首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An 8‐week feeding trial was conducted to investigate the effects of dietary cholesterol levels on growth, feed utilization, body composition and immune parameters in juvenile oriental river prawn, Macrobrachium nipponense. Six isolipid (80 g kg?1 crude lipid) and isoproteic (400 g kg?1 crude protein) diets, supplemented with 0, 3.0, 6.0, 9.0, 12.0 and 15.0 g kg?1 cholesterol, were evaluated. Growth performance and feed utilization of M. nipponense were improved as dietary cholesterol levels increased. Weight gain and specific growth rate were highest, and feed conversation ratio was lowest, when prawns were fed a diet supplemented with 9.0 g kg?1 cholesterol. However, final body weights and survival rates of juvenile M. nipponense were not affected significantly by dietary cholesterol. Body composition of prawns, including moisture, crude protein and crude lipid, was not significantly affected by changes in dietary cholesterol. The immune parameters measured in hepatopancreas, including total antioxidant capacity, and glutathione, catalase, alkaline phosphatase and acid phosphatase activities, were at optimum levels in prawns fed with 9.0 g kg?1 dietary cholesterol. In summary, the best growth performance, lowest feed conversation ratio, and the most enhanced antioxidant capacity and immunity parameters were attained in juvenile M. nipponense when fed a diet supplemented with 9.0 g kg?1 cholesterol.  相似文献   

2.
An 11‐week feeding trial was conducted to evaluate the effect of dietary methionine on the growth, antioxidant status, innate immune response and disease resistance to Aeromonas hydrophila of juvenile yellow catfish. Six isonitrogenous and isolipidic practical diets were formulated to contain different graded methionine levels ranging from 6.1 to 16.4 g kg?1 of dry weight. The results indicated that growth performance and feed utilization were significantly influenced by the dietary methionine levels; fish fed the diet containing 6.1 g kg?1 methionine level had lower specific growth rate, percentage weight gain (PWG), feed efficiency and protein efficiency ratio than those fed the other diets (P < 0.05). Fish fed the diet containing 16.4 g kg?1 methionine level had lowest protein contents in whole body and muscle among all treatments. Triacylglycerols, cholesterol, aspartate aminotransferase, alanine aminotransferase and haemoglobin (Hb) in plasma or whole blood were significantly affected by dietary methionine levels. Fish fed the diet containing 6.1 g kg?1 methionine level had higher superoxide dismutase, glutathione peroxidase activities and malondialdehyde values than those fed other diets. Fish fed diets containing 9.7 and 11.8 g kg?1 methionine levels had higher lysozyme activity, total immune globulin, phagocytic activity and respiratory burst than those fed other diets. The lowest survival after A. hydrophila challenge was observed in fish fed a diet containing 6.1 g kg?1 methionine. Quadratic regression analysis of PWG against dietary methionine levels indicated that the optimal dietary methionine requirement for the maximum growth of juvenile yellow catfish was estimated to be 11.5 g kg?1 of the diet in the presence of 4.0 g kg?1 cystine (corresponding to 23.5 g kg?1 of dietary protein on a dry weight basis).  相似文献   

3.
Six isonitrogenous (320 g kg?1) and isolipidic (60 g kg?1) diets were formulated with graded levels (0, 5, 10 and 15 g kg?1) of dicalcium phosphate (DCP) and fungal phytase (750 and 1500 FTU kg?1 diet). Tra catfish (Pangasianodon hypophthalmus), 9.6 g, were fed the diets for 12 weeks. Each experimental diet was fed to eight replicates of fish to apparent satiation. At the end of the trial, fish fed the diets containing 15 g kg?1 DCP, 750 and 1500 FTU kg?1 phytase had higher growth performances, protein efficiency ratio and phosphorus retention than those fed the control diet, 5 g kg?1 DCP and 10 g kg?1 DCP diets (P < 0.05). Whole body ash and phosphorus concentration of fish fed the 10 g kg?1 DCP and 15 g kg?1 DCP diets were significantly higher than those of fish fed the control diet. Higher apparent digestibility coefficient of phosphorus was observed in fish fed the phytase supplemented diets. The present results indicate that supplementation of phytase at 750 FTU kg?1 and 1500 FTU kg?1 improves growth performances, feed and phosphorus utilization. The supplementation can completely replace dicalcium phosphate or other phosphorus sources in tra catfish feed and reduce the phosphorus discharge into environment.  相似文献   

