calving date. Treatment included either GnRH with (n = 121) or without CR (n = 117) or hCG with (n = 115) or without CR (n = 114) using the CO-Synch protocol. On d 0 and 9, cows received either hCG (2,500 IU, i.m.) or GnRH (100 microg, i.m.), and on d 7 all cows received PGF2alpha (25 mg). At one location, blood samples were collected from all cows (n = 203) on d -14, -7, 0, 7, 9, and 16. Calves were removed on d 7 and returned on d 9 (48 h) from approximately half of the cows that received GnRH or hCG. Cows that were detected in estrus between d 6 and 9 were bred approximately 12 h later and received no further injections. Cows not observed in estrus by d 9 received a second injection of either GnRH or hCG and were timed-inseminated. The AI pregnancy rates for GnRH-treated cows with or without CR and hCG-treated cows with or without CR were 46, 49, 35, and 34%, respectively (P = 0.44). Pregnancy rates of cows differed by treatment x age interaction (P = 0.07), hormone (P = 0.09), and hormone x age (P = 0.01) but not by CR (P = 0.66) or CR x age (P = 0.33). Among 2-yr-olds, pregnancy rates were higher for cows treated with hCG without CR than for cows that received GnRH with calf removal, whereas cows treated with hCG with CR and GnRH without CR were intermediate. In addition hCG-treated 2-yr-olds had higher pregnancy rates than GnRH-treated 2-yr-olds regardless of calf presence, but the reverse was true for older cows. Overall, GnRH-treated cows (48%) had a higher (P = 0.09) pregnancy rate than hCG-treated cows (34%). Among anestrous cows, GnRH and hCG were similar (P = 0.40) in their ability to induce ovulation and corpus luteum formation after the first and second injections of GnRH (31 and 76%, respectively) or hCG (39 and 61%, respectively). More (P = 0.001) hCG-treated cows exhibited short estrous cycles following timed AI. We conclude that hCG is not a suitable replacement for GnRH to synchronize ovulation with the CO-Synch protocol in multiparous cows, although further evaluation among primiparous cows is warranted using hCG with the CO-Synch protocol.  相似文献   

6.
The objectives of this study were to determine the effects of incorporating a progesterone intravaginal insert (CIDR) between the day of GnRH and PGF2alpha treatments of a timed AI protocol using estradiol cypionate (ECP) to synchronize ovulation on display of estrus, ovulation rate, pregnancy rate, and late embryonic loss in lactating cows. Holstein cows, 227 from Site 1 and 458 from Site 2, were presynchronized with two injections of PGF2alpha on study d 0 and 14, and subjected to a timed AI protocol (100 mixrog of GnRH on study d 28, 25 mg of PGF2alpha on study d 35, 1 mg of ECP on study d 36, and timed AI on study d 38) with or without a CIDR insert. Blood was collected on study d 14 and 28 for progesterone measurements to determine cyclicity. Ovaries were scanned on d 35, 37, and 42, and pregnancy diagnosed on d 65 and 79, which corresponded to 27 and 41 d after AI. Cows receiving a CIDR had similar rates of detected estrus (77.2 vs. 73.8%), ovulation (85.6 vs. 86.6%), and pregnancy at 27 (35.8 vs. 38.8%) and 41 d (29.3 vs. 32.3%) after AI, and late embryonic loss between 27 and 41 d after AI (18.3 vs. 16.8%) compared with control cows. The CIDR eliminated cows in estrus before the last PGF2alpha injection and decreased (P < 0.001) the proportion of cows bearing a corpus luteum (CL) at the last PGF2alpha injection because of less ovulation in response to the GnRH and greater spontaneous CL regression. Cyclic cows had greater (P = 0.03) pregnancy rates than anovulatory cows at 41 d after AI (33.8 vs. 20.4%) because of decreased (P = 0.06) late embryonic loss (16.0 vs. 30.3%). The ovulatory follicle was larger (P < 0.001) in cows in estrus, and a greater proportion of cows with follicles > or = 15 mm displayed estrus (P < 0.001) and ovulated (P = 0.05) compared with cows with follicles <15 mm. Pregnancy rates were greater (P < 0.001) for cows displaying estrus, which were related to the greater (P < 0.001) ovulation rate and decreased (P = 0.08) late embryonic loss for cows in estrus at AI. Cows that were cyclic and responded to the presynchronization protocol (high progesterone at GnRH and CL at PGF2alpha) had the highest pregnancy rates. Incorporation of a CIDR insert into a presynchronized timed AI protocol using ECP to induce estrus and ovulation did not improve pregnancy rates in lactating dairy cows. Improvements in pregnancy rates in cows treated with ECP to induce ovulation in a timed AI protocol are expected when more cows display estrus, thereby increasing ovulation rate.  相似文献   

