首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
恩诺沙星在日本鳗鲡体内残留消除规律研究   总被引:6,自引:0,他引:6  
采用高效液相色谱法检测日本鳗鲡肌肉、血清、肠、鳃和肝脏组织中恩诺沙星及其代谢物环丙沙星的残留。方法的日内和日间变异系数分别为1.86%和2.53%,标准添加回收率为(95±6)%;最低测量限为1.0μg/kg。用现场试验方法研究恩诺沙星在鳗鱼体内的代谢残留规律。对约50 g鳗鱼按9 mg/kg鱼体重每天给药2次,连续投喂7 d。给药期间鳗鱼体内的药物含量呈锯齿状上升,停药60 d后鳗鱼肠、鳃和肝脏组织中药物即下降至1~5μg/kg。肌肉和血清中药物残留到90 d,分别消除至3μg/kg和4μg/kg。所测组织的药物残留至停药120 d后降到检测限以下。故鳗鱼的停药期不应低于120 d。  相似文献   

2.
近年来,水产品安全问题日益突出,其中鳗鱼及其制品的药物残留问题尤受关注。由于日本《肯定列表》制度实行更严厉的药物残留检验制度,进一步限制了我国的鳗鱼出口量。由于养殖环境的不断恶化以及养殖者不良的养殖习惯等造成鳗鱼病害频繁发生,抗药性不断增强,原来很多常见的疾病现变得难以治疗,给养殖生产带来极大的麻烦,鳗鱼病害和药残等问题制约着我国养鳗业的健康发展,笔者根据实际情况,介绍一下鳗鲡爱德华氏病的防治经验和体会。  相似文献   

3.
阿维菌素在鲈鱼肌肉组织中的残留与消除规律   总被引:1,自引:0,他引:1  
为了解实际养殖过程中使用阿维菌素药物后,鲈(Lateolabrax japonicus)对阿维菌素的蓄积及消除规律,以指导阿维菌素药物在实际生产中的应用。以毒性试验为基础,在确定96 h半致死质量浓度(LC50)后,以0.25倍LC50,即指导用药量,质量浓度为4 ng·mL-1,结合实际养殖用药情况,药浴72 h后换水,观察阿维菌素在鲈鱼肌肉组织中的残留与消除规律。文章建立高效液相色谱-串联质谱法测定鲈鱼中阿维菌素残留量的方法,并以此法测定鲈鱼肌肉组织中阿维菌素的质量浓度。结果表明,随着药浴时间的延长,鲈鱼肌肉组织中的阿维菌素质量分数逐步增加,在药浴结束时达到峰值8.767μg·kg-1,随后阿维菌素在体内的残留量随消除试验的进行逐渐下降,至第528小时降至检测限以下。  相似文献   

4.
单剂量口灌阿维菌素在草鱼体内的药动学及残留研究   总被引:1,自引:0,他引:1  
按0.1 mg/kg的剂量给草鱼(Ctenopharyngodon idellus)灌服阿维菌素,用高效液相色谱法检测用药后不同时间的血浆、肌肉和肝脏中的药物浓度,然后用3P97药代动力学软件处理药时数据,对药物在草鱼体内药动学及组织残留进行研究.结果表明:单剂量口灌阿维菌素在草鱼血浆中主要药动学参数为:AUC 1 6...  相似文献   

5.
为建立鳗鲡肌肉中孔雀石绿代谢物隐性孔雀石绿染料残留标准物质的研制和定值方法,以一定质量浓度孔雀石绿对鳗鲡进行药浴给药,使孔雀石绿在鱼体内自然代谢,从而使鳗鲡体内含有隐性孔雀石绿残留。经均质、真空包装及辐照处理后,获得一批500个独立包装的的鳗鲡肌肉样本。采用超高效液相色谱-串联质谱法对该样本进行均匀性和稳定性检验,经8家独立实验室协同定值及不确定度评估,其特性值为2.82μg/kg,扩展不确定度为0.39μg/kg(k=2)。所建立的制备方法为染料残留鳗鲡基体标准物质的实验室制备提供了一种参考。  相似文献   

