首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose  

Soil contamination by multiple organic and inorganic contaminants is common but its remediation by hyperaccumulator plants is rarely reported. The growth of a cadmium (Cd) hyperaccumulator Sedum alfredii and removal of contaminants from Cd and polycyclic aromatic hydrocarbons (PAHs) co-contaminated soil were reported in this study.  相似文献   

2.
Availability of polycyclic aromatic hydrocarbons in aging soils   总被引:1,自引:0,他引:1  

Purpose  

The soil contamination by hydrophobic organic contaminants (HOCs), such as polycyclic aromatic hydrocarbons (PAHs), poses great threats to human health and ecological security and attracts worldwide concerns. The total HOC concentrations overestimate its available fraction to the soil biota. Increased understanding of the availabilities of PAHs in soil environment will have considerable benefits for their risk assessment and be very instructive to food safety and remediation strategies in contaminated sites. However, the availability of PAHs in aging soils and particularly the correlations of the availabilities with their forms in soils have yet to be elucidated. In this work, the availabilities of PAHs in aging soils were evaluated using a sequential mild extraction technique.  相似文献   

3.

Purpose  

Phytoremediation has been recognized as a promising technology for the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils. However, little is known about how plant species and cropping patterns affect the process of phytoremediation removing PAHs. Therefore, the aim of this study was to investigate further the effects of monocultures or mixed cultures of different plant species on PAH phytoremediation.  相似文献   

4.

Purpose

Polycyclic aromatic hydrocarbons (PAHs) are largely accumulated in soils in China. The immobilized-microorganism technique (IMT) is a potential approach for abating soil contamination with PAHs. However, few studies about the application of IMT to contaminated soil remediation were reported. Due to recalcitrance to decomposition, biochar application to soil may enhance soil carbon sequestration, but few studies on the application of biochars to remediation of contaminated soil were reported. In this study, we illustrated enhanced bioremediation of soil having a long history of PAH contamination by IMT using plant residues and biochars as carriers.

Materials and methods

Two PAH-degrading bacteria, Pseudomonas putida and an unidentified indigenous bacterium, were selected for IMT. The extractability and biodegradation of 15 PAHs in solution and an actual PAH-contaminated soil amended with immobilized-bacteria materials were investigated under different incubation periods. The effects of carriers and the molecular weight of PAHs on bioremediation efficiency were determined to illustrate their different bio-dissipation mechanisms of PAHs in soil.

Results and discussion

The IMT can considerably enhance the removal of PAHs. Carriers impose different effects on PAH bio-dissipation by amended soil with immobilized-bacteria, which can directly degrade the carrier-associated PAHs. The removal of PAHs from soil depended on PAH molecular weight and carrier types. Enhanced bio-dissipation by IMT was much stronger for 4- and 5-ring PAHs than for 3- and 6-ring ones in soil. Only P400 biochar-immobilized bacteria enhanced bio-dissipation of all PAHs in contaminated soil after a 90-day incubation.

Conclusions

Biochar can promote bioremediation of contaminated soil as microbial carriers of IMT. It is vital to select an appropriate biochar as an immobilized carrier to stimulate biodegradation. It is feasible to use adsorption carriers with high sorptive capabilities to concentrate PAHs as well as microorganisms and thereby enhance dissipation of PAHs and mitigate soil pollution.  相似文献   

5.

Purpose

Enhancing desorption of hydrophobic organic contaminants from soils is a promising approach for the effective remediation of soils contaminated with organic compounds. The desorption efficiency of chemical reagent, such as surfactant, should be evaluated. In this study, the effect of mixed anionic–nonionic surfactants sodium dodecylbenzene sulfonate (SDBS)–Tween 80 on the distribution of polycyclic aromatic hydrocarbons in soil–water system was evaluated.

Materials and methods

Batch desorption experiments were employed to evaluate the distribution of polycyclic aromatic hydrocarbons (PAHs) and surfactants in soil–water system. PAHs and SDBS were determined by high-performance liquid chromatography, Tween 80 by spectrophotometry, and total organic carbon with a carbon analyzer.