7.
Three different treatments were compared to improve pregnancy per artificial insemination (P/AI) in repeat-breeder (RB) dairy cows. All cows (n = 103) were assigned to one of four groups: (1) gonadotropin-releasing hormone (GnRH); (2) human chorionic gonadotropin (hCG); (3) once-used controlled internal drug release (CIDR) device; and (4) control. All treatments performed 5-6 days after artificial insemination (AI) and milk samples were collected just before treatment for progesterone assays. There were no significant differences in milk fat progesterone concentration among trial groups. Cows were observed for estrus signs thrice daily. Pregnancy per AI on day 45 in hCG and CIDR groups were significantly higher than GnRH and control groups (60.0% and 56.0% vs. 26.9% and 29.6%, respectively), but there were no differences in P/AI between GnRH and control groups. There were also no significant differences between hCG and CIDR groups. Milk fat progesterone concentrations were compared between pregnant and non-pregnant cows in each group and only in the hCG group it was significantly lower in pregnant cows. In conclusion, treating repeat-breeder cows with hCG or once-used CIDR 5-6 days after AI improved P/AI.  相似文献   

8.
Lactating dairy cows (n = 667) at random stages of the oestrous cycle were assigned to either ovsynch (O, n = 228), heatsynch (H, n = 252) or control (C, n = 187) groups. Cows in O and H groups received 100 μg of GnRH agonist, i.m. (day 0) starting at 44 ± 3 days in milk (DIM), and 500 μg of cloprostenol, i.m. (day 7). In O group, cows received 100 μg of GnRH (day 9) and were artificially inseminated without oestrus detection 16–20 h later. In H group, cows received 1 mg oestradiol benzoate (EB) i.m., 24 h after the cloprostenol injection and were artificially inseminated without oestrus detection 48–52 h after the EB injection. Cows in C group were inseminated at natural oestrus. On the day of artificial insemination (AI), cows in all groups were assigned to subgroups as follows: human Chorionic Gonadotrophin (O‐hCG) (n = 112), O‐saline (n = 116), H‐hCG (n = 123), H‐saline (n = 129), C‐hCG (n = 94) and C‐saline (n = 93) subgroups. Cows in hCG and saline subgroups received 3000 IU hCG i.m. and or 10 ml saline at day 5 post‐AI (day 15), respectively. Pregnancy status was assessed by palpation per rectum at days 40 to 45 after AI. The logistic regression model using just main effects of season (summer and winter), parity (primiparous and pluriparous), method1 (O, H and C) and method2 (hCG and saline) showed that all factors, except method1, were significant. Significant effects of season (p < 0.01), hCG and parity (p < 0.01), and a trend of parity and season (p < 0.1) were detected. A clear negative effect of warm period on first service pregnancy rate was noted (p < 0.01). The pregnancy rate was the lowest in the H protocol during warm period (p < 0.05). Treatment with hCG 5 days after AI significantly improved pregnancy rates in those cows that were treated with the H protocol compared with saline treatments (41.5% vs 24.8%; p < 0.01). O and H were more effective in primiparous than in pluriparous cows (46.1% vs 29.9%; p < 0.1 and 43.6% vs 24.6%; p < 0.01). First service pregnancy rates were higher in primiparous hCG‐treated than in pluriparous hCG‐treated cows (57.9% vs 32.3%; p < 0.01). The pregnancy rate was higher for the hCG‐treated cows compared with saline‐treated cows during warm period (37.9% vs 23.6%; p < 0.001).  相似文献   

