首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
A 9‐week feeding trial was conducted to determine the optimal dietary vitamin C requirement and its effects on serum enzymes activities and bacterial resistance in the juvenile yellow drum Nibea albiflora (initial weight 33.2 ± 0.10 g). Six practical diets were formulated containing vitamin C 2.1, 45.3, 89.6, 132.4, 178.6 and 547.1 mg kg?1 diet supplied as l ‐ascorbyl‐2‐monophosphate. The fish fed 547.1 mg kg?1 diet showed a significantly higher survival than that fed 2.1 mg kg?1 diet. The weight gains and specific growth rate of the fish fed 2.1 mg kg?1 diet were significantly lower than those of the fish fed 89.6–547.1 mg kg?1 diets. The liver vitamin C concentration firstly increased with increasing dietary vitamin C supply from 2.1 to 178.6 mg kg?1 diet and then stabilized. The serum superoxide dismutase activities of the fish fed 547.1 mg kg?1 diet were significantly lower than those of the fish fed 2.1–89.6 mg kg?1 diet. The fish fed 2.1 mg kg?1 diet had a significantly higher alkaline phosphatase activity than those in the other groups except the 45.3 mg kg?1 group. Fish that received diets containing vitamin C at 547.1 mg kg?1 had significantly higher nitro blue tetrazolium and lysozyme activity, and fish that received diets containing vitamin C at 45.3–547.1 mg kg?1 exhibited resistance against Vibrio alginolyticus infection. The dietary vitamin C requirement of the juvenile yellow drum was established based on broken‐line model of weight gain to be 142.2 mg l ‐ascorbyl‐2‐monophosphate kg?1 diet.  相似文献   

2.
Two experiments were conducted to quantify the dietary thiamin (experiment I) and pyridoxine (experiment II) requirements of fingerling Cirrhinus mrigala for 16 weeks. In experiment I, dietary thiamin requirement was determined by feeding seven casein–gelatin‐based diets (400 g kg?1 CP; 18.69 kJ g?1 GE) with graded levels of thiamin (0, 0.5, 1, 2, 4, 8 and 16 mg kg?1 diet) to triplicate groups of fish (6.15 ± 0.37 cm; 1.89 ± 0.12 g). Fish fed diet with 2 mg kg?1 thiamin had highest specific growth rate (SGR), protein retention (PR), RNA/DNA ratio, haemoglobin (Hb), haematocrit (Hct), RBCs and best feed conversion ratio (FCR). However, highest liver thiamin concentration was recorded in fish fed 4 mg thiamin kg?1 diet. Broken‐line analysis of SGR, PR and liver thiamin concentrations exhibited the thiamin requirement in the range of 1.79–3.34 mg kg?1 diet (0.096–0.179 μg thiamin kJ?1 gross energy). In experiment II, six casein–gelatin‐based diets (400 g kg?1 CP; 18.69 kJ g?1 GE) containing graded levels of pyridoxine (0, 2, 4, 6, 8 and 10 mg kg?1 diet) were fed to triplicate groups of fish (6.35 ± 0.37 cm; 1.97 ± 0.12 g). Fish fed diet containing 6 mg kg?1 pyridoxine showed best SGR, FCR, PR, RNA/DNA ratio, Hb, Hct and RBCs, whereas maximum liver pyridoxine concentration was recorded in fish fed 8 mg kg?1 dietary pyridoxine. Broken‐line analysis of SGR, PR and liver pyridoxine concentrations reflected the pyridoxine requirement from 5.63 to 8.61 mg kg?1 diet. Data generated during this study would be useful in formulating thiamin‐ and pyridoxine‐balanced feeds for the intensive culture of this fish.  相似文献   