Results and discussion

Sorption of PAHs to soil was increased at low surfactant concentration due to the effective partition phase on soil formed by sorbed surfactants. The mixture of anionic and nonionic surfactants decreased the sorption of surfactants to soil, increasing the effective surfactant concentration in solution and thus decreasing the sorption of PAHs on soil. Anionic–nonionic mixed surfactant showed better performance on desorption of PAHs from soil than single surfactant. The greatest desorption efficiency was achieved with low proportions of SDBS (SDBS/Tween80?=?1:9).

Conclusions

SDBS–Tween 80 mixed surfactant showed the highest desorption rate with low proportion of SDBS, which indicated that the addition of relative low amount of anionic surfactant could significantly promote the desorption efficiency of PAHs by nonionic surfactants. Results obtained from this study did provide useful information in surfactant-enhanced remediation of soil and subsurface contaminated by hydrophobic organic compounds.  相似文献   

6.

Purpose

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous and persistent contaminants in aquatic bed sediments. A better understanding of their in-bed fate and transport is therefore key in minimising the risk to the environment over time through various remediation and monitoring strategies. Since ecological effects and risks are related to contaminant concentrations, this study developed CoReTranS, a predictive model that simulates one-dimensional organic contaminant reaction and transport in bed sediments.

Materials and methods

CoReTranS was benchmarked against analytical solutions of simplified reactive transport models and validated using a published study of marsh sediments contaminated with petroleum-derived hydrocarbons from Wild Harbour, West Falmouth, MA, USA.

Results and discussion

The CoReTranS model effectively predicted the vertical distribution of PAHs in the Wild Harbour sediments as confirmed by the modelling results from the published study. The CoReTranS model was also used to interpret results from a published study of PAH-contaminated fjord sediments from Kitimat Arm in British Columbia, Canada. Specific insights into the post-depositional fate and transport of selected PAHs in the Kitimat fjord sediments were obtained by comparing the measured concentration-depth profiles with the numerical results from the CoReTranS model. Key parameters such as effective diffusivity of contaminants and burial velocities of sediment particles were shown to possibly account for the predicted concentrations-depth profiles in the Kitimat fjord sediments.

Conclusions

As demonstrated, CoReTranS can simulate reactive transport models in order to predict PAH concentration profiles in porewater under site-specific conditions. The information derived from the use of the CoReTranS model highlighted practical application of such information by engineers to site-specific risk assessment and remediation.  相似文献   

7.

Purpose

Polycyclic aromatic hydrocarbons (PAHs) are hydrophobic organic pollutants of great environmental and health concern. PAHs are very persisted in soils and sediments which make it very difficult to remove them from soil. Therefore, remediation of PAH-contaminated sites has become an important environmental issue. The objective of this work was to study PAH degradation by pulsed corona discharge plasma system.

Materials and methods

Phenanthrene (Phe) was used as the model pollutant. The Phe-contaminated soil samples were prepared by adding appropriate amount of Phe dichlormethane solution (200 mg/L) into a given amount of pretreated soil, and Phe distributed uniformly in the soil at about 100 mg/kg. The experimental system mainly consisted of a pulse high-voltage power supply and a reactor vessel. The high-voltage electrode comprised of six stainless-steel needles and the ground electrode was a stainless-steel plate. The concentration of Phe was determined by HPLC system after being extracted out from soil. Effect of run parameters such as pulse voltage, pulse frequency, air flow rate, gas atmosphere, and initial concentration of Phe on Phe degradation was investigated, and the consumption of ozone during discharge process was also studied.

Results and discussion

The results showed that degradation efficiency of Phe (initial concentration 100 mg/kg) approached approximately 70 % after 40 min of discharge treatment under the conditions of pulse voltage 18 kV, pulse frequency 70 Hz, and air flow rate 0.8 L/min, which increased with the pulse voltage and pulse frequency due to the enhancement of input energy. An optimal air flow rate of 0.8 L/min was observed to obtain a maximum Phe degradation efficiency. Oxygen atmosphere favored Phe degradation due to high concentration of generated O-reagents, and ozone was found to act on Phe degradation. The concentration of Phe had influence on remediation capacity that increased with the amount of Phe in soil.