9.
Postpartum and lactating crossbred cows containing a percentage of Bos indicus breeding at three locations were studied to determine the efficacy of GnRH + PGF2alpha combinations for synchronization of estrus and(or) ovulation. Cows were equally distributed to each of three treatments by body condition score at the start of the experiment (d 0). All cows received 100 microg of GnRH on d 0 and 25 mg of PGF2alpha 7 d later. The three insemination protocols included 1) AI 12 h after exhibiting estrus during d 7 to 12 of the experiment (Select-Synch; n = 197); 2) timed-AI + 100 microg of GnRH on d 9 of the experiment (CO-Synch; n = 193); 3) AI 12 h after exhibiting estrus during d 7 to 10 of the experiment. Cows not exhibiting estrus by d 10 were timed-AI and injected with 100 microg of GnRH on d 10 of the experiment (Hybrid-Synch; n = 200). The percentage of cows exhibiting estrus during d 7 to 12 of the experiment was lower (P < 0.05) for CO-Synch (17.6%) cows than for Select-Synch or Hybrid-Synch (45.2 and 33.0%, respectively) cows, which did not differ (P > 0.05). For the Select-Synch and Hybrid-Synch cows that exhibited estrus during d 7 to 10 of the experiment and were artificially inseminated, conception rates were similar across treatments (50.5%). Pregnancy rates were greater (P < 0.01) for CO-Synch and Hybrid-Synch (31.0 and 35.5%, respectively) cows than for Select-Synch (20.8%) cows. A greater (P < 0.01) percentage of cycling cows became pregnant (34.5%) than noncycling cows (25.9%) across all treatments. The CO-Synch and Hybrid-Synch synchronization protocols resulted in greater pregnancy rates compared with the Select-Synch protocol in postpartum and lactating crossbred cows containing a percentage of Bos indicus breeding.  相似文献   

10.
Cows that exhibit estrus within 24 h of fixed-time AI have elevated concentrations of estradiol and greater pregnancy rates compared with cows not in estrus. Our objective was to determine whether estradiol, estrus, or both had an effect on uterine pH during a fixed-time AI protocol. Beef cows were treated with the CO-Synch protocol (100 mircog of GnRH on d -9; 25 mg of PGF(2alpha) on d -2; and 100 mircog of GnRH on d 0). One-half of the cows received an injection of estradiol cypionate (ECP; 1 mg) 12 h after PGF(2alpha). Cows detected in standing estrus within 24 h of the second GnRH injection were considered to be in standing estrus. Uterine pH was determined in all animals 12, 24, and 48 h after the PGF(2alpha) injection. For Exp. 1, pH was also determined 72 and 96 h after the PGF(2alpha) injection; in Exp. 2, pH was also determined at 54, 60, 66, 72, 78, 84, 90, and 96 h after the PGF(2alpha) injection or until ovulation. A treatment x time interaction (P < 0.01) influenced concentrations of estradiol. All cows had similar (P > 0.15) concentrations of estradiol at the time of ECP administration, but after ECP treatment all cows treated with ECP and control cows that exhibited estrus had greater (P < 0.01) concentrations of estradiol compared with nontreated cows that did not exhibit estrus. In all animals, estradiol diminished 48 h after the PGF(2alpha) (time of the second GnRH injection), but ECP-treated cows, regardless of estrus, had elevated (P < 0.02) concentrations of estradiol compared with control cows. There was a treatment x time interaction (P < 0.001) on uterine pH. All cows had similar uterine pH (P > 0.19) 24 h after the PGF(2alpha) injection. Control cows that did not exhibit estrus had a greater uterine pH compared with control cows that exhibited estrus (P < 0.01) and ECP cows that exhibited estrus (P = 0.05) 48 h after the PGF(2alpha) injection (7.0 +/- 0.1 vs. 6.7 +/- 0.1 and 6.8 +/- 0.1, respectively). Estradiol cypionate-treated cows not exhibiting estrus were intermediate (6.8 +/- 0.1; P > 0.05). All cows had similar uterine pH 72 h after the PGF(2alpha) injection through ovulation (P > 0.06). In summary, uterine pH was similar among all animals that exhibited estrus, regardless of treatment with ECP.  相似文献   