4.
A 10‐week feeding trial with four dietary protein levels (400, 450, 500 and 550 g kg?1 crude protein) and two dietary lipid levels (80 and 160 g kg?1 crude lipid) was conducted to assess optimum dietary protein and lipid levels for the growth, feed utilization and body composition of juvenile Manchurian trout (initial weight 11.80 ± 0.15 g). Fish were fed twice daily (08:30 and 16:30 h) to apparent satiation. The results showed that fish fed the diet with 500 g kg?1 protein and 80 g kg?1 lipid had the highest growth and feed efficiency. However, fish fed the diet with 450 g kg?1 protein and 160 g kg?1 lipid showed comparable growth to that of the fish fed diet 5 (500/80) and had higher protein efficiency ratio (PER), nitrogen retention (NR) and energy retention (ER) than other groups (< 0.05). Growth, PER, NR and ER of fish fed the 160 g kg?1 lipid diet was significantly higher (< 0.05) than that of fish fed the 80 g kg?1 lipid diet at 400 and 450 g kg?1 protein diet, whereas these values showed an opposite trend at 500 and 550 g kg?1 protein diet, and the lowest PER, NR and ER was found by fish fed the 400 g kg?1 protein diet with 80 g kg?1 lipid. Fish fed diets with 400 g kg?1 protein had lower feed intake (FI) than that of other groups. Feed intake of fish fed 80 g kg?1 lipid level was significantly lower than that of fish fed 160 g kg?1 lipid diet at 400 g kg?1 protein (< 0.05), while no significant differences were observed at 450, 500 and 550 g kg?1 protein‐based diets. Contrary to moisture content, lipid content of whole body and muscle increased significantly (< 0.05) with increasing lipid levels. The results of this study indicated that the diet containing 450 g kg?1 protein and 160 g kg?1 lipid, with a P/E ratio of 23.68 g protein MJ?1 would be suitable for better growth and feed utilization of juvenile Manchurian trout under the experimental conditions and design level used in this study.  相似文献   

5.
A total of 630 juvenile Chinese sucker, with an average initial weight of 1.72 ± 0.05 g, were fed seven diets for 56 days to study the effect of dietary methionine levels on growth, feed utilization, body composition and haematological parameters on juvenile Chinese sucker. Diet 1 using fish meal as the sole protein source and diets 2–7 using fish meal and fermented soybean meal as intact protein sources supplemented with crystalline amino acids contained six levels of l ‐methionine ranging from 6.4 to 18.9 g kg?1 of dry diet at a constant dietary cystine level of 3.7 g kg?1. Each diet was randomly assigned to three aquaria. Results indicated that the highest weight gain, specific growth rate (SGR), feed efficiency ratio, protein efficiency ratio and protein productive value occurred at 13.9 g methionine kg?1 diet among the methionine supplemented dietary groups, beyond which they showed declining tendency. The whole body and muscle protein contents of juvenile Chinese sucker were positively correlated with dietary methionine level, while muscle lipid content was negatively correlated with it. The total essential amino acids content of muscle was increased significantly with increasing dietary methionine level from 6.4 to 13.9 g kg?1 (< 0.05). Apparent digestibility coefficients of dietary protein were significantly affected by dietary treatments. Serum protein, cholesterol and triacylglycerol increased with increasing dietary methionine levels, but showed a relatively lower value for fish fed the 18.9 g methionine kg?1 diet. Quadratic regression analysis of SGR against dietary methionine level indicated that optimal dietary methionine requirement for juvenile Chinese sucker was 14.1 g kg?1 of the diet in the presence of 3.7 g kg?1 cystine (corresponding to 32.0 g kg?1 of dietary protein on a dry‐weight basis).  相似文献   

