首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
太阳能消毒技术在世界范围内广泛使用, 由于其经常受到气候差异的影响导致效果不稳定, 通常与其他措施结合以加强防治效果。种植前采用土壤熏蒸是土传病害的有效预防策略, 本研究通过监测土壤温度、理化性质、土传病原菌、草莓植株长势、产量和分析经济效益, 评价了不同浓度的土壤熏蒸剂棉隆和太阳能消毒联合处理对草莓土传病害的防治效果及经济效益分析。种植前棉隆熏蒸和太阳能消毒处理不仅能很好地控制土传病害, 其对镰刀菌属、疫霉属的抑制率分别为64.41%~84.75%、51.59%~86.94%, 而且显著提高了草莓的产量, 增产率为79.9%~99.4%;联合处理的成本较单独太阳能消毒处理仅增加约3.29%~13.17%, 但净收入增长率高达49.77%~66.28%。因此, 在草莓土传病害管理中, 土壤熏蒸与太阳能消毒处理相结合, 可以降低作物感染土传病害的风险, 保证作物稳定高产。  相似文献   

2.
Fusarium wilt of strawberry, caused by Fusarium oxysporum f. sp. fragariae, is a disease of primary concern for strawberry production in many countries. Crop rotation and anaerobic soil disinfestation (ASD) have gained recent interest for their potential to contribute to management of this disease. Both techniques involve incorporation of organic matter into soil, which may be utilized by strains of Fusarium that are competitive saprophytes. We show that F. oxysporum f. sp. fragariae can colonize strawberry, lettuce, raspberry, and broccoli leaf tissues, which are sources of organic matter generated during crop rotation. This pathogen increased in soil population density during ASD treatments that did not become anaerobic, possibly as a result of growth on the organic amendment. However, significant population decreases were observed after ASD treatment when at least 100,000 cumulative reduced mV hours occurred in a 14-day experiment. Post-ASD abundance of F. oxysporum f. sp. fragariae in soil was negatively correlated with cumulative reduced mV hours. The only treatment that consistently caused disinfestation was exposed to a maximum temperature of 22 °C, which indicates there is potential for developing effective ASD treatments in the cool climates where strawberries are grown. Awareness that F. oxysporum f. sp. fragariae can act as a competitive soil saprophyte should be further investigated for its potential to alter disease outcomes where organic amendments are applied.  相似文献   

3.
Effects of crop rotation between rice paddy fields and strawberry nurseries on the control of Verticillium wilt of strawberry were studied. For detecting Verticillium dahliae, the causal agent of Verticillium wilt, in soil, eggplant was used as an indicator plant. We were thus able to detect as low as 1 microsclerotium/g dry soil. In field surveys of Chiba and Hokkaido from 2000 to 2003, V. dahliae was detected in 9 of 10 upland fields but in none of 21 paddy-upland fields. In Hokkaido during 2000–2007, strawberry mother plants were planted, and plantlets were produced in upland and paddy-upland fields to assess V. dahliae infestation. Verticillium wilt of strawberry had never occurred in 72 tested paddy-upland fields, compared to 13.2–73.9% of plantlets infected with V. dahliae in upland fields. In a pot experiment in a greenhouse, two flooding treatments or two paddy rice cultivations suppressed Verticillium wilt symptoms on eggplant. In field experiments, one paddy rice cultivation in Chiba and two in Hokkaido prevented development of Verticillium wilt symptoms on eggplant. Verticillium wilt of strawberry was controlled completely with one paddy rice cultivation in infested fields in Chiba. In these field experiments, the number of microsclerotia of V. dahliae decreased under the flooding conditions for paddy rice cultivation. Based on the reduction in microsclerotia, a crop rotation system with paddy rice for 3 years (three times), green manure for 1 year, and strawberry nursery for 1 year was designed for Hokkaido.  相似文献   