11.
The objective of these studies was to evaluate whether exposing primiparous, suckled beef cows to the biostimulatory effect of bulls alters breeding performance associated with an estrus synchronization protocol that included GnRH followed 7 d later by PGF(2alpha) and fixed-time AI (TAI). This was a composite analysis of 3 experiments that evaluated (1) the effects of bull exposure at different days after calving (yr 1); (2) the biostimulatory effects of bull excretory products (yr 2); and (3) the biostimulatory effects of familiar and unfamiliar bulls (yr 3) on the resumption of ovarian cycling activity. In all studies, cows were exposed (biostimulated; n = 94) or not exposed (nonbiostimulated; n = 67) to bulls or excretory products of bulls for at least 60 d before the beginning of the estrus synchronization protocol. Average calving day did not differ among years and was 52 +/- 5 d. Year did not affect the proportions of biostimulated and nonbiostimulated cows that were cycling at the beginning of the estrus synchronization protocol; however, a greater (P < 0.001) proportion of biostimulated than nonbiostimulated cows were cycling at this time. In each year, cows were given GnRH followed by PGF(2alpha) 7 d later. Cows were observed for estrus twice daily (am and pm) after PGF(2alpha). Cows that exhibited estrus before 54, 60, and 64 h after PGF(2alpha) were inseminated by AI 12 h later in yr 1, 2, and 3, respectively. Cows that failed to show estrus were given GnRH and TAI at 62, 72, and 72 h after PGF(2alpha) in yr 1, 2, and 3, respectively. Conception rates were determined by transrectal ultrasonography 35 d after TAI in each year. The percentages of cows that exhibited estrus after PGF(2alpha) and before TAI, the interval from PGF(2alpha) to estrus, and the percentages of cows inseminated 12 h after estrus or at TAI did not differ between biostimulated and nonbiostimulated cows and were 51%, 54.7 +/- 7.3 h, 35%, and 65%, respectively. Conception rates for cows bred by AI 12 h after estrus did not differ between biostimulated and nonbiostimulated cows; however, the TAI conception rate was greater (P < 0.05) for biostimulated cows (57.6%) than for nonbiostimulated cows (35.6%). We conclude that TAI conception rates in an estrus synchronization protocol that includes GnRH followed 7 d later by PGF(2alpha) may be improved by the biostimulatory effect of bulls in postpartum, primiparous cows.  相似文献   

12.
This study was designed to test the effects of progesterone or GnRH treatment on day 5 post-AI on fertility and luteal function in dairy cows and heifers. Five days after AI, 32 animals were randomly assigned to a control, intravaginal progesterone for 14 days progesterone releasing intravaginal device (PRID) or GnRH treatment group. On days 5, 7, 12, 14, 17 and 19 post-AI, each animal underwent colour Doppler ultrasonography of the corpus luteum and blood samples were collected for cell counts and plasma progesterone determination. Through general linear model repeated measures analysis of variance, significant effects were observed of treatment, parity, inseminating bull, reduced vascularization of the CL and pregnancy on plasma progesterone concentrations, whereas mean plasma progesterone and time luteal phase day, and treatment and plasma progesterone concentration on day 5 post-AI were found to, respectively, affect neutrophil and lymphocyte counts throughout the luteal phase. Moreover, two binary logistic regression analyses were performed. Based on the odds ratio, the likelihood of pregnancy by days 26-32 post-AI was 23.4 times higher in animals with high mean progesterone levels throughout the study period, compared with animals with low mean progesterone. The likelihood of reduced CL vascularization was 14 times higher in animals treated with PRID, compared with control and GnRH-treated animals. In conclusion, our results indicate that treatment on day 5 post-AI with PRID reduced subsequent CL vascularization, whereas GnRH treatment increased plasma progesterone concentrations on day 12 post-AI, although an effect was identified of the inseminating bull on plasma progesterone levels. Pregnant animals showed higher mean plasma progesterone concentrations than in nonpregnant ones and heifers higher than in lactating cows, whereas blood cell counts differed depending on the treatment and on the mean plasma progesterone concentration on day 5 post-AI.  相似文献   

13.
Previous studies have indicated that initiation of standing estrus within 24h of fixed-time AI influenced pregnancy rates. Furthermore, uterine environment at time of insemination can influence sperm transport. We hypothesized that preovulatory concentrations of estradiol would influence uterine pH at time of insemination. The objective of this study was to determine the influence of elevated preovulatory concentrations of estradiol on uterine pH following a fixed-time AI protocol. Cows were synchronized with the CO-Synch (n=57) protocol, and 29 cows were treated with an injection of estradiol cypionate (ECP; 1mg) 36h before the second injection of GnRH. Cows that exhibited standing estrus or were treated with ECP had increased (P<0.05) concentrations of estradiol compared to cows not in estrus and not administered ECP, respectively. There was an ECP by standing estrus interaction on uterine pH (P=0.01). Control cows that exhibited estrus had a reduced uterine pH (6.72+/-0.10; P=0.05) compared to control cows not exhibiting estrus (7.0+/-0.06). Cows treated with ECP and detected in standing estrus had a greater uterine pH (7.0+/-0.07) compared to control cows in estrus (P=0.02) and ECP cows not in estrus (6.81+/-0.09; P=0.06). The interval between the initiation of standing estrus and when pH was determined also influenced uterine pH. Cows that initiated standing estrus within 4h of pH determination had a lower uterine pH (6.74+/-0.12) compared to cows that initiated estrus 4-8h (7.09+/-0.08; P=0.07) or 8-12h (7.10+/-0.15; P=0.03) after pH determination. In summary, elevated concentrations of estradiol influenced standing estrus but only influenced uterine pH when pH was determined within 4h of the initiation of standing estrus.  相似文献   