Conclusions

The results confirmed that pulsed corona-discharge plasma was a potential method for remediation of PAH-contaminated soil. This study offered a viable treatment option for remediation of Phe-contaminated soil, which was expected to remove PAHs other than Phe from soil with further development.
  相似文献   

8.

Purpose  

The speciation of polycyclic aromatic hydrocarbons (PAHs) in sediment-porewater systems affects both the chemical fate and bioavailability of these compounds. PAHs may be dissolved or sorbed to sediment particles or dissolved organic carbon (DOC). Furthermore, soot carbon has been shown to control the sorption of PAHs onto particles in natural waters. The present study investigates the distribution of individual PAHs among these three phases by examining sediments from the western Baltic Sea, focusing on a highly contaminated former dumping area and evaluating the importance of soot-carbon partitioning.  相似文献   

9.

Purpose  

Polycyclic aromatic hydrocarbons (PAHs) are widespread in sediments, particularly near areas of intense human activities. Due to their mutagenic and carcinogenic behaviour, PAHs are classified as priority contaminants to be monitored in environmental quality control schemes. The purpose of this study was to determine the levels of PAHs in major coastal areas of Greece that receive various pressures, investigate their sources and evaluate their potential toxicity by comparison against effects-based Sediment Quality Guidelines (SQG).  相似文献   

10.

Purpose

Obtaining a better understanding of the concentrations and origins of polycyclic aromatic hydrocarbons (PAHs) in the sediments Taihu Lake, China, is of paramount importance for the environmental protection and remediation of this lake. To investigate temporal and spatial variations in PAH concentrations, composition and possible source categories, 29 sediment samples were collected from Taihu Lake during both the flooding and dry seasons of the lake.

Materials and methods

Fifteen US Environmental Protection Agency priority PAHs were detected in 58 surface sediments (29 for each season) by gas chromatograph/mass selective detection, following extraction by accelerated solvent extraction.

Results and discussion

The concentrations of the total and individual PAHs in the flooding season were higher than those in the dry season, suggesting that high levels of fishing activity may be an important contributor to PAH pollution in the flooding season. The fractions of high molecular weight PAHs in the flooding season ranged from 63?% to 71?% and were higher than those in the dry season (which ranged from 52?% to 65?%). These results indicate that vehicle exhaust may be a more important pollutant source in the flooding season than in the dry season. Diagnostic ratios, principal component analysis and hierarchical cluster analysis were used to study possible source categories in the different seasons. Consistent results were obtained for all techniques. Seasonal and spatial variations were also investigated by the coefficient of divergence method. The results of previous studies support the conclusion of source identification.

Conclusions

Vehicle emissions were the dominant contributor to PAHs in the flooding season, while PAHs in the dry season sediments may have come from multiple sources. The findings of this study may provide a theoretical basis for seasonal PAH control strategies for Taihu Lake.  相似文献   

11.

Purpose  

Previous studies have shown a positive correlation between concentrations of polycyclic aromatic hydrocarbons (PAHs) and total organic carbon (TOC) in lake sediments. However, with respect to the complex organic matter in recent sediments, it is still unclear which part of TOC plays a key role in controlling PAHs distributions in natural sediments. The aim of this study was to examine the relationships between PAHs and TOC components of different origins in lake sediments.  相似文献   

12.

Purpose  

Methanotrophs are an important group of bacteria that can metabolize methane. Polycyclic aromatic hydrocarbons (PAHs) are widespread contaminants and present in all ecosystems. We hypothesize that PAHs may affect methanotrophs and methane oxidation. In this study, we assessed dose–response curves for the inhibition of methane oxidation and methanotrophs diversity by pyrene, and resistance and resilience of soil methane oxidation rate and methanotrophs composition in response to pyrene contamination.  相似文献   

13.