3.
Effects of eugenol (AQUI‐S®20E, 10% active eugenol) sedation on cool water, yellow perch Perca flavescens (Mitchill), and warm water, Nile tilapia Oreochromis niloticus L. fish metabolic rates were assessed. Both species were exposed to 0, 10, 20 and 30 mg L?1 eugenol using static respirometry. In 17°C water and loading densities of 60, 120 and 240 g L?1, yellow perch controls (0 mg L?1 eugenol) had metabolic rates of 329.6–400.0 mg O2 kg?1 h?1, while yellow perch exposed to 20 and 30 mg L?1 eugenol had significantly reduced metabolic rates of 258.4–325.6 and 189.1–271.0 mg O2 kg?1 h?1 respectively. Nile tilapia exposed to 30 mg L?1 eugenol had a significantly reduced metabolic rate (424.5 ± 42.3 mg O2 kg?1 h?1) relative to the 0 mg L?1 eugenol control (546.6 ± 53.5 mg O2 kg?1 h?1) at a loading density of 120 g L?1 in 22°C water. No significant differences in metabolic rates for Nile tilapia were found at 240 or 360 g L?1 loading densities when exposed to eugenol. Results suggest that eugenol sedation may benefit yellow perch welfare at high densities (e.g. live transport) due to a reduction in metabolic rates, while further research is needed to assess the benefits of eugenol sedation on Nile tilapia at high loading densities.  相似文献   

4.
An experiment was conducted to determine the effects of different levels of dietary vitamin C (VC) and E (VE) supplementation on fillet quality of red sea bream fed oxidized fish oil (OFO). Fish with an average body weight of 205.0 g were fed four test diets for 9 weeks. Control diet contained fresh fish oil (FFO) with 100 mg kg?1 of VE and 500 mg kg?1 of VC (FFO100E/500C). The other three diets contained OFO with varying levels of VE (mg kg?1) and VC (mg kg?1) (OFO100E/500C, OFO200E/500C and OFO200E/1000C). After feeding trial, two fillets from each fish by hand filleting were stored in a refrigerator at 4°C for 96 h during analyses. Results showed that fish fed OFO increased fillet thiobarbituric acid reactive substances (TBARS) and K‐value, and decreased fillet VC and VE concentrations during storage time. Supplementation of VC did not have any detectable effect on fillet quality. Increasing dietary VE supplementation increased fillet VE concentrations, reduced fillet TBARS and K‐value values of red sea bream. Therefore, we suggest that dietary supplementation of 200 mg kg?1 of vitamin E could improve fillet oxidative stability of red sea bream fed OFO.  相似文献   

5.
The nitrite toxicity was estimated in juveniles of L. vannamei. The 24, 48, 72 and 96 h LC50 of nitrite‐N on juveniles were 8.1, 7.9, 6.8 and 5.7 mg L?1 at 0.6 g L?1; 14.4, 9.6 8.3 and 7.0 mg L?1 at 1.0 g L?1; 19.4, 15.4, 13.4 and 12.4 mg L?1 at 2.0 g L?1 of salinity respectively. The tolerance of juveniles to nitrite decreased at 96 h of exposure by 18.6% and 54.0%, when salinity declined from 1.0 to 0.6 g L?1 and from 2.0 to 0.6 g L?1 respectively. The safe concentrations at salinities of 0.6, 1.0 and 2.0 g L?1 were 0.28, 0.35 and 0.62 mg L?1 nitrite‐N respectively. The relationship between LC50 (mg L?1), salinity (S) (g L?1) and exposure time (T) (h) was LC50 = 8.4688 + 5.6764S – 0.0762T for salinities from 0.6 to 2.0 g L?1 and for exposure times from 24 to 96 h; the relationship between survival (%) and nitrite‐N concentration (C) for salinity of 0.6–2.0 g L?1, nitrite‐N concentrations of 0–40 mg L?1 and exposure times from 0 to 96 h was as follows: survival (%) = 0.8442 + 0.1909S – 0.0038T – 0.0277C + 0.0008ST + 0.0001CT–0.0029SC, and the tentative equation for predicting the 96‐h LC50 to salinities from 0.6 to 35 g L?1 in L. vannamei juveniles (3.9–4.4 g) was 96‐h LC50 = 0.2127 S2 + 1.558S + 5.9868. For nitrite toxicity, it is shown that a small change in salinity of waters from 2.0 to 0.6 g L?1 is more critical for L. vannamei than when wider differences in salinity occur in brackish and marine waters (15–35 g L?1).  相似文献   