14.
The efficiency of treatments for unobserved oestrus and their effect on the reproductive performance of a dairy cattle herd with low oestrous detection rate till 60 days post‐partum (dpp), attributed to the declivous and slippery concrete floor were investigated. The herdsman requested advice in order to improve the mean days open of the herd, but no investments were allowed because a new unit was about to be built. Due to the low oestrus detection rate of the herd, the breeding policy was to inseminate at the first detected post‐partum oestrus. Cows were examined at 20–30 dpp to assess uterine involution, ovarian activity and prevalence of reproductive disorders and, at 60 dpp if no previous oestrus was detected. Each examination included palpation per rectum, ultrasound scanning and collection of a blood sample for plasma progesterone (P4) measurement. Cows with unobserved oestrus till 60 dpp were allocated either to a treatment group (n=139) or to a control group (n=139). Three treatments were used: (a) injection of PGF (PG) upon detection of a corpus luteum (CL; n = 30), cows not observed in oestrus being re‐injected 11–12 days later. AI was at oestrus; (b) PRID (n=35) or Crestar (n=74) devices kept in situ for 12 and 9 days, respectively, were associated to an injection of PG and of equine chorionic gonadotrophin (eCG) at device removal. Cows were double‐fixed time‐inseminated at 48 and 72 h after device removal. All treated cows were examined at 48–72 h after treatment to confirm oestrus. The percentage of cows detected in oestrus up to 60 dpp remained unchanged through the trial (35 and 47% for years before intervention: 1994–95; 51 and 48% for years of intervention: 1996–97). In contrast, the oestrous detection rate was high both in treated (93%) and control (100%) cows. This possibly resulted from an improvement in the oestrous detection efficiency of the herd's personnel and from examination of cows at 48–72 h after treatment. Treated and control cows had identical conception rate (CR; 36 and 37%, respectively) and reproductive performance. However, the mean days open of the herd in 1996 was significantly improved in comparison with previous years (mean ± SEM: 134 ± 6, 126 ± 5, 110 ± 4 and 114 ± 5 days, for years 1994, 1995, 1996 and 1997, respectively, p < 0.05, ANOVA ). Conception rate to AI up to 40 dpp was significantly reduced, compared with the period between 60 and 100 dpp but, mean days open were significantly improved in cows inseminated up to 60 dpp, compared with thereafter (p < 0.05).  相似文献   

15.
The study evaluated, in early post‐partum anoestrous Nelore cows, if the increase in plasma oestradiol (E2) concentrations in the pre‐ovulatory period and/or progesterone priming (P4 priming) preceding ovulation, induced by hormonal treatment, reduces the endogenous release of prostaglandin PGF2αand prevents premature lysis of the corpus luteum (CL). Nelore cows were subjected to temporary calf removal for 48 h and divided into two groups: GPE/eCG group (n = 10) and GPG/eCG group (n = 10). Animals of the GPE/eCG group were treated with a GnRH agonist. Seven days later, they received 400 IU of eCG, immediately after PGF2α treatment, and on day 0, 1.0 mg of oestradiol benzoate (EB). Cows of the GPG/eCG group were similarly treated as those of the GPE/eCG group, except that EB was replaced with a second dose of GnRH. All animals were challenged with oxytocin (OT) 9, 12, 15 and 18 days after EB or GnRH administration and blood samples were collected before and 30 min after OT. Irrespective of the treatments, a decline in P4 concentration on day 18 was observed for cows without P4 priming. However, animals exposed to P4 priming, treated with EB maintained high P4 concentrations (8.8 ± 1.2 ng/ml), whereas there was a decline in P4 on day 18 (2.1 ± 1.0 ng/ml) for cows that received GnRH to induce ovulation (p < 0.01). Production of 13,14‐dihydro‐15‐keto prostaglandin F2α (PGFM) in response to OT increased between days 9 and 18 (p < 0.01), and this increase tended to be more evident in animals not exposed to P4 priming (p < 0.06). In conclusion, the increase in E2 during the pre‐ovulatory period was not effective in inhibiting PGFM release, which was lower in P4‐primed than in non‐primed animals. Treatment with EB promoted the maintenance of elevated P4 concentrations 18 days after ovulation in P4‐primed animals, indicating a possible beneficial effect of hormone protocols containing EB in animals with P4 priming.  相似文献   