6.
The study was to evaluate the effects of dietary fish meal (FM) partially replaced by housefly maggot meal (HMM) on growth, fillet composition and physiological responses of juvenile barramundi, Lates calcarifera. HMM at 100, 150, 200 and 300 g kg?1 was supplemented in the basal diet to replace dietary FM protein. Basal diet without HMM supplementation was used as control. Total of five experimental diets were fed to triplicate groups of juvenile barramundi (initial weight: 9.66 ± 0.22 g) in a flow‐through rearing system for 8 weeks. Fish fed all experimental diets showed no effects (> 0.05) on weight gain and whole body protein, lipid and moisture content. Fish fed control diet and 100 g kg?1 HMM diet had the highest (< 0.05) hepatic superoxide dismutase (SOD) activity, followed by 150 g kg?1 HMM group, the lowest in 200 and 200 g kg?1 HMM groups. Hepatic thiobarbituric acid reactive substance (TBARS) value was the highest in fish fed 150–300 g kg?1 HMM diets, followed by 100 g kg?1 HMM group and the lowest in fish fed the control diet. Fish fed the 300 g kg?1 HMM diet had lower plasma lysozyme activity than fish fed other diets. The results indicated that up to 300 g kg?1 HMM can be used to substitute dietary FM protein without negative effect on growth. Although physiological responses were also considered, up to 100 g kg?1 HMM in barramundi diet was recommended.  相似文献   

7.
A feeding trial was conducted to study the effect of dietary lipid on growth performance and heat‐shock protein (HSP70 and HSP60) response of white seabass (WSB), Atractoscion nobilis. Five diets were formulated to contain 440 g kg?1 protein from 300 g kg?1 fish meal, 240 g kg?1 soybean meal and 100 g kg?1 soy protein concentrate with different levels of lipid: 100, 120, 140, 160 or 180 g kg?1. At the end of the trial, heat shock response based on HSP70 and HSP60 was measured in liver and white muscle from fish at ambient temperature and temperature shock conditions. Final weight and percent gain were significantly higher for fish fed the 100 g kg?1 lipid diet than for fish fed the rest of the diets (P ≤ 0.05). Feed conversion ratio was lowest for fish fed the 100 g kg?1 lipid diet. The HSP70 and HSP60 responses were positively correlated to dietary lipid levels following temperature shock. At ambient temperature, HSP60 and HSP70 responses in muscle and HSP60 response in liver increased with dietary lipid level. Temperature shock significantly increased the HSP response of fish in all treatments. Results of this study demonstrated that a moderate (110–120 g kg?1) level of dietary lipids would be recommended for production diets but a higher dietary lipid level may be required for optimal stress tolerance.  相似文献   

8.
The effects of varying dietary protein level (200, 250, 300 and 350 g protein kg?1 diet) and plant : animal protein ratio (1 : 2, 1 : 1, 1 : 1.5 and 2 : 1) on growth of juvenile Macrobrachium rosenbergii (de Man) with approximately 0.27 g initial body weight were evaluated in two separate 30‐days study using practical diets. Significantly lower survival rate was recorded in prawns fed a diet containing 200 g kg?1 dietary protein (66.67%) whilst 300 and 350 g kg?1 protein gave the highest survival (96.67%). Significant differences (P < 0.05) in feed conversion ratio and protein efficiency ratio were recorded among different dietary protein levels. The results of the study showed that highest growth rate and maximum utilization of protein were recorded in prawns fed 300 g kg?1 dietary protein and further increase in the dietary protein does not have any added advantage. There existed no statistically significant difference (P > 0.05) in the specific growth rate, protein efficiency ratio, weight gain and survival rate among the juveniles of M. rosenbergii fed varying plant–animal protein ratios at 300 g kg?1 protein. Better‐feed conversion ratio was recorded in diets having a plant to animal protein ratio of 1 : 1 (2.62) followed by 1 : 1.5 (2.66), however there was no significant difference between them (P > 0.05). Based on the present study, it would be possible to replace animal protein by low‐cost plant protein in prawn feed. Better growth performance in juveniles of M. rosenbergii can be achieved by the incorporation of equal proportions of plant and animal protein (A : P = 1) in the diet.  相似文献   