6.
Six isonitrogenous (320 g kg?1) and isolipidic (60 g kg?1) diets were formulated with graded levels (0, 5, 10 and 15 g kg?1) of dicalcium phosphate (DCP) and fungal phytase (750 and 1500 FTU kg?1 diet). Tra catfish (Pangasianodon hypophthalmus), 9.6 g, were fed the diets for 12 weeks. Each experimental diet was fed to eight replicates of fish to apparent satiation. At the end of the trial, fish fed the diets containing 15 g kg?1 DCP, 750 and 1500 FTU kg?1 phytase had higher growth performances, protein efficiency ratio and phosphorus retention than those fed the control diet, 5 g kg?1 DCP and 10 g kg?1 DCP diets (P < 0.05). Whole body ash and phosphorus concentration of fish fed the 10 g kg?1 DCP and 15 g kg?1 DCP diets were significantly higher than those of fish fed the control diet. Higher apparent digestibility coefficient of phosphorus was observed in fish fed the phytase supplemented diets. The present results indicate that supplementation of phytase at 750 FTU kg?1 and 1500 FTU kg?1 improves growth performances, feed and phosphorus utilization. The supplementation can completely replace dicalcium phosphate or other phosphorus sources in tra catfish feed and reduce the phosphorus discharge into environment.  相似文献   

7.
A 75‐day experiment was conducted with juvenile gibel carp (Carassius auratus gibelio) (4.80 ± 0.01 g) to evaluate effects of dietary chitosan on fish growth performance, haematology, intestine morphology and immune response. Six isonitrogenous (crude protein: 383 g kg?1), isolipid (97.5 g kg?1) and isocaloric (gross energy: 16.7 kJ g?1) diets were formulated to contain 0, 1800, 4000, 7500, 10 000, 20 000 mg kg?1 chitosan, respectively. The results showed that the growth was depressed when the fish fed with 10 000 mg kg?1 chitosan. Serum cholesterol, triglyceride and low‐density lipoprotein decreased in 10 000 and 20 000 mg kg?1 chitosan. On day 75, blood leucocyte phagocytic activity respiratory burst and alternative pathway of complement haemolytic activity were enhanced in 4000 mg kg?1 chitosan. The number of goblet cell, intraepithelial lymphocyte of mid‐intestine and microvilli height of distal intestine increased at 4000 mg kg?1 dietary chitosan. Dietary chitosan modulated intestine microbiota, depressed pathogen bacteria Aeromonas veronii‐like and improved Cellulomonas hominis‐like, Bacillus oceanisediminis‐like and two uncultured bacterium‐like species on day 75. Dietary 7500 and 10 000 mg kg?1 chitosan enhanced the protection against Aeromonas hydrophila infection. In conclusion, oral administration of dietary 7500 mg kg?1 chitosan for 75 days is recommended for the survival of gibel carp.  相似文献   