4.
Anaerobic soil disinfestation (ASD) has been shown to be effective in the control of a wide range of soil–borne plant pathogens but has not been examined as a means for disease control in perennial fruit crops such as apple. Since ASD has demonstrated a broad spectrum of biological activity, it may be well suited as an alternative to current fumigation–based control of apple replant disease (ARD) which is caused by a diverse pathogen complex. The efficacy of ASD for control of ARD pathogens was evaluated in growth chamber experiments using soils from two orchard sites having a history of the disease. Suppression of Pratylenchus penetrans apple root densities was dependent upon carbon source utilized during the ASD process. Volatiles emitted during the anaerobic phase from soils treated with ethanol, grass residues, or Brassica juncea seed meal as the carbon input effectively retarded growth of Rhizoctonia solani AG–5, Pythium ultimum and Fusarium oxysporum. Each carbon amendment generated a unique volatile profile produced in the treated orchard soil during ASD. Allyl isothiocyanate (AITC) and dimethyl trisulphide (DMTS) were emitted from B. juncea SM treated soils whereas the latter and 2–ethyl–1–hexanol were detected in soils treated with grass residues. When assayed individually using pure standards, Decanal, DMTS, and AITC retarded in vitro growth of all three fungal/oomycete pathogens. Nonanal was inhibitory toward only P. ultimum and R. solani AG–5, whereas 2–ethyl–1–hexanol only suppressed growth of P. ultimum. AITC and DMTS caused significantly higher mortality of P. penetrans compared to other tested volatiles. These findings demonstrate that carbon source–dependent volatile chemistries contribute significantly but not exclusively to suppression of certain ARD pathogens during the ASD process.  相似文献   

5.
Potato early dying (PED) is a disease complex primarily caused by the fungus Verticillium dahliae. Pectolytic bacteria in the genus Pectobacterium can also cause PED symptoms as well as aerial stem rot (ASR) of potato. Both pathogens can be present in potato production settings, but it is not entirely clear if additive or synergistic interactions occur during co‐infection of potato. The objective of this study was to determine if co‐infection by V. dahliae and Pectobacterium results in greater PED or ASR severity using a greenhouse assay and quantitative real‐time PCR to quantify pathogen levels in planta. PED symptoms caused by Pectobacterium carotovorum subsp. carotovorum isolate Ec101 or V. dahliae isolate 653 alone included wilt, chlorosis and senescence and were nearly indistinguishable. Pectobacterium wasabiae isolate PwO405 caused ASR symptoms including water‐soaked lesions and necrosis. Greater Pectobacterium levels were detected in plants inoculated with PwO405 compared to Ec101, suggesting that ASR can result in high Pectobacterium populations in potato stems. Significant additive or synergistic effects were not observed following co‐inoculation with these strains of Vdahliae and Pectobacterium. However, infection coefficients of V. dahliae and Ec101 were higher and premature senescence was greater in plants co‐inoculated with both pathogens compared to either pathogen alone in both trials, and Vdahliae levels were greater in basal stems of plants co‐inoculated with either Pectobacterium isolate. Overall, these results indicate that although co‐infection by Pectobacterium and V. dahliae does not always result in significant additive or synergistic interactions in potato, co‐infection can increase PED severity.  相似文献   

6.
Vegetable grafting for disease management was first used successfully when watermelon grafted onto a Cucurbita moschata rootstock overcame Fusarium wilt. Interspecific grafting has since been used effectively to mitigate several soilborne pathogens in a variety of solanaceous and cucurbitaceous cropping systems. Verticillium wilt caused by Verticillium dahliae is a significant disease in watermelon crops and is difficult to manage. Current management practices, including crop rotation, soil fumigation, and host resistance, are insufficient due to the ability of microsclerotia to persist in absence of a host, lack of efficacy of soil fumigants, and limited availability of resistant cultivars. Watermelon grafted onto commercial cucurbit rootstocks have increased tolerance to Verticillium wilt, although no cucurbit rootstocks are known to be completely resistant. Verticillium wilt incidence decreased on grafted plants grown in artificially and naturally infested soils, while scion health and growth as well as rootstock root mass and vigour increased. Commonly used rootstocks are Lagenaria siceraria, C. moschata, and C. maxima × C. moschata; of these, only C. maxima × C. moschata ‘Tetsukabuto’ reduced severity of Verticillium wilt across several scion cultivars, locations, years, and soil densities of V. dahliae. Although studies on Verticillium wilt resistance of grafted watermelon are few, their combined results suggest the threshold of V. dahliae soil density for watermelon may be around 5–12 cfu/g. This review summarizes available information on Verticillium wilt of watermelon and effects of different rootstock × scion combinations, assisting growers and breeding programmes in decisions to adopt watermelon grafting for management of Verticillium wilt.  相似文献   