9.
This experiment was conducted to study the effects of different forms and levels of manganese (Mn) on the growth performance, antioxidant activities, tissue Mn content and cytosolic manganese superoxide dismutase (cMnSOD) gene expression of Litopenaeus vannamei. Treatments consisted of 0, 10, 20, 30, 40 and 60 mg Mn kg?1 from manganese sulphate (Mn‐S) and manganese methionine (Mn‐Met), providing the actual dietary value of 5.17, 15.62, 25.55, 34.22, 44.48 and 67.90 mg Mn kg?1 Mn‐S, and 5.17, 15.71, 25.36, 35.86, 45.16 and 65.06 mg Mn kg?1 Mn‐Met, respectively. Each diet was fed to triplicate groups of L. vannamei (initial body weight: 1.925 ± 0.002 g) in a recirculated fresh water rearing system for 8 weeks. Weight gain rate (WGR) increased in prawns provided with from 25.55 to 44.48 mg Mn kg?1 Mn‐S and 15.71 to 45.16 mg Mn kg?1 Mn‐Met and then declined above these levels. The lowest protein efficiency ratio (PER) and the highest feed conversion rate (FCR) were observed in prawns fed the control diet (< 0.05) and showed no significant differences among other treatments (> 0.05). Survival rate (SR) was not affected by the dietary treatments (> 0.05). Total SOD and Mn‐SOD activities were higher in the hepatopancreas of prawns fed with Mn‐supplemented diets from 15.71 to 44.48 mg Mn kg?1 (< 0.05). On the contrary, malondialdehyde (MDA) content was lower in the hepatopancreas of prawns fed the basal diet (< 0.05). Mn concentrations in the hepatopancreas and muscles increased with increasing levels of dietary Mn supplementation. Moreover, Mn accumulation was lower in the muscle than in the hepatopancreas of the prawns. The mRNA expression of cMnSOD gene in the hepatopancreas of prawns was upregulated with increasing dietary Mn levels of Mn‐S from 25.55 to 44.48 mg Mn kg?1, Mn‐Met from 15.71 to 45.16 mg Mn kg?1 and then plateaued above these levels. Broken‐line regression analysis of WGR indicated that the optimal dietary Mn requirements for juvenile L. vannamei were 32.26 mg Mn kg?1 Mn‐S and 23.90 mg Mn kg?1 Mn‐Met, respectively.  相似文献   

10.
A 76‐day feeding trial was carried out to evaluate the effects of Lysine and Methionine supplementation on growth and digestive capacity of grass carp (Ctenopharyngodon idella) fed plant protein diets using high‐level canola meal (CM). Fish with initial average weight 103.9 ± 0.6 g were fed three extruded diets. Fish meal (FM) diet was formulated as the normal control with 40 g kg?1 FM and 300 g kg?1 CM; CM diet was prepared by replacing all FM with CM (total 340 g kg?1) without Lys or Met supplementation; CM supplement (CMS) diet was similar to CM diet but was supplemented with essential amino acids (EAA) to ensure the levels of Lys and Met similar to those in the FM diet. Feed intake, feed efficiency and specific growth rate of the grass carp fed CMS and FM diets were similar (> 0.05), but higher than those of the grass carp fed CM diet (< 0.05). The hepatosomatic index, relative gut length, intestosomatic index and intestinal folds height were significantly improved in fish fed FM and CMS diets as compared to CM diet (< 0.05). Lower activities of trypsin, lipase and amylase in hepatopancreas were observed in fish fed CM diet (< 0.05). Three hundred and forty gram per kilogram CM without Lys or Met supplementation significantly decreased trypsin, lipase and amylase mRNA levels in hepatopancreas (< 0.05). These results indicated that the high supply of CM (340 g kg?1) in plant protein (200 g kg?1 soybean meal and 100 g kg?1 cottonseed meal) diets decreased digestive ability through decreasing digestive enzyme activities and enzyme gene's expressions of grass carp, and these side effects can be reversed by supplementing Lys and Met. Therefore, CM could be high level used in a plant protein blend‐based extruded diet for grass carp as long as EAA were supplemented.  相似文献   

11.
A 4‐week growth trial was conducted to compare the effects of different feeding strategies of dietary immunostimulants on the growth, immunity and resistance against Vibrio splendidus of sea cucumbers Apostichopus japonicus (Selenka). Six feeding strategies were set, including feeding immunostimulants‐free diet continuously (control), feeding dietary β‐glucan (1.25 g kg?1 diet) continuously, feeding dietary mannan‐oligosaccharides (MOS; 2.00 g kg?1 diet) continuously, feeding β‐glucan 2 days followed by MOS 5 days alternately, feeding β‐glucan 5 days followed by MOS 2 days alternately and feeding β‐glucan 7 days followed by MOS 7 days alternately. The sea cucumbers fed immunostimulants showed higher specific growth rate (SGR) and lower cumulative mortality than control (< 0.05). When sea cucumbers were fed with β‐glucan continuously, total coelomocytes counts and superoxide anion were significantly higher than control on the 4th day (< 0.05). However, these two immune parameters were not significantly higher than those in control after the 18th day (> 0.05). While sea cucumbers continuously fed MOS, these two immune parameters were not significantly higher than control until the 15th day. All immune parameters of the sea cucumbers fed with β‐glucan and MOS alternately were significantly higher than those in control during the experiment (< 0.05). The sea cucumbers fed with β‐glucan 7 days followed MOS 7 days alternately showed the highest SGR and second lowest cumulative mortality. It was suggested that this feeding strategy is most suitable for sea cucumbers.  相似文献   

