首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigates the effect of different smolt production strategies on vertebral morphology (radiology), composition (mineral content) and mechanical strength (load-deformation testing) in Atlantic salmon (Salmo salar). Rapid-growing underyearling (0+) smolt were compared with slower-growing yearling (1+) smolt and a reference group of wild smolt (w). The underyearling and yearling smolt were transferred to seawater in October 2002 and May 2003, respectively. The underyearling smolt were reared under continuous light and the yearling smolt under natural light during the first twelve weeks in seawater, at ambient temperatures. Thus, the underyearling smolt hit seawater at 13 °C and were reared at 10-13 °C during the early seawater phase, whereas the yearling smolt hit seawater at 7 °C and were reared at 7-10 °C during the early seawater phase. All groups displayed increased longitudinal growth (up to 9% increase in relative length) of the caudal vertebrae during parr-smolt transformation. However, at transfer to seawater, the underyearling smolt had significantly lower vertebral mineral content (0+ 44%, 1+ 47%, w 50%) and higher incidence of deformed vertebrae (0+ 1.5%, 1+ 0%, w 0%), and at twelve weeks after transfer to seawater significantly lower vertebral mineral content (0+ 36%, 1+ 41%, w 43%), yield-load (0+ 6492 g, 1+ 8797 g, w 9150 g) and stiffness (0+ 7578 g/mm, 1+ 15,161 g/mm, w 20,523 g/mm), and significantly higher incidence of deformed vertebrae (0+ 2.5%, 1+ 0.3%, w 0%). There was a significant correlation between the mineral content and mechanical properties of the vertebrae. The underyearling smolt had significantly elevated plasma concentrations of total Ca, and P and Ca2+ during the parr-smolt transformation and in the early seawater phase.The results show that underyearling smolt may have an increased risk of developing vertebral deformities. It is possible that this risk can be reduced by postponing the start of the short-day treatment. This will reduce the temperature during smoltification, the temperature and daylength during the early seawater phase, and increase the age at smoltification.  相似文献   

2.
An earlier study demonstrated that under‐yearling (0+) Atlantic salmon (Salmo salar L.) smolt had a lower vertebral mineral content and mechanical strength and higher prevalence of vertebral deformities than 1+ smolt during the early seawater (SW) phase. The present study aimed to examine if commercial extruded high‐energy diets need to be supplemented additional minerals for proper bone mineralization and prevention of bone deformities in fast growing 0 + smolts. We studied vertebral morphology with radiology, and bone mineral content and mechanical strength in 60 g 0+ smolt fed diets with a normal (NM) or elevated (HM) bone mineral (P and Ca) contents from SW transfer (week 0) until 10 times weight increase at week 17. Thereafter, both groups were fed a commercial diet until a mean slaughter weight of 4100 g after 57 week. There were no differences in body weight and length between the dietary groups during the study, while the condition factor differed significantly at the final sampling (NM 1.40; HM 1.29). The most common bone deformity observed was compressions in the tail region of the vertebral column. Lower incidences of vertebral deformities (percent individuals with one or more deformed vertebrae) was observed in the HM group in week 17 (HM 20%; NM 47%) and week 57 (HM 37%; NM 73%), also reflected by higher vertebral length/dorso‐ventral diameter ratio in weeks 17 (HM 0.99; MN 0.92) and 57 (HM 0.97; NM 0.88). The HM group had significantly higher vertebral mineral content (HM 550 g kg?1; NM 480 g kg?1) and mechanical strength (HM 9050 g mm?1; NM 4600 g mm?1) than the NM group after 8 week feeding. Plasma levels of Ca, P and D‐vitamin metabolites recorded in week 8 reflected changes in P homeostasis, but could not explain the preventive effect of the HM diet on development of bone deformities. The results suggest that elevated dietary mineral content during the early SW phase may reduce the prevalence of vertebral deformities in fast growing 0 + salmon smolts.  相似文献   