16.
This study had the aim of investigating the efficiency of timed artificial insemination (TAI) through the progesterone‐releasing intravaginal device (PRID), used in new condition and for the second and third times in Nelore cows. The effects of device reuse and body condition score (BCS) on the conception rate (CR) were evaluated in 1,122 multiparous Nelore cows (mean BCS of 2.7 ± 0.4), which were randomly distributed into three groups that received new (n = 330), once (n = 439) and twice used (n = 353) PRID. Among the 1,122 females that underwent TAI, 573 became pregnant, thus representing an overall CR of 51.06%. Cows with BCS between 2.75 and 4.0 had greater (p < .0001) CR (69.75%) than cows with BSC of 2.0–2.5 (32.98%). It was observed that the CR through using PRID was 60.00%, 51.71% and 41.93% for new, once and twice used PRID, respectively, with difference between all groups (p < .0001). Under tropical conditions, animals with BCS greater than 2.5 had a higher CR, and the CR decreased proportionally with the number of times that the PRID had been used.  相似文献   

17.
The purpose of the present research was to compare the enzyme activity of alkaline phosphatase (ALP), lactate dehydrogenase (LDH), α-amylase, α-manosidase, β-N-acetyloglucosaminidase, β-glucuronidase, and β-galactosidase in the cervical mucus of cows during spontaneous and induced estrus. Friesian cows (n = 106) were assigned to 4 groups: 1) no treatment; 2) progesterone releasing intervaginal device (PRID) for 12 days plus pregnant mare serum gonadotrophin (PMSG) at the removal of the PRID; 3) PGF2α2 doses 11 days apart; and 4) PRID for 7 days plus PGF2α 1 dose, 24 hours before removal of the PRID. Fourteen cows were excluded from the trial because of an inadequate quantity of cervical mucus collected or a lost PRID. The cows from the 3 induced estrus groups were artificially inseminated (AI) twice, while those with spontaneous estrus received only a single AI. Cervical mucus samples were collected from all cows 5 to 30 min before the first AI. The results are summarized as follows: 1) ALP and α-amylase activity for spontaneous estrus were similar to those for induced estrus; 2) LDH activity levels during spontaneous estrus were significantly lower (P < 0.001) than that in the P4 and P4+PGF2α induced estrus groups; and 3) glycosidases' activity was significantly lower (P < 0.001) in the spontaneous estrus group than that in the induced estrous groups. In conclusion, the activity of most enzymes in the cervical mucus of cows, in the present study, was significantly different between the spontaneous and the induced estrus groups.  相似文献   

18.
The effect of GnRH pretreatment on estrus detection rate, precision of estrus, and reproductive performance of postpartum beef cows synchronized to estrus using GnRH and PGF2alpha was evaluated. In Exp. 1, Angus cows (n = 87) were randomly assigned by parity, postpartum interval, and body condition score (BCS) to receive either 1) GnRH on d -7 and PGF2alpha on d 0 (GP) or 2) the GP treatment and an additional injection of GnRH on d -16 (GGP). Estrus detection and AI were conducted twice daily from d -3 to d 3. At 72 h after PGF2alpha, all animals not previously detected in estrus were bred by AI and received a concurrent injection of GnRH (TAI). Synchronized pregnancy rates were numerically increased (P = 0.15) in cows treated with GGP (55%) compared with those on the GP treatment (44%). In Exp. 2, 1,276 spring-calving, suckled beef cows in nine herds were randomized to treatments as described for Exp. 1, except that the initial GnRH injection for the GGP treatment was administered on d -14. Herd affected all indicators of reproductive performance (P < 0.05). The percentage of animals detected in estrus prematurely (d -3 to d 0; 7%) was not affected by treatment. Estrus response rate was influenced by postpartum interval (< 60 vs > or = 60; 61 vs 73%; P < 0.01) and a three-way interaction of parity, BCS, and treatment (P < 0.01). Within animals with a BCS > or = 5.5, the GGP treatment tended to increase the detection of estrus in primiparous cows (GP vs GGP; 76 vs 91%; P = 0.11) and decrease detection in multiparous cows (GP vs GGP; 78 vs 72%; P < 0.10). However, because conception rate to TAI in animals with a BCS > or = 5.5 was greater (P < 0.05) in the GGP than in the GP group (28 vs 8%, respectively), this interaction was interpreted to represent a shift in interval to estrus induced by the GGP treatment, rather than a reduction in the synchronization of ovarian function. Conception rates of animals inseminated to an observed estrus did not differ among treatments (P = 0.15). Synchronized pregnancy rate tended (P = 0.06) to be greater in GGP- (53%) than in GP-treated animals (47%). In conclusion, pretreatment with GnRH tended to increase pregnancy rates during a 6-d synchronization period, primarily through enhanced conception rates of cows bred by TAI. In contrast to our hypothesis, GnRH pretreatment did not increase the percentage of animals detected in estrus or the precision of estrus expression.  相似文献   