8.
A 10‐week feeding trial was conducted to estimate the optimum dietary manganese requirement for juvenile cobia, Rachycentron canadum L. The basal diet was formulated to contain 501 g kg?1 crude protein from vitamin‐free casein, gelatin and fish protein concentrate. Manganese sulphate was added to the basal diet at 0 (control group), 6, 12, 18, 24 and 36 mg Mn kg?1 diet providing 5.98, 7.23, 16.05, 23.87, 28.87 and 41.29 mg Mn kg?1 diet, respectively. Each diet was randomly fed to three replicate groups of cobia for 10 weeks, and each tank was stocked with 30 fish (initial weight, 6.27 ± 0.03 g). The manganese concentration in rearing water was monitored during the feeding period and was < 0.01 mg L?1. Dietary manganese level significantly influenced survival ratio (SR), specific growth ratio (SGR), feed efficiency ratio (FER) and the manganese concentrations in the whole body, vertebra and liver of cobia. When the dietary manganese level rose from 5.98 mg kg?1 to 23.87 mg kg?1, the superoxide dismutase (SOD; EC 1.15.1.1) activities in liver also increased (P < 0.05). But there was no significant change in SOD activities for the groups fed with diets containing manganese level higher than 23.87 mg kg?1. On the basis of broken‐line regression of SGR, manganese concentration in whole body and vertebra the manganese requirements of juvenile cobia were 21.72 mg kg?1, 22.38 mg kg?1 and 24.93 mg kg?1 diet in the form of manganese sulphate, respectively.  相似文献   

9.
This study was conducted to evaluate the effects of citric acid (CA) supplementation in diet without inorganic phosphorus (P) on growth, muscle and bone composition, proteolytic activities and serum antioxidant property of rainbow trout. Six diets were designed as the negative diet without monocalcium phosphate (MCP) supplementation, the positive diet containing 10 g kg?1 MCP and CA supplementation diets with 4, 8, 12, 16 g kg?1 CA supplementation in negative diet, and then were fed to rainbow trout (113.6 g) for 60 days. Results showed that the fish fed 8 g kg?1 CA, 12 g kg?1 CA diet had higher weight gain, higher contents of crude ash and P in bone, and lower feed conversion ratio than those of fish fed negative diet (P < 0.05), and showed the similar levels as those of fish fed positive diet (P > 0.05). The proximate composition and P level of muscle were not affected by dietary CA and MCP. The proteolytic activity in intestine, but not in stomach and gastric digesta, was significantly improved by dietary CA and MCP (P < 0.05), when compared with negative control. The activities of serum superoxide dismutase of 12 g kg?1 CA and 10 g kg?1 MCP groups were significantly higher, and the malondialdehyde of 8 g kg?1 CA and 12 CA g kg?1 groups were significantly lower than those of negative control (P < 0.05). The above results indicated that the supplementation of CA could substitute the inclusion of MCP in rainbow trout diet and the supplementation level was suggested to be 8–12 g kg?1.  相似文献   

10.
An 8‐week study was conducted to determine folic acid requirement and its effect on antioxidant capacity and immunity in juvenile Chinese mitten crab Eriocheir sinensis (Milne‐Edwards, 1853), followed by a challenge assay with the pathogen Aeromonas hydrophila for 2 weeks. Folic acid was added to a basal diet at seven levels (0, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0 mg folic acid kg?1 diet), and a diet free of folic acid and vitamin B12 was also included as a control. Crabs were fed twice daily in 32 tanks with 7.76–8.17 mg oxygen L?1, 25.0–31.0 °C and 7.5–8.3 pH. Growth and feed efficiency were significantly greater in crabs fed ≥2.0 mg folic acid kg?1, but not significantly different between crabs fed diets >2.0 mg folic acid. The superoxide dismutase activity and glutathione S‐transferase activity were highest in crabs fed ≥2.0 mg folic acid kg?1, followed by those fed 0.5 and 1.0 mg folic acid kg?1, and the control diet. The malondialdehyde content was highest in crabs fed the control diet, followed by those fed 0 mg folic acid kg?1, and the lowest value occurred in those fed ≥0.5 mg folic acid kg?1. Phenoloxidase activity and total haemocytes were significantly higher in crabs fed ≥2.0 mg folic acid kg?1 than other diets. Crabs fed 2.0 mg folic acid kg?1 had the highest lysozyme, acid phosphatase and alkaline phosphatase activities but the lowest cumulative mortality. The optimum dietary folic acid requirement by E. sinensis was estimated at 2.29–2.90 mg kg?1 diet.  相似文献   