6.
采用高效液相色谱分离,荧光检测器检测,建立鲈鱼组织中阿维菌素和伊维菌素残留的检测方法.样品用乙腈提取,碱性氧化铝SPE柱净化,N-甲基咪唑和三氟乙酸酐的乙腈溶液为衍生化试剂,常温衍生化15 rain.荧光检测器激发波长为365 nm,发射波长为475 nm.结果表明,阿维菌素和伊维菌素衍生化产物的浓度与峰面积在0.5~200 ng/ml范围内有很好的线性关系.添加水平为1~10 μg/kg,阿维菌素和伊维菌素的平均回收率在80.6%~88.0%和78.8%~82.8%之间,相对标准偏差均小于10%.阿维菌素的检出限为0.1/μg/kg,伊维菌素为0.2 μg/kg.该方法简便、灵敏、可靠,可用于鲈鱼组织中阿维菌素和伊维菌素残留的检测.  相似文献   

7.
土霉素,作为一种水产养殖最常用的抗菌渔药,在生产中被经常性的用来治疗水生动物细菌性疾病,但是使用者对其作用机理与药性及其在药物残留和停药期以及各国的相关规定却知之甚少,为此,作者就鳗鱼养殖中常用的盐酸土霉素这种渔药的相关知识浅谈如下,供养鳗业者参考。  相似文献   

8.
为了解孔雀石绿及其有毒代谢产物无色孔雀石绿在鱼体中的蓄积与消除规律,达到对孔雀石绿的禁用监控,本试验对初始体重为(12.42±2.18) g的欧洲鳗鲡进行0.1 mg·L-1 和0.2 mg·L-1 浓度(P1和P2组)孔雀石绿药浴24 h,再转移到清水中养殖120 d,采用高效液相色谱法测定肌肉组织中孔雀石绿及无色孔雀石绿的残留.在药浴过程中,鳗鲡肌肉组织中孔雀石绿平均含量不断升高,P1和P2组分别于药浴12 h和24 h达到最高值(720.5 ±192.6) μg·kg-1和(1404.8±421.9) μg·kg-1;在清水养殖过程中,孔雀石绿在鳗鲡肌肉中含量波动式下降,并于水浴2160 h (90 d)时两个处理组都低于检测限度.肌肉中所含无色孔雀石绿,在药浴过程以及清水养殖的开始一段时间内不断升高,P1和P2组分别于水浴的72 h和120 h达到最高值(960.1±251.0) μg·kg-1和(1 625.8±183.2) μg·kg-1,然后呈波动式下降,至实验结束(水浴120 d)时两个实验组肌肉中还有一定残留.结果表明,无色孔雀石绿的代谢消除时间较长,可以作为检测的标志物.另外,不同浓度的孔雀石绿在鳗鲡肌肉中的代谢规律相似,只是随药浴浓度升高,肌肉中孔雀石绿和无色孔雀石绿含量最高值出现时间有所滞后,以及消除时间相对延长.  相似文献   

9.
随着抗生素的大量使用,许多国家针对氟苯尼考残留制定了食品安全限量标准,并规定了相应的休药期。设计连续7 d以10 mg/(kg·d)的氟苯尼考投药试验和14 d停药的暴露试验,使用高效液相色谱检测氟苯尼考在循环水养殖系统中的残留规律以及在欧洲舌齿鲈肌肉和肝脏组织中的残留水平。试验结果显示,循环水养殖系统各处理单元中(蛋白分离器、生物滤池、紫外消毒装置)氟苯尼考的质量浓度随着投药时间的增加,呈不同程度积累上升。在投药第7 d时,各处理单元氟苯尼考的残留质量浓度均达到最大值;停药后,氟苯尼考残留质量浓度逐渐下降,停药第14 d各处理单元中的氟苯尼考水平与投药前水平相当。不同处理单元对于氟苯尼考降解率的贡献为紫外消毒装置蛋白分离器生物滤池。此外,氟苯尼考在欧洲舌齿鲈组织样品中的残留水平随停药时间延长而降低,停药7 d后其肝脏和肌肉组织中的残留量均低于国家标准(1000μg/kg)。本试验将为循环水系统中各水处理单元的工艺设计提供理论基础,推动水产养殖业的健康可持续发展。  相似文献   