19.
Crossbred cows (n = 1073) from five locations had oestrous cycles synchronized with 100 μg of GnRH IM and insertion of controlled internal drug release device (CIDR) on Day 0 followed by 25 mg of PGF IM and CIDR removal on Day 7. Kamar® patches were placed on all cows at CIDR removal. Cows were observed three times daily for oestrus after PGF administration. In the Ovsynch‐CIDR group, cows detected in oestrus (n = 193) within 48 h after PGF were inseminated using the AM–PM rule. Among these cows, 80 received and 113 did not receive a second GnRH at 48 h after PGF. Cows (n = 345) not detected in oestrus received a second GnRH at 48 h after PGF on Day 9, and fixed‐time AI 16 h after the GnRH on Day 10. In the CO‐Synch‐CIDR group, cows detected in oestrus (n = 224) within 48 h after PGF were inseminated using the AM–PM rule. Among these cows, 79 received and 145 did not receive a second GnRH at 64 h after PGF. Cows (n = 311) not detected in oestrus received a second GnRH on Day 10 at the time of AI, 64 h after PGF. The AI pregnancy rates were not different between the Ovsynch‐CIDR and CO‐Synch‐CIDR groups (p = 0.48). There were no differences in the AI pregnancy rates for cows inseminated at a fixed time (p = 0.26) or at detected oestrus (p = 0.79) between the treatment groups. Among cows inseminated in oestrus, there were no differences in the AI pregnancy rates between cows that received or did not receive the second GnRH (p = 0.47). In conclusion, acceptable AI pregnancy rates can be achieved with or without inclusion of oestrus detection in the Ovsynch‐CIDR and CO‐Synch‐CIDR protocols. Among cows detected in oestrus, cows that received a second GnRH yielded similar pregnancy rates when compared with cows that did not receive the second GnRH.  相似文献   

20.
The objectives of this observational study were to document ovarian and endocrine responses associated with the treatment of cystic ovarian follicles (COFs) in dairy cows, using gonadotropin releasing hormone (GnRH) and prostaglandin F2alpha (PGF) with or without exogenous progesterone. A secondary objective was to determine pregnancy establishment following synchronization of ovulation and timed insemination in cows diagnosed with COFs. In trial I, 18 Holstein cows diagnosed with COFs received 2 injections of 100 microg GnRH, 9 d apart, with 25 mg PGF given 7 d after the 1st GnRH. A new follicle developed in all 18 cows after the 1st GnRH, and 83% of cows ovulated following the 2nd GnRH. Cows were inseminated 16 h after the 2nd GnRH. Of the 17 cows available for pregnancy diagnosis, 7 were confirmed pregnant. In trial II, 8 cows with COFs received GnRH and an intravaginal progesterone device (CIDR) concurrently, then PGF 7 d later. The CIDR was removed 2 d after PGF administration. Plasma estradiol concentrations declined following CIDR insertion. In all cows, a new follicle developed following GnRH treatment; estradiol-surge and estrus occurred spontaneously after CIDR-removal. Seven of 8 cows ovulated the new follicle. In dairy cows diagnosed with COFs, treatment with GnRH followed by PGF 7 d later, with or without exogenous progesterone, resulted in the recruitment of a healthy new follicle; synchronization of ovulation and timed insemination resulted in a 41% pregnancy rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号