3.
To examine the age, growth and reproduction of silky sharks, Carcharhinus falciformis, in the waters off northeastern Taiwan, 469 specimens (213 females and 256 males) were collected from August 2000 to January 2002 at the Nanfanao fish market, northeastern Taiwan. The relationship between body weight (W) and total length (TL) for both sexes combined was expressed as: W = 2.92 × 10−6 TL3.15 (n = 469, p < 0.01). The relationship between TL and vertebral centrum radius (R) for both sexes combined data was estimated as: TL = 25.979 + 18.197R (n = 250, p < 0.01). Growth bands (including translucent and opaque zones) in precaudal vertebrae formed once a year between December and January and were counted up to 11 and 14 for females and males, respectively. The von Bertalanffy growth function (VBGF) was used to model the observed length at age data. The sexes combined VBGF predicted an asymptotic length (L) = 332.0 cm TL, growth coefficient (k) = 0.0838 year−1, age at zero length (t0) = −2.761 year (n = 250, p < 0.01). Size at 50% maturity for males was estimated to be 212.5 cm based on the logistic curve, which corresponded to 9.3 years. Females matured at 210–220 cm, which correspond to 9.2–10.2 years. The length at birth was estimated to be 63.5–75.5 cm TL. The number of embryos per litter was 8–10 and sex ratio of embryos was 1:1.  相似文献   

4.
Intensive salmon smolt production normally includes reduced water flow and hyperoxygenation (added oxygen) of remaining water. There is little information on how different water quality parameters influence the fish health and the susceptibility to infectious diseases. The current experiment was carried out to evaluate if the combination of hyperoxygenation and reduced water flow (hyperoxic) can act as a chronic stressor to salmon in freshwater (FW) in such a way that it increases the susceptibility to IPN virus (IPNV) following seawater transfer. In FW, after 22 days of hyperoxic exposure plasma ion, TBARS and cortisol were measured. The cortisol levels were significantly (p = 0.011) higher in the hyperoxic group compared to controls maintained under normal oxygen saturation and water flow (normoxic), indicating chronic stress. Hyperoxygenation in FW caused decreased plasma [Cl] compared to the normoxic group (p = 0.037), while [K+] tended to be higher in the hyperoxic group (p = 0.088). No significant differences were observed in plasma [Na+], total osmolality, TBARS or hematocrit, but there was a tendency towards a lower hct in the hyperoxic compared to the normoxic group. In SW the mortality was higher in the hyperoxic group challenged with IPNV (34%) compared to the normoxic group challenged with IPNV (20%) (p = 0.02), and no mortality was observed in the PBS injected fish. The challenged fish showed an overall increase in plasma cortisol day 8, 10, 12 and 14 post-challenge (p = 0.015, p = 0.000, p = 0.046 and p = 0.022 respectively). After SW transfer and challenge, plasma [K+] was elevated in both challenged groups, but no consistent trends were found for plasma [Cl], [Na+] or total osmolality during the SW phase. There were no significant differences in the gene expression level of IFN 1, Mx and IL 1β prior to challenge, suggesting that the basic expression level of these genes were not affected by hyperoxygenation. IPNV was detected in kidney and pylorus, by immunohistochemistry, cell culture, and RT-PCR in head kidney. This experiment indicates that chronic stress induced by a combination of low water flow and hyperoxygenation increases the susceptibility to IPNV challenge.  相似文献   

5.
All seahorse species worldwide have been placed under CITES Appendix II since 2004, because they have been over-exploited for traditional Chinese medicine and aquarium trades. Aquaculture has been recognized as a long-term solution for sustaining the seahorse trade while minimizing wild collection. In this study, we evaluated the breeding and juvenile culture of an important aquarium seahorse species, the lined seahorse Hippocampus erectus, Perry 1810. Pairing, mating and copulation behavior were observed. Gestation time and brood size were 17.33 ± 2.94 days and 272.33 ± 66.45 individuals/brood, respectively. Growth rates differed among juveniles from different broods. Effects of temperature on the growth rates and survivorship of the juveniles during the first two weeks were compared. The highest growth rate and survivorship of the juveniles occurred at 28–29 °C among the temperatures tested (24–33 °C). Growth rate and survivorship of the juveniles during the first 9 weeks at 28 °C were investigated. The final standard length and survivorship of the juveniles were 6.32 ± 0.52 cm and 71.11 ± 10.18%, respectively, and the relationship between the wet weight and the standard length of the juvenile seahorses can be expressed as: W = 0.0034 L2.5535 (r2 = 0.9903, n = 12, P < 0.01). These findings suggest that H. erectus is a good candidate for commercial aquaculture.  相似文献   