12.
Six isonitrogenous and isocaloric semi‐purified diets were prepared with different levels of microbial levan: control (Basal), T1 (Basal + 2.5 g kg?1 diet), T2 (Basal + 5 g kg?1 diet), T3 (Basal + 7.5 g kg?1 diet), T4 (Basal + 10 g kg?1 diet) and T5 (Basal + 12.5 g kg?1 diet), fed to six groups of fish in triplicate tanks. The results of the 60 days feeding trail showed that supplementation of dietary levan significantly affected the weight gain percentage and specific growth rate of the treatment groups fed at 10 g kg?1 or more levan. Lowest feed conversion ratio (FCR) value and highest survival percentage among levan fed groups were observed with 12.5 g kg?1 incorporation (T5) and was comparable with (T4) group. Significant increase in muscle RNA level and RNA/DNA ratio was observed with the increasing dietary levan. Fish fed 12.5 g kg?1 levan had significantly higher protease, amylase and lipase activities compare with the control group. Lowest Aspartate aminotransferase (AST) activity in the liver and muscle was observed in the T5 group fed with highest level of dietary levan. Overall results conclude that dietary microbial levan incorporation at 12.5 g kg?1 could be used as potent dietary prebiotic for the culture of L. rohita juveniles.  相似文献   

13.
The present study investigated the optimum dietary protein level for the maturation of adult Pangasianodon hypophthalmus broodstock. Four isocaloric diets containing 250, 300, 350 and 400 g kg?1 of protein levels were prepared and presented to triplicate groups of fish. The fish (mean weight 770 ± 17.23 g and 712 ± 23.42 g for females and males respectively) were stocked in outdoor canvas tanks (4 m × 1 m × 1 m) at a stocking density of 20 fish/tank with a male: female ratio of 1:4. The fish were fed the test diets to satiation twice daily for 6 months. Gonadosomatic index (GSI) and fecundity were similar among fish fed dietary protein levels, higher than those fed on the 250 g kg?1. Final weight, weight gain, oocyte weight were significantly highest (< 0.05) for the fish fed 350 and 400 g kg?1 dietary protein treatments. Only the 350 g kg?1 dietary protein treatment resulted in significantly best ovipositor diameter and % ripe egg. Amino acid levels were highest in the muscle followed by the oocyte and liver of fish fed 350 and 400 g kg?1 dietary protein levels. The present results suggested that a dietary protein level of 350 g kg?1 can be recommended for the development of P. hypophthalmus broodstock.  相似文献   

14.
Present experiment was conducted to determine the effect of different feeds with varying protein levels on the growth, survival and reproductive performance of zebrafish, Danio rerio. The control diet (T1) was wild‐collected zooplankton from local fish ponds, while test diets with 350 g kg?1 protein (T2), 400 g kg?1 protein (T3) and 450 g kg?1 protein (T4) were formulated and fed to fish for a period of 210 days. The significantly (< 0.05) highest mean weight gain and specific growth rate were observed in T1, which were similar with T3 and T4. The significantly (P < 0.05) highest number of egg production per female and relative fecundity were found in T1, followed by T4 and T3 while T2 produced lowest number of eggs. No significant (> 0.05) differences were observed in brood survival rate, fertilization and hatching rate among the dietary treatments. The highest (< 0.05) fry survival rate was recorded in T1, followed by T3 and T4. Thus, it is suggested that control diet i.e. mixed zooplankton exhibited better growth, reproductive performance and fry survival rate. However, diet containing 400 g kg?1 crude protein also gave comparable results in terms of growth, survival and reproductive performance of zebrafish.  相似文献   