Purpose  

In situ contaminated sediment remediation through the addition of activated carbon has been proven to be an effective remediation technique. An amendment delivery system was developed to accurately place and inject a powdered activated carbon slurry. The system was set up to deliver a series of discrete injections over a rectangular grid with the objective to deliver 3% carbon (C) by dry weight to an inundated saturated sediment at a maximum sediment depth of 30 cm.  相似文献   

14.

Purpose  

Naturally occurring layer silicate clay minerals can be value added by modifying their surface properties to enhance their efficacy in the remediation of environmental contaminants. Silicate clay minerals modified by the introduction of organic molecules into the mineral structure are known as organoclays and show much promise for environmental remediation applications. The present study assesses the extent of decrease in bioavailable and bioaccessible arsenic (As) via enhanced adsorption by soil treated with organoclays.  相似文献   

15.

Purpose  

Contaminated land is a major problem. The remediation cost of brownfields in Europe and the USA exceeds 550 billion €; however, rehabilitation is on a slow pace. It is estimated that the money spent so far correspond to just 5% of the required one to eliminate the problem. The high cost of remediation, along with the inefficiency of the available funds, gives rise to a need for a method to effectively allocate remediation funds.  相似文献   

16.

Purpose  

This study characterized the chemical transport potential of polycyclic aromatic hydrocarbons (PAHs) and total petroleum hydrocarbons (TPH) in the vicinity of a sand cap placed in the nearshore zone of a tidal marine embayment.  相似文献   

17.

Purpose  

The fairly high amounts of sediments dredged in coastal or internal water bodies for navigational and/or environmental purposes claims for the identification of appropriate management strategies. Dredged sediments are frequently affected by organic and inorganic contamination, so that their reuse, as an alternative to final landfill disposal, could need remediation. In this framework, a two-year joint research project was carried out to assess the feasibility of different remediation technologies for the treatment of polluted sediments.  相似文献   

18.

Purpose  

Polycyclic aromatic hydrocarbon (PAHs) are ubiquitous pollutants in agricultural soils in China. Biochar is the charred product of biomass pyrolysis, which is widely applied to soils to sequestrate atmospheric carbon dioxide and guarantees a long-term benefit for soil fertility. Knowledge about the impacts of various biochars on soil sorption affinity remains obscure. In this study, we evaluated the effects of various biochars on PAHs sorption to biochar-amended agricultural soil.  相似文献   

19.

Purpose  

In an aquatic environment, hydrodynamic condition is a ubiquitous natural process, and the contaminated sediments will act as a potential pollution source once they are remobilized into the overlying water. In this study, remobilization behavior of polycyclic aromatic hydrocarbons (PAHs) under simulated hydrodynamic conditions was studied. Additionally, an adjusted prediction model with addictive consideration of surface properties was developed to exhibit the distribution of PAHs in hydrodynamic system.  相似文献   

20.

Purpose

The assessing bias of rhizosphere effect on polycyclic aromatic hydrocarbons (PAHs) degradation in soils would come out from formation of nonextractable PAHs and extractability difference of various solvents. The aim of this study was to evaluate the role of rhizosphere effect in long-term PAHs polluted soils by using sequential extraction approach.

Material and methods

The scheme of sequential extraction included methanol/water extractable PAHs, butanol extractable PAHs, DCM extractable PAHs, humic acid-bound PAHs, crude humin-bound PAHs, and organic-C enriched humin-bound PAHs. PAHs in plant tissues were extracted by dichloromethane after saponifying. The correlations between PAHs in plant tissues and sequentially extracted fractions were generated by partial least squares regression.

Results and discussion

The profiles of sequentially extracted PAHs varied with plant species. The discrepancy of toxicity equivalency concentrations between rhizosphere and bulk soils was much more significant than that of total PAHs concentrations. In partial least squares regression models, the concentration of PAHs in plant tissues was correlated with fractions strongly associated with soil.

Conclusions

The novelty of this study is the evaluation of concentration and toxicity equivalency concentration of PAHs in rhizosphere of crops sampled in a field polluted with PAHs for long term. This study has highlighted more significant role of rhizosphere in cleanup of cancerogenic toxicity of soil than amount of PAHs in polluted soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号