6.
This study investigated the development of skeletal deformities in individually tagged Atlantic salmon (n = 805) from the parr stage (Sept 2001, 70 g mean ± 34 g S.D.) until 10 month after transfer to seawater (Feb 2003, 3040 g mean ± 1097 g S.D.). A subgroup of the total population (n = 129) was radiographed as parr (Feb 2002) and again 10 months after transfer to seawater (Feb 2003). Eight percent of the males matured sexually during their first autumn in sea (jack), and were excluded from further analysis. Based on an external examination of each fish (n = 773), 1.8% (n = 14) developed skeletal deformities (0.1% operculum deformities (n = 1), 0.4% jaw deformities (n = 3), 1.3% vertebral deformities (n = 10)) during the experiment. Based on evaluation of radiographs (n = 129), the prevalence of vertebral deformities was 7.0% (n = 9) at the parr stage, and 12.4% (n = 16) 10 months after transfer to seawater. From radiographs, longitudinally compressed vertebral bodies without intervertebral spaces were classified as ankylosis and compression, longitudinally compressed vertebral bodies with intervertebral spaces were classified as compressions, and dislocated vertebral bodies with a normal morphology and without intervertebral spaces were classified as ankylosis and dislocation. Of the fish that developed deformities during the experiment, 8 had ankylosis and compressions, 7 had compressions and 1 had ankylosis and dislocation. Ankylosis and compression developed in the region between vertebrae number 1 and 16, whereas compressions developed in the region between vertebrae number 13 and 49. Most of the individuals with compression 10 months after transfer to seawater had normal vertebral columns as parr, whereas all individuals with compression and ankylosis 10 months after transfer to seawater had deformed vertebral columns as parr.  相似文献   

7.
The culture of the mulloway (Argyrosomus japonicus), like many other Sciaenidae fishes, is rapidly growing. However there is no information on their metabolic physiology. In this study, the effects of various hypoxia levels on the swimming performance and metabolic scope of juvenile mulloway (0.34 ± 0.01 kg, mean ± SE, n = 30) was investigated (water temperature = 22 °C). In normoxic conditions (dissolved oxygen = 6.85 mg l− 1), mulloway oxygen consumption rate (M·o2) increased exponentially with swimming speed to a maximum velocity (Ucrit) of 1.7 ± < 0.1 body lengths s− 1 (BL s− 1) (n = 6). Mulloway standard metabolic rate (SMR) was typical for non-tuna fishes (73 ± 8 mg kg− 1 h− 1) and they had a moderate scope for aerobic metabolism (5 times the SMR). Mulloway minimum gross cost of transport (GCOTmin, 0.14 ± 0.01 mg kg− 1 m− 1) and optimum swimming velocity (Uopt, 1.3 ± 0.2 BL s− 1) were comparable to many other body and caudal fin swimming fish species. Energy expenditure was minimum when swimming between 0.3 and 0.5 BL s− 1. The critical dissolved oxygen level was 1.80 mg l− 1 for mulloway swimming at 0.9 BL s− 1. This reveals that mulloway are well adapted to hypoxia, which is probably adaptive from their natural early life history within estuaries. In all levels of hypoxia (75% saturation = 5.23, 50% = 3.64, and 25% = 1 .86 mg l− 1), M·o2 increased linearly with swimming speed and active metabolic rate (AMR) was reduced (218 ± 17, 202 ± 14 and 175 ± 10 mg kg− 1 h− 1 for 75%, 50% and 25% saturation respectively). However, Ucrit was only reduced at 50% and 25% saturation (1.4 ± < 0.1 and 1.4 ± < 0.1 BL s− 1 respectively). This demonstrates that although the metabolic capacity of mulloway is reduced in mild hypoxia (75% saturation) they are able to compensate to maintain swimming performance. GCOTmin (0.09 ± 0.01 mg kg− 1 m− 1) and Uopt (0.8 ± 0.1 BL s− 1) were significantly reduced at 25% dissolved oxygen saturation. As mulloway metabolic scope was significantly reduced at all hypoxia levels, it suggests that even mild hypoxia may reduce growth productivity.  相似文献   

8.
Risk factors for skin lesions observed on the slaughter line in Atlantic salmon, Salmo salar L., were examined in a cohort study in Hordaland County, Norway. The salmon were followed from seawater introduction, starting in April 1994, until the last group was slaughtered in February 1996. The findings indicated that the egg and smolt stages were important factors in the prevalence of skin lesions at slaughter. There appeared to be differences in the risk for skin lesions between salmon from different egg suppliers to the smolt farms. An increase of 3 months between vaccination and seawater introduction increased the relative risk (RR) for skin lesions (RR = 1.9). Salmon vaccinated with a vaccine with adjuvants derived from plant oil appeared to be at higher risk for skin lesions (RR = 4.6) than those vaccinated with a vaccine with adjuvants derived from mineral oil (RR = 1.4). The larger the salmon (from 3.1 to 5.7 kg), the lower the risk for skin lesions (RR = 0.4).  相似文献   