11.
This study investigated the effects of the co‐supplementation of vitamins C (0, 500, and 1000 mg kg?1) and E (0, 62.5, and 125 mg kg?1) on the growth performance, haematology and the modulation of blood stress indicators and immune parameters in hybrid catfish (Clarias macrocephalus × Clarias gariepinus) under combinations of thermal and acidic stress. Supplementation of vitamins C and E influenced the growth, haematological indices, serum chloride, plasma protein and immune parameters (lysozyme, total immunoglobulin and alternative complement haemolytic assay) (< 0.05). Although vitamins C and E did not prevent a significant reduction in serum chloride, they minimized not only the modulation of blood glucose and plasma protein, but also the reduction in immune parameters (< 0.05) owing to stress. Our results demonstrated that co‐supplementation of 500 mg kg?1 vitamin C and 125 mg kg?1 vitamin E, or 1000 mg kg?1 vitamin C alone, for four weeks and co‐supplementation of both vitamins at low levels (vitamins C at 500 mg kg?1 and E at 62.5 mg kg?1) for eight weeks had beneficial effects on the growth, amelioration of stress‐mediated adverse changes in the physiological and immunosuppressive responses of hybrid catfish under stressful conditions.  相似文献   

12.
A 12‐week growth experiment was conducted to quantify the appropriate dietary vitamin C requirement for GIFT tilapia Oreochromis niloticus. Triplicate groups of 25 experimental tilapia [initial body weight: (70.0 ± 1.6) g] were cultured in 5.6‐m3 aquaria (= 1.5 m,= 0.8 m) and fed with semi‐purified diets containing six levels [6.1 (un‐supplemented diet], 23.8, 41.9, 85.1, 167.4 and 339.0 mg kg?1 diet respectively) of vitamin C (supplied as L‐ascorbyl‐2‐polyphosphate). The results showed that, increasing dietary vitamin C level up to 41.9 mg kg?1 diet increased weight gain rate of tilapia, beyond which it remained nearly unchanged. Vitamin C contents in liver and muscle presented first increased linearly then tended to reach saturation at high vitamin C (167.4 and 339.0 mg kg?1) treatments. Muscle collagen content significantly increased with increasing dietary vitamin C levels. Whole‐body lipid content significantly increased, whereas ash content significantly declined, but moisture and crude protein content showed no significant difference with the increasing of dietary vitamin C. The blood chemistry analysis showed that dietary vitamin C had significant effects on enzyme activities of serum alkaline phosphatase, aspartate aminotransferase and alanine aminotransferase. Significant effects were also observed on albumin and total protein content of serum, but haemoglobin content showed no significant differences among all the treatments. The vitamin C requirement for GIFT tilapia was estimated to be 45.0 mg kg?1 diet based on maximum growth, 114.9 and 118.6 mg kg?1 diet based on maximum liver and muscle vitamin C concentration respectively.  相似文献   

13.
A 10‐week feeding trial was conducted in a flow‐through system to determine dietary choline requirement for juvenile gibel carp (Carassius auratus gibelio) (5.5 ± 0.1 g). Purified basal diet was formulated using vitamin‐free casein as protein source. Choline chloride was supplemented to the basal diet to formulate seven diets containing 76.1, 163, 356, 969, 1457, 2024 and 4400 mg kg?1 choline. Dietary methionine was 0.58%, less than the requirement (0.69%). The results indicated that specific growth rate (SGR) was higher in the fish fed 2024 mg kg?1 diet than the control group. Feeding rate and feed efficiency were not significantly affected. Protein productive value increased as dietary choline increased from 76.1 to 2024 mg kg?1 diet and was lower in the fish fed the diet containing 4400 mg choline kg?1 diet. Serum high‐density lipoprotein cholesterol (HDL‐C) and total cholesterol significantly increased with increasing dietary choline up to 1457 mg kg?1, and no differences were found with further increase. Fish carcass fat contents decreased significantly with increased dietary choline. Hepatic lipid contents increased with dietary choline up to 1457 mg kg?1 and then decreased. Quadric regression of SGR and plasma HDL‐C indicted dietary choline requirement was 2500 and 2667 mg kg?1 diet, respectively.  相似文献   