7.
Anaerobic soil disinfestation (ASD) is a cultural technique primarily targeted for control of soilborne plant pathogens, but can also impact weed propagules. A repeated pot study was conducted to evaluate ASD treatment impact on sprouting and growth of introduced Cyperus esculentus (yellow nutsedge) tubers using dry molasses‐based and wheat bran‐based amendment mixtures at four carbon‐to‐nitrogen (C:N) ratios (from 10:1 to 40:1) and compared with a non‐amended control. The mean percentage of sprouted tubers recovered after ASD treatment was lower for wheat bran‐based (42%) than dry molasses‐based (65%) amendments, and tuber production was 1.6‐fold higher in dry molasses‐based than wheat bran‐based treatments. The highest percentage of sprouted tubers (79%) and the highest mean production of large tubers (threefold higher than wheat bran‐based and 1.7‐fold higher than molasses‐based amendments) were observed for the non‐amended control. Tuber sprouting was significantly lower from all ASD treatments (regardless of amendment C:N ratio) compared with the non‐amended control at a 15 cm burial depth. New tuber production was lowest at C:N ratios of 10:1 and 20:1 and more than twofold higher in the non‐amended control. Wheat bran‐based amendments reduced above‐ground C. esculentus biomass compared with the non‐amended control and ASD treatments with molasses‐based amendments, and reduced below‐ground biomass compared with molasses‐based amendments. Above‐ground biomass was highest at amendment C:N ratio of 10:1, and below‐ground biomass was highest at amendment C:N ratio of 40:1 and the non‐amended control. ASD treatment with wheat bran‐based amendments at lower C:N ratios reduced tuber sprouting and reproduction compared with the non‐amended control, but not at rates high enough to use as a primary weed management tactic.  相似文献   

8.
Biological control of plant diseases using soil amendments such as animal manure and composted materials can minimize organic waste and has been proposed as an effective strategy in crop protection. In this study, 35 organic amendments (OAs) and 16 compost mixtures were evaluated against Verticillium dahliae by assessing both the antagonistic effect on the mycelial growth of two representative isolates of V. dahliae and the effect on the reduction of microsclerotia viability of the pathogen in naturally infested soil. Eleven OAs and five compost mixtures showed a consistent inhibition effect in in vitro sensitivity tests, with solid olive‐oil waste compost one of the most effective. Therefore, a bioassay with olive plants was conducted to evaluate the suppressive effect against V. dahliae of these selected OAs and compost mixtures. Significant reduction in the severity of the symptoms of V. dahliae indicates the potential use of grape marc compost (100% disease severity reduction) and solid olive‐oil waste, combined with other OAs. Microorganism mixtures and dairy waste OAs had a potential suppressive effect when they were combined with compost, showing a 73% and 63% disease severity reduction, respectively. A mixture of agro‐industrial waste with other biological control agents is a promising strategy against verticillium wilt of olive. To the authors' knowledge, this is the first report on the effectiveness of compost extracts (compost teas) on the inhibition of natural microsclerotia of V. dahliae, and also on verticillium wilt suppression in olive with solid olive‐oil waste.  相似文献   

9.
The effect of soil solarization and Trichoderma harzianum on induced resistance to grey mould (Botrytis cinerea) and powdery mildew (Podosphaera xanthii) was studied. Plants were grown in soils pretreated by solarization, Tharzianum T39 amendment or both, and then their leaves were inoculated with the pathogens. There was a significant reduction in grey mould in cucumber, strawberry, bean and tomato, and of powdery mildew in cucumber, with a stronger reduction when treatments were combined. Bacillus, pseudomonad and actinobacterial communities in the strawberry rhizosphere were affected by the treatments, as revealed by denaturing gradient gel electrophoresis fingerprinting. In tomato, treatments affected the expression of salicylic acid (SA)‐, ethylene (ET)‐ and jasmonic acid (JA)‐responsive genes. With both soil treatments, genes related to SA and ET – PR1a, GluB, CHI9 and Erf1 – were downregulated whereas the JA marker PI2 was upregulated. Following soil treatments and B. cinerea infection, SA‐, ET‐, and JA‐related genes were globally upregulated, except for the LOX genes which were downregulated. Upregulation of the PR genes PR1a, GluB and CHI9 in plants grown in solarized soil revealed a priming effect of this treatment on these genes' expression. The present study demonstrates the capacity of solarization and T. harzianum to systemically induce resistance to foliar diseases in various plants. This may be due to either a direct effect on the plant or an indirect one, via stimulation of beneficial microorganisms in the rhizosphere.  相似文献   