10.
为研究诺氟沙星(NFX)在鳗鲡体内的代谢和消除规律,以超高效液相色谱-串联质谱法测定日本鳗鲡在混饲口灌后血液和组织中NFX的含量变化,并进行药动学分析。结果表明,NFX以30 mg/kg的剂量单次混饲口灌日本鳗鲡后,吸收分布迅速,达峰时间(T_(max))、吸收(T_(1/2Ka))和分布半衰期(T_(1/2α))分别为3.000、1.012和1.570 h;NFX在鳗鲡体内消除较快,消除半衰期(T_(1/2β))为15.267 h,总清除率(CL)为1.315 L/(h·kg)。此外,峰浓度(C_(max))为1.273 mg/L,药时曲线下面积(AUC_(0~∞))为22.670 mg/(L·h)。NFX以30 mg/kg的剂量连续3 d混饲口灌日本鳗鲡后,在肌肉、肝脏、肾脏和血浆中的消除速率常数分别为0.144、0.125、0.102和0.093 1/d。根据WT1.4计算的理论休药期(WDT)分别为肌肉22.97 d,肝脏21.30 d,肾脏33.40 d,血浆18.29 d。本研究结果为诺氟沙星在水产动物中的实际应用提供理论依据。  相似文献   

11.
采用高效液相色谱串联质谱(HPLC-ESI/MS/MS)法分析呋喃西林主要代谢物氨基脲(Semicarbazide,SEM)在中华绒螯蟹(Eriocheir sinensis,以下简称河蟹)体内的残留及消除规律。设2个试验组和1个对照组,2个试验组以20 mg·L-1和80 mg·L-1的呋喃西林溶液浸泡河蟹(扣蟹)60 min后,转移至饲养池塘中,并在给药后1 h、2 h、4 h、8 h、12 h、24 h、2 d、4 d、8 d、12 d、16 d、20 d、30 d、40 d、50 d、60 d、80 d、100 d、120 d、150 d进行各组织取样分析。结果显示:在停药2 h时,2个浓度试验组河蟹的肌肉、肝胰腺和鳃中SEM均达到高峰,其中,20 mg·L-1试验组测定值分别为(152±21.7)、(234.0±12.0)、(3 160±169)μg·kg-1,80 mg·L-1试验组测定值分别为(327±31.2)、(372±27.2)、(4 623±247)μg·kg-1。停药2 h后,2个浓度试验组河蟹各组织中SEM均呈现不同的消除速率,其中20 mg·L-1试验组的消除速率分别为0.315μg·(kg·h)~(-1)(肌肉)、0.487μg·(kg·h)~(-1)(肝胰腺)和4.39μg·(kg·h)~(-1)(鳃);80 mg·L-1试验组的消除速率分别为0.454μg·(kg·h)~(-1)(肌肉)、0.516μg·(kg·h)~(-1)(肝胰腺)和6.43μg·(kg·h)~(-1)(鳃)。停药960 h后,2个浓度试验组各组织中SEM残留均低于判定限(1.0μg·kg-1)。  相似文献   