14.
A 12‐week feeding trial was conducted to evaluate the effects of dietary vitamin C on growth performance, antioxidant status and innate immune responses in juvenile yellow catfish, Pelteobagrus fulvidraco. Six isonitrogenous and isolipidic diets (44% crude protein and 7% lipid) were formulated to contain six graded dietary vitamin C (ascorbate‐2‐poly‐ phosphate, ROVIMIX® STAY‐C® 35) levels ranging from 1.9 to 316.0 mg kg?1 diet. The results of present study indicated that fish fed the lowest vitamin C diet had lower weight gain (WG) and specific growth rate (SGR) than those fed the diets supplemented vitamin C. WG and SGR did significantly increase with dietary vitamin C levels increasing from 1.9 to 156.5 mg kg?1. However, no significant increase was observed with further dietary vitamin C levels increasing from 156.5 to 316 mg kg?1. Survival, protein efficiency ratio and feed efficiency were not significantly affected by the dietary vitamin C levels. The activities of serum superoxide dismutase, catalase and glutathione peroxidase significantly increased when dietary vitamin C levels increased from 1.9 to 156.5 mg kg?1, fish fed the lowest vitamin C diet had higher serum malondialdehyde content than those fed the diets supplemented with vitamin C. Fish fed the diet containing 156.5 mg kg?1 vitamin C had the highest lysozyme, total complement activity, phagocytosis index and respiratory burst of head kidney among all treatments. The challenge test with Aeromonas hydrophila indicated that lower cumulative survival was observed in fish fed the lowest vitamin C diet. Analysis by broken‐line regression of SGR and lysozyme activity indicated that the dietary vitamin C requirement of juvenile yellow catfish was estimated to be 114.5 and 102.5 mg kg?1 diet, respectively.  相似文献   

15.
An 8‐week growth experiment was conducted to quantify the appropriate dietary vitamin C requirement of juvenile Chinese sucker (Myxocyprinus asiaticus). Triplicate groups of 30 experimental fish [initial body weight: (7.1 ± 0.3) g] were cultured in 500 L aquaria and fed with semi‐purified diets containing six levels [10.1 (unsupplemented diet), 37.4, 64.9, 125.2, 244.2 and 482.0 mg kg?1 diet, respectively] of vitamin C (supplied as L‐ascorbyl‐2‐polyphosphate). Results showed that weight gain of Chinese sucker was significantly increased with increasing dietary vitamin C levels, but there was no significant difference of weight gain among fish fed the diets containing more than 125.2 mg kg?1 vitamin C. As dietary vitamin C increased, the liver vitamin C content of fish showed the increasing trend firstly and then stabled, while the muscle vitamin C content significantly increased without reaching a constant level. Lower liver malondialdehyde content was observed in 125.2, 244.2 and 482.0 mg kg?1 vitamin C groups, and higher antioxidant capacity and superoxide dismutase activities were observed in supplemented groups when compared to the unsupplemented group. Liver aspartate aminotransferase and alkaline phosphatase activities were also significant affected by dietary vitamin C. Ash content of fish fed the diet with 244.2 or 482.0 mg kg?1 vitamin C was significantly higher than that of fish fed the other diets. However, dietary vitamin C had no significant effects on whole‐body crude protein, lipid and moisture contents. The vitamin C requirement of juvenile Chinese sucker was estimated to be 84.6 and 126.1 mg kg?1 based on weight gain and liver vitamin C concentration respectively.  相似文献   