10.
Macrophomina phaseolina and Rhizoctonia spp. are the most important soilborne pathogens of the strawberry crop that cause seriously reduced yields. Various methods are being used to determine pathogenicity of these fungi isolated from strawberry; however, they take a long time to grow strawberry plants. They also encounter some problems to provide a large number of healthy plants for the pathogenicity tests. Therefore, the aim of this study was to develop a faster and more reliable pathogenicity test for soilborne fungal pathogens of strawberry by using the stolons of healthy strawberry plants. The stolon inoculation method was demonstrated to be easy and rapid for properly distinguishing soilborne fungal species of strawberry, whether pathogenic or non-pathogenic, and also for assessing the isolates for virulence.  相似文献   

11.
Soilborne potato diseases and soil microbial community characteristics were evaluated over 8 years in different potato cropping systems designed to address specific management goals of soil conservation, soil improvement and disease suppression. Results were compared to a standard rotation and non‐rotation control in field trials in Maine. Standard rotation consisted of barley underseeded with red clover, followed by potato (2‐year). Soil‐conserving system (SC) featured an additional year of forage grass and reduced tillage (3‐year, barley/timothy–timothy–potato). Soil‐improving system (SI) added yearly compost amendments to SC, and the disease‐suppressive system (DS) featured crops with known disease‐suppressive capability (3‐year, mustard/rapeseed–sudangrass/rye–potato). Systems were established in 2004, evaluated with and without irrigation, and actively managed until 2010, with potato also planted in 2011 and 2012 to examine residual effects. All rotations reduced soilborne diseases black scurf and common scab, and increased yield after one rotation cycle (3 years), but diseases increased overall after two rotation cycles. DS maintained lower soilborne disease levels than all other rotations, as well as high yields, throughout the study. Cropping system effects became more pronounced after multiple cycles. SI system and irrigation both resulted in higher yields, but also higher levels of soilborne disease. Cropping system and irrigation effects were significant even after systems were no longer maintained. Soil microbial community data showed significant changes associated with cropping system, and differences increased over time. Cropping system strategy had significant and lasting effects on soil microbiology and soilborne diseases, and can be used to effectively enhance potato production.  相似文献   

12.
Verticillium dahliae causes severe yield reductions in a variety of important annual crops worldwide. Control of verticillium wilt has relied on soil fumigation; however, the use of the main soil fumigant, methyl bromide, has been banned in the European Union since 2010, creating a demand for novel crop protectants. As such, the use of biocontrol agents (BCAs) is an appealing management strategy. Prerequisites for the development of a successful BCA are an understanding of the modes of action of the antagonist, its ecological fitness and an efficient and economically feasible delivery system. Therefore, two BCAs (Paenibacillus alvei K165 or the nonpathogenic Fusarium oxysporum F2) and two release strategies (seed coating or amendment of the transplant soil plug) were assessed against verticillium wilt of aubergine (eggplant). Mixing the transplant soil plug with K165 or F2, at a rate of 10 and 20% (v/v), respectively, reduced verticillium wilt symptom development. Furthermore, a positive correlation was revealed between the release strategy and the BCA rhizosphere population. Correlation analysis also showed that disease severity was negatively correlated to the rhizosphere size of the BCA population. In addition, qPCR analysis showed that both BCAs induced the expression of the pathogenesis‐related (PR) proteins PR1 and PR4 in the stem of aubergines before and after inoculation with V. dahliae in a manner that suggests a link with the rhizosphere size of the BCA population.  相似文献   

13.
Verticillium dahliae antagonistic endorhizosphere bacteria were selected from root tips of tomato plants grown in solarized soils. Fifty-three out of the 435 selected bacterial isolates were found to be antagonistic against V. dahliae and several other soilborne pathogens in dual cultures. Significant biocontrol activity against V. dahliae in glasshouse trials was demonstrated in three of 18 evaluated antagonistic isolates, provisionally identified as Bacillus sp. Although fluorescent pseudomonads were also isolated from root tips of tomato plants, none of the tested isolates exercised any significant antagonistic activity against V. dahliae in dual cultures. So these isolates were not tested in glasshouse trials in this study. Finally, two of the most effective bacterial isolates, designated as K-165 and 5-127, were shown to be rhizosphere colonizers, very efficient in inhibiting mycelial growth of V. dahliae in dual cultures and successfully controlling Verticillium wilt of solanaceous hosts. In glasshouse experiments, root dipping or soil drenching of eggplants with bacterial suspension of 107cfu ml–1 resulted in reduced disease severity expressed as percentage of diseased leaves (40–70%) compared to the untreated controls under high V. dahliae inoculum level (40 microsclerotia g–1 soil). In heavily Verticillium infested potato fields, experiments with potato seeds dusted with a bacterial talc formulation (108cfu g–1 formulation), showed a significant reduction in symptom development expressed as percentage of diseased potato plants and a 25% increase in yield over the untreated controls. As for their effectiveness in increasing plant height, both bacterial isolates K-165 and 5-127 produced indolebutyric, indolepyruvic and indole propionic acids. Both antagonists are considered as plant growth promoting rhizobacteria bacteria since significantly increased the height of treated plants compared with the untreated controls. Chitinolytic activity test showed that both isolates were able to produce chitinase. Testing rhizospheric and endophytic activity of the antagonists it was shown that although the bacteria are rhizosphere inhabitants they also preferentially colonize the endorhizosphere of tomatoes and eggplants. Fatty acid analysis showed that isolate K-165 could belong to Paenibacillus alvei while 5-127 to Bacillus amiloliquefaciens.  相似文献   