12.
研究了以全池泼洒的投药方式,孔雀石绿(MG)(池塘中MG的理论浓度为1 mg/L)及其主要代谢物隐性孔雀石绿(LMG)在斑点叉尾(Ietalurus punetaus)肌肉和皮肤以及养殖水体和底泥中的残留消除规律。采用高效液相色谱串联质谱法(HPLC-MS/MS)分析MG及其代谢物LMG在斑点叉尾体内及环境中的浓度水平。结果显示:肌肉、皮肤中MG于用药后第1天最高浓度分别为:(42.77±5.26)μg/kg和(6.36±0.11)μg/kg,消除半衰期T1/2分别为57.76 d、31.51 d;皮肤和肌肉中LMG分别在用药后第3天和第1天达到最高(502.27±20.43)μg/kg和(125.26±12.76)μg/kg,消除半衰期T1/2分别为33.01 d、38.51 d。这表明MG在斑点叉尾体内会迅速转化为LMG,且LMG残留在皮肤中的浓度大于肌肉中的浓度。养殖环境底泥中同时存在MG和LMG,以LMG为主,并且LMG呈现蓄积的趋势,在第360天出现最高浓度(5.92±1.23)μg/kg;水体中MG最高浓度出现在第1天,为(46.44±7.39)μg/L,随后急剧降至1μg/L左右,水体中几乎不存在LMG。  相似文献   

13.
(21±1)℃水温条件下,研究了三聚氰胺在斑点叉尾鮰(Ictalurus punctatus)体内的残留消除规律。结果显示:血浆中药时数据符合有吸收一室开放模型,动力学方程为:C=3.952660(e-0.027279t-e-0.127279t),吸收半衰期(T1/2kα)为5.4469 h,消除半衰期(T1/2ke)为25.4093 h,达峰时间(Tp)为15.4045 h,达峰浓度(Cmax)为20.3985 mg/L,表观分布容积(Vd)为2.5763(mg/kg)/(mg/L)。肌肉、肝、肾中吸收半衰期(T1/2kα)分别为3.5582、4.1884、5.4397 h,消除半衰期(T1/2ke)为50.8081、23.3504、23.7242 h,达峰时间(Tp)为14.6766、12.6524、14.9967 h,达峰浓度(Cmax)为7.6449、22.9249、40.6047 mg/L,表观分布容积(Vd)为8.5657、2.3970、1.2712(mg/kg)/(mg/L)。结果表明:药物在体内吸收迅速,药物浓度较高,分布广泛,消除较为缓慢。以80 mg/kg剂量混饲口灌3 d后,各组织中三聚氰胺含量总体呈现肾脏>肝脏>肌肉。停止灌药后第5天肌肉中及第7天肝脏和肾脏组织中三聚氰胺含量低于我国(2008)卫生部公布的乳制品及含乳食品中三聚氰胺临时管理限量值和欧盟对中国进口产品设定了三聚氰胺的最大残留限2.5 mg/kg。  相似文献   

14.
两种给药途径土霉素残留在鲫鱼体内的消除规律   总被引:2,自引:1,他引:1  
探讨了在肌肉注射和口灌给药方式下土霉素残留在鲫鱼组织内的消除情况。结果表明: 鲫鱼肌肉注射和口灌给药后土霉素在体内的最大浓度依次是: 肌肉 4 636mg/kg和 2 869mg/kg, 血液 5 467mg/kg和 3 112mg/kg, 肝脏 7 165mg/kg和 5 086mg/kg, 肾脏 8 308mg/kg和 5 017mg/kg; 肌肉注射第 288h时除肾脏中的土霉素浓度仍然高达 0 375mg/kg, 其他组织中已经检测不到土霉素的存在, 而口灌给药第 288h时肌肉、血液、肝脏、肾脏中土霉素的浓度依次为: 0 133mg/kg, 0 237mg/kg, 0 272mg/kg, 0 272mg/kg。因此, 在 (10±1)℃水温条件下, 以剂量 50mg/kg鱼体重单次给药, 肌肉注射各组织内的药物浓度比口灌给药高, 口灌给药消除速度比肌肉注射慢。本次实验结果建议在 (10±1)℃以上水温条件下, 无论肌肉注射还是口灌给药, 建议第 12天以后捕鱼食用是安全的。  相似文献   