16.
A 12‐week growth trial was conducted in a flow‐through system to determine dietary selenium (Se) requirement for on‐growing gibel carp (initial body weight: 76.2 ± 0.05 g, mean ± SEM). Selenomethionine was supplemented to the basal diet to formulate seven semi‐purified diets containing 0.26, 0.58, 0.72, 1.14, 1.34, 1.73 and 2.09 mg Se kg?1 diet. The results showed that plasma superoxide dismutase (SOD) activity significantly increased when fish were fed with 0.58 mg Se kg?1 diet (< 0.05) and then decreased at 2.09 mg Se kg?1 diet (< 0.05). Plasma T‐AOC activity was higher in fish fed with 0.72 mg Se kg?1 diet (< 0.05) and plasma malondialdehyde (MDA) was higher in fish fed with 0.26 mg Se kg?1 diet (< 0.05). When fish were fed 1.14 mg Se kg?1 diet, hepatic GSH‐Px, T‐AOC, GSH and CAT activities were significantly higher than those fed with 0.26 mg Se kg?1 diet (< 0.05). Hepatic superoxide dismutase (SOD) activity was higher at 1.34 mg Se kg?1 diet (< 0.05). Fish liver Se concentrations were significantly higher when fed with 0.72 mg Se kg?1 diet (< 0.05) and then kept constant when Se ≥ 0.72 mg kg?1 (> 0.05). Whole‐body and muscle Se concentrations were higher when fed with 1.34 mg Se kg?1 diet (< 0.05) and kept a plateau when Se ≥ 1.34 mg kg?1 (> 0.05). In conclusion, based on broken‐line regression of hepatic Se concentrations, hepatic SOD activity and hepatic T‐AOC activity, dietary Se requirements for on‐growing gibel carp was 0.73 mg kg?1, 1.12 mg kg?1 and 1.19 mg kg?1 diet respectively.  相似文献   

17.
Sanguinarine (SA), with antimicrobial and antiparasitic activities against fish pathogens, exhibits great potential commercial use in aquaculture. However, little information on pharmacokinetics of SA restricts further application in aquaculture. In this study, pharmacokinetics of SA in common carp (Cyprinus carpio) following a single intraperitoneal administration [10 mg kg?1 BW (body weight)] was evaluated by high‐performance liquid chromatography (HPLC). The peak concentration (Cmax) of SA in kidney was 11.8 μg g?1, which was higher than in other tissues and plasma. The terminal half‐life in fish tissue and plasma was as follows: 42.3 h (kidney) > 37.2 h (liver) > 20.1 h (gill) > 18.8 h (muscle) > 10.9 h (spleen) > 10.0 h (plasma). Additionally, we determined the bacterial loads in tissues of common carp infected with Aeromonas hydrophila after i.p. administration of SA at 0, 5, 10 and 20 mg kg?1 BW. The results showed that i.p. administration of SA at 10 mg kg?1 BW significantly enhanced antibacterial efficacy against A. hydrophila, where the antibacterial ratio in the gill, kidney, spleen and liver on day 5 was 95.13%, 93.33%, 90.09% and 92.82%, respectively. Overall, these results suggested the potential of SA to treat A. hydrophila infection in common carp farming industry.  相似文献   