14.
Auxin signalling and transport participate in plant–microbe interactions as positive or negative regulators of disease resistance. The present study investigated the responses of Arabidopsis thaliana plants impaired in the auxin receptors TIR1, AFB1 and AFB3 and the auxin transporter AXR4, upon infection by the soilborne root pathogen Verticillium dahliae. Fewer symptoms were recorded in afb1, afb3 and axr4 plants compared to the wild type (wt). qPCR analysis revealed that the decrease in symptom severity in afb1, afb3 and axr4 was correlated with reduction in the growth of the pathogen in the plants. Therefore, afb1, afb3 and axr4 are partially resistant to V. dahliae. Upon V. dahliae infection, the expression of TIR1, AFB1, AFB3 and AXR4 was up‐regulated in roots, while indole‐3‐acetic acid levels were similar to mocks. The partial resistance of afb1, afb3 and axr4 against V. dahliae can be attributed in part to the up‐regulation of defence‐related genes, as it was observed that afb1 and axr4 had higher PR1 levels than wt, while afb3 had higher PDF1.2 levels than wt. The findings of the present study suggest that the auxin signalling defective mutants afb1, afb3 and axr4 show increased resistance against V. dahliae.  相似文献   

15.
The application of disinfectants through drip irrigation could be a feasible practice against verticillium wilt (Verticillium dahliae) of olive. OX-VIRIN (activated peroxide) and OX-AGUA AL25 (quaternary ammonium compounds) are two disinfectants that have shown efficacy against V. dahliae in irrigation water and potential for reducing the disease in young olive plants. In this work, various post-planting application strategies incorporating OX-VIRIN (once a month, or twice a month on alternate or successive weeks) or OX-AGUA AL25 (once a month, or twice a month on alternate weeks) were assessed for their effect on V. dahliae in soil, disease in olive trees, and olive yield, in a 2-year pot-experiment under natural environmental conditions. The disinfectants were injected via metering pumps into a drip irrigation system that irrigated olive trees planted in V. dahliae-inoculated soil. All the application strategies significantly reduced the total inoculum density in soil compared to controls with no disinfectants and noninoculated soil. The microsclerotia density was also significantly reduced in disinfested soils by 73.6–86.8%, depending on the strategy. The symptoms and infection incidence were always lower in treatments subjected to disinfestation. The treatment with OX-AGUA AL25 applied twice a month on alternate weeks most reduced the symptoms (by 53.0%) and colonization index (by 70.8%) with respect to untreated water control. This soil disinfestation also significantly strengthened the symptom remission. Tree growth and production were negatively affected by soil inoculation (reduced by 45.6% and 88.7%, respectively), but not so by disinfectants, which even relieved the reduction in inoculated soils, especially when OX-AGUA AL25 was applied.  相似文献   

16.
Botrytis cinerea causes grey mould, a disease common on many economically important crops. Although much attention is paid to the airborne inoculum of this fungus, as it sporulates abundantly in favourable conditions, knowledge on the abundance and genetic characteristics of soilborne inoculum could help improve control strategies. In this study, the soilborne inoculum of B. cinerea was quantified in two greenhouses at different times before and after the cultivation of four successive lettuce crops. Between 0 and 1177 colony‐forming units (CFU) of B. cinerea per gram of soil were recorded. There was no significant correlation between abundance of soilborne inoculum and subsequent disease incidence on lettuce (= 0·11). Sixty‐five isolates collected from diseased plants and 66 isolates collected from the soil were investigated for their genetic diversity. The soil strains showed lower genetic diversity than the lettuce strains when considering the unbiased gene diversity within the nine microsatellite loci, the mean number of alleles per locus and the haplotypic diversity. The genetic differentiation between lettuce and soil strains decreased over three successive lettuce crops. At the same time, the genetic structure of the two groups of strains tended to become similar. These results are consistent with the hypothesis of a flow of inoculum between the lettuce crop and the soil, and vice versa. The study shows that grey mould management should pay more attention to the inoculum of B. cinerea present in the soil.  相似文献   