15.
采用半静水试验法,研究了敌百虫、氯氰菊酯和阿维菌素等3种抗寄生虫药物对方斑东风螺(Babylonia areolata)稚螺的急性毒性。结果表明,敌百虫、氯氰菊酯和阿维菌素对方斑东风螺稚螺24 h半致死质量浓度(LC50)分别为210.54 mg·L^-1、32.52 mg·L^-1和8.13 mg·L^-1;48h LC50分别为93.52 mg·L^-1、16.90 mg·L^-1和3.96 mg·L^-1;毒性大小依次为敌百虫>氯氰菊酯>阿维菌素,安全质量浓度(SC)分别为5.54 mg·L^-1、1.37 mg·L^-1和0.28 mg·L^-1。在上述安全质量浓度范围内,这些药物均可杀灭桡足类或其他寄生虫,但考虑药物残留和对水环境的污染,在生产中尽量采用生态防治办法,避免使用药物。  相似文献   

16.
采用UPLC-MS/MS法研究了2μg·L-1三次连续水体药浴和6μg·L-1一次性水体药浴条件下阿维菌素在水体中消除、在异育银鲫(Carassius auratus gibelio)体内蓄积和消除变化规律。结果显示,两种药浴暴露方式下阿维菌素在水体中消除呈一级指数衰退消除,消除半衰期(t1/2)均为63 h,240 h时浓度下降到0.5μg·L-1以下。阿维菌素在异育银鲫血浆和肌肉中的含量均呈先升高后下降的趋势,血浆中药物浓度远高于肌肉中的含量。2μg·L-1连续三次药浴组和6μg·L-1一次药浴组血药峰浓度(Cmax)分别为34.97、66.62μg·L-1,其曲线下面积(AUC0-t)分别为9 871.2μg·L-1·h和18 119.6μg·L-1·h;两组药浴肌肉中达峰浓度分别4.42μg·kg-1和15.80μg·kg-1,其AUC0-t分别为641.9μg·kg-1·h和4 271.0μg·kg-1·h。与2μg·L-1连续三次药浴组相比,6μg·L-1一次药浴组阿维菌素在血浆和肌肉中的蓄积作用更加显著。以10μg·kg-1作为阿维菌素在异育银鲫肌肉中最大残留限量,选择95%的置信区间计算异育银鲫肌肉组织中休药期,本研究中2μg·L-1连续三次药浴组肌肉的休药期为295.4 h,6μg·L-1一次药浴组肌肉的休药期为454.5 h。  相似文献   

17.
诺氟沙星在大黄鱼体内的药代动力学及残留研究   总被引:13,自引:0,他引:13  
刘玉林 《水产学报》2007,31(5):655-660
在试验水温(22±2)℃时,按10 mg.kg-1的剂量给大黄鱼单次口服诺氟沙星后,用高效液相色谱法测定血浆和组织中的药物浓度,研究了诺氟沙星在大黄鱼体内的代谢及消除。结果表明血药时间数据符合一级吸收二室开放模型,吸收分布迅速,但消除缓慢,半衰期(T1/2 Ka、T1/2α、T1/2β)分别为0.703 0、2.092 6、154.326 5 h,最大血药浓度为0.886 4μg.mL-1,达峰时间为2.091 4 h,药时曲线下面积(AUC)为97.803 8μg.h.mL-1。组织中肝脏的药物浓度最高,在测定的时间里各组织的药物浓度高于血浆。药物消除速度依次为:肾脏、肝脏、肌肉,消除半衰期分别为135.88、173.25、223.55 h,肌肉作为可食性组织,且消除最慢,因此选取肌肉组织作为残留检测的靶组织,以50μg.kg-1为最高残留限量,因此在本试验条件下,建议休药期不低于23 d;在治疗大黄鱼细菌性疾病时,以诺氟沙星10 mg.kg-1剂量给药,一般1 d 1次,连用2~3 d。  相似文献   