15.
The aim of the present work was to test the capacity of O. vulgaris to use carbohydrates supplied in three diets: a diet without added carbohydrates (diet C0: 500 g kg?1 water, 200 g kg?1 gelatine, 100 g kg?1 egg yolk powder, 50 g kg?1 freeze‐dried Sardinella aurita and 150 g kg?1 freeze‐dried Todarodes sagittatus), and two obtained by substituting 50 g kg?1 of T. sagittatus by glucose (diet GLU50) or by starch (diet STA50). The most stable and best accepted diet was STA50 (SFR 1.26%BW day?1), although there were no significant differences in the growth rates obtained with the three diets: 10.1 g day?1, 9.4 g day?1 and 11.2 g day?1 for C0, GLU50 and STA50, respectively (> 0.05). The feed efficiency indices were better for GLU50, of particular note being the protein productive value of 72% and a feed conversion ratio lower than 1. Protein and lipid digestibility were similar in all three diets (96–98% for proteins and 85–94% for lipids), whereas carbohydrate digestibility was higher in GLU50 (98%) than in C0 (84%) and STA50 (0.33%). The content of carbohydrates increased in muscle and the digestive gland as a consequence of the increased carbohydrates intake.  相似文献   

16.
This study investigated the effects of phenylalanine on growth, digestive and absorptive ability and antioxidant status of young grass carp (Ctenopharyngodon idella). Young grass carp were fed diets containing 3.4 (basal diet), 6.1, 9.1, 11.5, 14.0 and 16.8 g phenylalanine kg?1 diet with a fixed of 10.7 g tyrosine kg?1 diet for 8 weeks. Percent weight gain (PWG), feed efficiency and feed intake of fish were the lowest in fish fed the basal diet (< 0.05). Trypsin, lipase and amylase activities in the hepatopancreas, and antioxidants including glutathione contents and glutathione reducase activities in the hepatopancreas and intestine were all the highest in fish fed 11.5 g phenylalanine kg?1 diet (< 0.05). Trypsin, chymotrypsin and amylase activities in whole intestine, and creatine kinase, Na+, K+‐ATPase and alkaline phosphatase activities in the proximal intestine, and superoxide dismutase activities in the hepatopancreas and intestine were all the highest when phenylalanine at level of 9.1 g kg?1 diet (< 0.05). In conclusion, phenylalanine improved growth, digestive and absorptive ability, and antioxidant capacity of young grass carp. The phenylalanine requirement of young grass carp (256–629 g) based on PWG was 10.4 g kg?1 diet or 3.44 g 100 g?1 protein.  相似文献   

17.
A feeding trial was conducted on the effects of methionine hydroxy analog (MHA) and taurine supplementation in diets with high levels of soy protein concentrate (SPC) on the growth performance and amino acid composition of rainbow trout, Oncorhynchus mykiss (Walbaum) comparing with fish meal based diet. The control diet had 520 g kg?1 fish meal. In the methionine deficient diets (5.1 g kg?1), fish meal was replaced by 490 g kg?1 of the SPC in the SPC49 diet. The SPC49 diet was supplemented with either MHA (6 g kg?1) only or a combination of MHA and taurine (2 g kg?1). Fish were fed isoproteic (460 g kg?1) and isolipidic (130 g kg?1) diets for 12 weeks. Growth performance (i.e. weight, feed conversion ratio, and thermal‐unit growth coefficient) was inferior in fish fed the SPC49 diet. MHA supplementation improved growth performance (< 0.05). No difference was observed when taurine was added to the SPC49 and MHA diet (> 0.05). Whole‐body taurine contents increased with taurine supplementation, whereas plasma methionine increased with MHA supplementation (< 0.05). In conclusion, the substitution of fish meal with SPC supplemented with MHA did not negatively impact growth, and the addition of taurine did not improve growth performance in rainbow trout.  相似文献   