18.
A 12‐week feeding trial was conducted to evaluate the optimum dietary inorganic copper (copper sulphate) in juvenile beluga, Huso huso. Eight semi‐purified diets containing 1.1 (Cu1.0), 3.5 (Cu4.0), 7.1 (Cu7.0), 9.7 (Cu10), 13.1 (Cu13), 25.1 (Cu25), 49.9 (Cu50) and 195 (Cu195) mg Cu kg?1 diet in the form of CuSO4.5H2O were fed to fish of initial body weight 8.49 ± 0.32 g and length 11.85 ± 0.66 cm (mean ± SD) in triplicate groups in a flow‐through system. Weight gain (WG) of fish fed Cu10 and Cu13 diets was significantly higher than that of fish fed Cu1.0, Cu4.0, Cu25, Cu50 and Cu195 diets (P < 0.05). Whole‐body and muscle crude protein increased with dietary Cu up to the supplementation level of 13.1 mg kg?1 diet and then decreased. Whole‐body lipid content was negatively correlated, while whole‐body ash was positively correlated with dietary copper concentration. Hepatic copper–zinc superoxide dismutase activity of fish fed Cu10 and Cu13 diets was significantly higher than that of fish fed Cu1.0, Cu4.0 and Cu195 diets. Hepatic thiobarbituric acid‐reactive substances of fish fed Cu13 diet was significantly lower than those of fish fed the other diets except for that of fish fed Cu10 diet. Aspartate aminotransferase, alanine aminotransferase and copper accumulation in tissues increased with dietary copper. Broken‐line analysis of WG suggested that the optimum dietary Cu level was 10.3 mg Cu kg?1 diet. Therefore, these results may indicate that the optimum dietary Cu levels could be greater than 10.3 mg Cu kg?1 diet but less than 13.1 mg Cu kg?1 diet in juvenile beluga, when copper sulphate is used as the dietary source of inorganic copper.  相似文献   

19.
The effectiveness of common carp pituitary extract (CPE), luteinizing hormone releasing hormone analogue (LHRH‐A2) injections and LHRH‐A2 implants for spawning induction in female sturgeon, Huso huso was examined. In the first trial, fish were injected with 7% physiological saline (control), 50 mg kg?1 CPE or LHRH‐A2 at 3.5, 7, 8 or 10 μg kg?1. In the second trial, fish were treated with LHRH‐A2 cholesterol pellet implants containing 0, 3.5, 7, 8 and 10 μg kg?1 LHRH‐A2. Ovulated eggs were removed using a minimally invasive surgical technique and were artificially fertilized. Injection of CPE and LHRH‐A2 at doses of 3.5, 7, 8 and 10 μg kg?1 resulted in the number of ovulated fish more than LHRH‐A2 implants (similar doses) or controls, although there was no significant difference at doses of 8 and 10 μg kg?1 (P ≥ 0.05). The latency period of fish receiving CPE and LHRH‐A2 injections was approximately 20 h, which was significantly lower than in fish receiving LHRH‐A2 implants (P ≤ 0.05). Furthermore, there were no significant differences in rates of fertilization or hatching among the progeny produced in any of the treatment groups (P ≥ 0.05). In conclusion, the data from this study could be useful for artificial propagation of not‐fully‐matured females of H. huso at sturgeon hatcheries.  相似文献   

20.
A 12‐week feeding trial was conducted to estimate the dietary copper requirement of fingerling Channa punctatus. Six casein?gelatin‐based test diets (450 g kg?1 crude protein; 18.81 kJ g?1 gross energy) with graded levels of copper as copper sulphate (3.7, 4.7, 5.7, 6.7, 7.7 and 8.7 mg copper equivalent kg?1 diet) were formulated and fed to triplicate groups of fish (7.25 ± 0.81 cm; 5.21 ± 0.27 g) near to satiation. Fish fed diet with 6.7 mg kg?1 copper had highest absolute weight gain (AWG; 51.63 g fish?1), protein efficiency ratio (PER; 1.42 g fish?1), protein gain (PG; 8.34 g fish?1), haemoglobin (Hb; 9.68 g dL?1), haematocrit (Hct; 31.18%) and RBCs (3.24 × 106 × mm?3). Feed conversion ratio (FCR) was found to be best (1.57) at above level of dietary copper. Whole body copper concentration was found to increase with the increasing levels of dietary copper. Hepatic thiobarbituric acid‐reactive substances concentration was found to decrease with increasing dietary concentrations of copper up to 6.7 mg kg?1 beyond which a reverse trend in this parameter was noted. Broken‐line regression analysis of AWG, FCR and PG concentrations against varying levels of dietary copper yielded the requirement in the range of 6.66–6.78 mg kg?1. Data generated during this study would be useful in formulating copper‐balanced commercial feeds for the intensive culture of this fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号