18.
甲砜霉素在鲤鱼中的药代动力学研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本实验在(26±2)℃的养殖水温下,采用高效液相色谱–串联质谱法(HPLC-MS/MS)研究了以30 mg/(kg·bw)的剂量对鲤鱼(Cyprinus carpio)进行单次投喂药饵后甲砜霉素(Thiamphenicol,TAP)在鲤鱼体内的药物代谢动力学。通过DAS 2.0动力学软件分析TAP在鲤鱼体内的药–时数据,结果表明符合一级吸收二室模型。TAP在肌肉、肾脏、肝脏、鱼皮、鳃、脾脏和血浆各组织的药物达峰时间(T_(peak))分别为16、2、16、8、0、2和16 h,达峰浓度(C_(max))分别为15.6、35.3、12.4、9.0、33.0、11.6 mg/kg和21.0 mg/L;药–时曲线下面积(AUC)分别为1084.5、1578.1、777.3、541.1、0.1、478.1 mg/(kg·h)和485.1 mg/(L·h),消除半衰期(t_(1/2β))分别为11.4、100.2、54.2、41.1、69.5、38.0和71.9 h。TAP在鲤鱼体内各组织的分布和消除速率相差较大;在肾脏中的药物达峰时间短且达峰浓度高于其他组织,其消除半衰期也明显高于其他组织,推测肾脏是鲤鱼体内TAP蓄积和代谢的主要器官。按照农业部《动物性食品中兽药最高残留限量》文件规定,TAP在水产动物中最高残留限量(MRL)不得高于50μg/kg,本研究中,肌肉、肾脏、肝脏、鱼皮、脾脏和血浆的TAP残留量低于MRL的时间分别从第16、16、12、12、12、10和12天开始,将肌肉和肾脏作为TAP药物残留的靶组织,建议休药期不得低于16 d。  相似文献   

19.
两种抗生素在甲鱼组织中的残留研究   总被引:1,自引:0,他引:1  
在(25.5±1)℃水温条件下,用土霉素和诺氟沙星分别以不同剂量连续5天注射甲鱼(中华鳖,Trionyx sinensis)后腿肌肉,每天一次.停药后24,72,144,240h分别取肌肉、肝脏和肾脏测定两种药物残留量.结果表明:诺氟沙星只在停药后72h、144h的肝脏和肾脏中检出,其它样品都未检出残留.肝脏中土霉素的含量最高,肾脏其次,肌肉最低.给药后的第72h,土霉索的量在肌肉和肾脏中达到最高含量;而肝脏足144h.在达到最高含量之后的一段时间内,肾脏中土霉素含量随着时间的推移急剧下降,而在肌肉中,土霉素含量随着时间的推移缓慢下降,第240hl时,土霉素在肝脏和肌肉中己下降到很低水平,分别为0.35 mg/kg和0.25mg/kg但肾脏中土霉素量还很高,为2.18mg/kg.由此得知:在所有的组织中,肌肉中土霉素的残留量是最低的;最后一次给药后的第10d后,甲鱼肉是安全的.  相似文献   

20.
利用高效液相色谱法分别测定了单次和多次混饲口灌大菱鲆诺氟沙星(NFLX)后鱼体主要组织中的NFLX含量。通过MCP-KP药动学程序对NFLX在大菱鲆体内的药代动力学及残留消除规律进行了分析研究。结果表明,以30mg/kg的剂量单次混饲口灌大菱鲆,NFLX在大菱鲆体内的达峰时间(Tmax)为2h,血、鳃、肾脏、肝脏、肌肉的达峰浓度(Cmax)分别为:8.365、7.519、1.871、6.485和4.060μg/g;NFLX在组织中的消除半衰期(T1/2)由小到大依次为:肝脏8.18h<肌肉12.39h<鳃丝15.29h<血液23.22h<肾脏23.25h。连续5d以30mg/kg的剂量混饲口灌大菱鲆,消除半衰期(T1/2)由小到大依次为:肌肉74.88h<血液98.16h<肝脏186.43h<鳃192.12h<肾脏200.45h。以上研究表明,诺氟沙星在大菱鲆体内的吸收较为迅速,有利于疾病的预防和治疗用药。在组织中以肾脏中的残留最为显著。使用诺氟沙星进行大菱鲆疾病的预防和治疗时,至少停药30d后方可上市销售。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号