18.
A 56‐d feeding trial was conducted to investigate the effect of dietary mannan‐oligosaccharides (MOS) and fructo‐oligosaccharide (FOS) on growth indices, body composition, intestinal bacterial community and digestive enzymes activity of regal peacock. A total of 240 fish were randomly distributed to 15 experimental units (40‐L aquariums) of 16 fish each. These replicates were randomly assigned to one of five treatments in a 2 × 2 + 1 factorial arrangement. The treatments were control diet (no MOS and FOS), diet A (2 gkg?1 MOS + 1.5 g kg?1 FOS), diet B (2 g kg?1 MOS + 3 g kg?1 FOS), diet C (4 g kg?1 MOS + 1.5 g kg?1 FOS) or diet D (4 g kg?1 MOS + 3 g kg?1 FOS). The results showed that feeding diet C increased specific growth rate and protein efficiency ratio and decreased feed conversion ratio compared with control diet. Higher intestinal trypsin activity and increased Lactobacillus counts were observed in fish fed diets B and C. All diets significantly elevated body protein deposition and intestinal amylase activity compared to the control diet. In conclusion, the diet supplemented with 4 g kg?1 MOS + 1.5 g kg?1 FOS was advantageous over other MOS + FOS‐supplemented diets, with respect to growth performance and health benefits of regal peacock.  相似文献   

19.
An 8‐week feeding trial was conducted to investigate the optimum dietary protein and lipid levels for growth, feed utilization and body composition of Pseudobagrus ussuriensis fingerlings (initial weight: 3.40 ± 0.01 g). Twelve diets containing four protein levels (350, 400, 450 and 500 g kg?1 crude protein) and three lipid levels (50, 100 and 150 g kg?1 crude lipid) were formulated. Fish were randomly allotted to 36 aquaria (1.0 × 0.5 × 0.8 m) with 25 fish to each glass aquarium. Fish were fed twice daily (08:00 and 16:00) to apparent satiation. The results showed that weight gain and specific growth rate (SGR) decreased with increasing dietary lipid level from 50 to 150 g kg?1 at the same dietary protein level. Fish fed the diets containing 150 g kg?1 lipid exhibited higher feed conversion ratio (< 0.05), lower protein efficiency ratio (PER) and nitrogen retention efficiency (NRE) relative to fish fed the diet containing 50 and 100 g kg?1 lipid. Weight gain and SGR significantly increased with increasing dietary protein from 350 to 450 g kg?1 at the same dietary lipid level, and even a little decline in growth with the further increase in dietary protein to 500 g kg?1. Daily feed intake, NRE and PER were significantly affected by both dietary protein and lipid levels (P < 0.05) and tended to decrease with increasing dietary protein and lipid levels. Whole‐body protein content increased as protein levels increased and lipid levels decreased. Whole‐body lipid and muscle lipid content increased with increasing dietary lipid level, and decreased with increasing dietary protein at each lipid level. There was no significant difference in condition factor and viscerosomatic index among fish fed the diets. Hepatosomatic index was affected by dietary lipid level (P < 0.05), and increased with increasing dietary lipid level at the same protein level. These results suggest that the diet containing 450 g kg?1 protein and 50 g kg?1 lipid with a P/E ratio of 29.1 mg protein kJ?1 is optimal for growth and feed utilization of P. ussuriensis fingerlings under the experimental conditions used in the study.  相似文献   

20.
The effects of dietary phosphorus (P) on growth, body composition and immunity of young taimen (Hucho taimen) were studied. Six purified diets contained graded levels (2.3‐control, 4.0, 5.6, 7.5, 9.1 and 10.8 g kg?1 diet) of available P. Each diet was fed to triplicate groups of 30 fish with an initial average weight (55.31 ± 0.38) g for 84 days. The weight gain, specific growth rate and feed conversion ratio were improved by dietary available P up to 4.35 g kg?1 (< 0.05) and then levelled off. Hepatosomatic index and body crude lipid content decreased significantly with increasing P levels, while ash contents and P concentrations in the whole body and vertebrae increased by dietary available P up to 4.36 and 4.44 g kg?1 and then levelled off respectively (< 0.05). Liver superoxide dismutase and glutathione peroxidase and plasma alkaline phosphatase activities in the treatment groups were significantly higher compared with the control group (< 0.05). Plasma IgM contents increased linearly with increasing dietary P from 4.0 to 9.1 g kg?1 group and then decreased. Dietary P supplementation reduced plasma triglyceride, malondialdehyde and liver malondialdehyde contents. There were no significant effects on plasma total protein, albumin, globulin, glucose, aspartate aminotransferase and alanine aminotransferase, catalase, lysozyme and liver catalase compared with the control group (> 0.05). Broken line regression analysis indicated that dietary available P requirement was 4.34 and 4.35 g kg?1, based on weight gain and P concentration in the whole body respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号