17.
18.
The growth and survival of three strawberry pathogens, Fusarium oxysporum f. sp. fragariae (FOF), Phytophthora cactorum, and Verticillium dahliae, were examined in anaerobic (anoxic) conditions at several temperatures (10–40 °C). The growth and survival of these fungi were suppressed by anaerobic conditions in comparison with those in cultured aerobically. Under anaerobic conditions at 22.5 °C, tested isolates of FOF and P. cactorum grew slightly, but V. dahliae did not grow. The three fungi survive for markedly shorter time in the anaerobic conditions compared with the aerobic conditions at all tested temperatures except 40 °C for FOF and P. cactorum. Moreover, survival periods shortened as the cultivation temperature increased. These results demonstrate that anaerobic conditions contribute to eradicating these pathogens during flooding or reductive soil disinfestation.  相似文献   

19.
This study examined cross-pathogenicity of the soilborne pathogen Verticillium dahliae between potato and sunflower. Four week-old potato and sunflower seedlings were inoculated with ten isolates from each of the two host species. Potato cultivars (Kennebec, susceptible, and Ranger Russet, moderately resistant) and sunflower hybrids (IS8048, susceptible, and 6946, moderately resistant) were assessed for disease severity and percent infection at 2 weeks, 3 weeks, 4 weeks, 5 weeks, and 6 weeks after inoculation (w.a.i), and for vascular discolouration at 6 w.a.i., using visual scales developed for each host species. The experiments were conducted in 2006 and repeated in 2007. Based on percent infection and disease severity, most V. dahliae isolates were highly aggressive on both host species. The tested isolates caused higher disease levels in the susceptible than in the moderately resistant phenotypes. They also caused more vascular discolouration in their original than in the alternative host. However, the isolates originating from sunflower caused less infection and disease severity on both hosts, compared to their potato counterparts. Cluster analysis based on all of the criteria used to assess pathogenicity led to three groups of isolates: (i) most V. dahliae potato isolates, which ranged with the highly aggressive control isolates, (ii) one V. dahliae sunflower isolate, which showed a similar pathogenicity level to the weakly-aggressive V. albo-atrum sub-group II control isolate, with no more symptoms than in the non-inoculated plants, and (iii) most V. dahliae sunflower isolates with mildly- to weakly-aggressive levels. Based on these results, V. dahliae cross-pathogenicity is very effective between potato and sunflower. Therefore, rotations involving these species should be avoided, especially where sunflower follows potato.  相似文献   

20.
For efficient integrated management of verticillium wilt in olive (VWO), it is important to establish whether irrigation treatments (with Verticillium dahliae‐free water) that mitigate the disease in V. dahliae‐infested soil, also reduce the levels of more and less persistent propagules of the pathogen in the soil. Effects of irrigation on VWO and V. dahliae propagules were evaluated under natural environmental conditions. Potted plants were irrigated (pathogen‐free water) to two ranges of soil water content (RWC; high and low) at three surface drip‐irrigation frequencies (daily, weekly, and daily during some periods and otherwise weekly). VWO and total inoculum density (ID), density of less persistent micropropagules (MpD) and more persistent sclerotia in wet soil (SwD), and sclerotia density for air‐dried soil (SdD) were monitored. A logistic model (multiple sigmoid) of disease incidence revealed the lowest parameter values in treatments irrigated daily. Daily frequency of irrigation showed significantly lower disease incidence (39.2%) and disease intensity index (43.9%) and MpD (88.0%) values as areas compared with other frequencies, regardless of the RWC. High RWC significantly reduced (70.8–84.9%) ID, SwD and SdD as areas, but significantly increased (18.0%) the incidence of infected plants (IIP), regardless of the irrigation frequency. The disease incidence was not correlated with temperature. Daily irrigation to low RWC mitigated the VWO and the IIP, kept soil to the lowest MpD and resulted in the lowest SdD level at the end of the trial. Results suggested that less persistent propagules could have played a part in the disease development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号