9.
Triplicate groups of triploid and diploid Atlantic salmon were fed diets with a low (LP, total P: 7.1 g kg?1), medium (MP, total P: 9.4 g kg?1) or high (HP, total P: 16.3 g kg?1) phosphorous (P) level from first feeding (0.18 g) to transfer to sea water (~50 g, duration: 203 days) and subsequently fed a commercial diet in sea water for 426 days (~3 kg). This study examined the short‐ and long‐term effects of dietary P on freshwater performance (mortality, growth), vertebral deformities (radiology), bone cell activity (ALP and TRACP enzyme activity in vertebrae and scales, and fgf23, bgp and igf‐I relative gene expression in vertebrae), bone mineralization (ash content) and some parameters related to fish condition (heart and liver size). Irrespective of ploidy, at seawater transfer, fish fed the MP diet had significantly highest length and weight and those fed the LP diet significantly lowest length and weight, while those fed the HP diet had intermediate lengths and weights. Increased dietary phosphorus reduced deformities in both ploidies at seawater transfer; however, triploids fed the LP and MP diets had more deformities than diploids fed the respective diets, while there was no ploidy effect observed for fish fed the HP diet. The vertebral bone ash content at seawater transfer was significantly higher in diploids than in triploids when fed the MP diet only. Alkaline phosphatase (ALP) and tartrate‐resistant acid phosphatase (TRACP) enzyme activities and relative gene expression of bone hormones involved in metabolism of plasma phosphate (fgf23) and bone growth (bgp) were not affected by ploidy at seawater transfer, but by dietary P level; LP increased ALP activity and reduced TRACP activity and fgf23 and bgp expression levels in vertebral bone. In scales, LP increased both ALP and TRACP activity. At the termination of the seawater period, the group‐wise pattern in occurrence of vertebral deformities was the same as at seawater transfer. The present results on mortality, growth, bone mineralization and development of skeletal deformities all demonstrate that triploids have a higher P requirement than diploids in fresh water. This study shows that an optimalization of P nutrition for triploid Atlantic salmon can improve health and welfare and reduce down‐grading of triploid salmon.  相似文献   

10.
The potential of the red alga Kappaphycus alvarezii to remove nutrients was tested to treat effluents of Trachinotus carolinus fish cultivation, and the production of carrageenan in this condition was analyzed. Experiments were conducted in four tanks of 8000 L with approximately 1200 fishes of 30 g each integrated with three tanks of 100 L with 700 g of K. alvarezii, as initial biomass per tank. Seawater was re-circulated between tanks with seaweed and with fish. As a control, three tanks with seawater circulating in an open system were utilized. Seawater samples were collected daily for 10 days and concentrations of nitrate, nitrite, ammonium and phosphate were determined in the inflow and outflow water of the tanks. Significant differences between both collecting points were considered as nutrient removal by the seaweed. Growth rates and carrageenan yields were also analyzed in seaweed cultivated in seawater and in effluents. Growth rates of seaweed cultivated in tanks were lower than those obtained in open sea and in laboratory cultivation. Effluents had concentrations of nitrate and nitrite ca. 100 times higher than in the control. Maximum values of nutrient removal on effluents were: nitrate = 18.2%; nitrite = 50.8%; ammonium = 70.5% and phosphate = 26.8%. All plants survived throughout the experimental period, but some developed “ice–ice”, a disease associated with physiological stress. After the experimental period, some plants selected and cultivated in open sea presented higher growth rates in 40 days, indicating nutrient storage. No significant differences between carrageenan yields of K. alvarezii cultivated in seawater and in the effluents were observed. Our results show that K. alvarezii can be utilized as a biofilter for fish cultivation effluents, reducing the eutrophication process and can also be processed for carrageenan production, which provides an additional benefit to the fisheries.  相似文献   

11.
The nutritional response of Litopenaeus schmitti larvae to substitution of Chaetoceros muelleri by Spirulina platensis meal (SPM) was evaluated. The substitution levels (S) were 0%, 25%, 50%, 75% and 100%, dry weight basis. Final larval length (FL) ranged from 1.98 to 3.16 mm for the different substitution levels. There was a significant relationship between S and FL, described by the following quadratic equation: FL = 2.853 + 0.01598S − 0.000233S2. The substitution level (S) yielding maximum FL was 34.2%. Development index (DI) values ranged from 2.84 to 3.93 and were dependent on substitution level. The corresponding equation was DI = 3.799 + 0.00945S − 0.000189S2 (P < 0.01). Maximum DI was obtained at 25.0% substitution. Survival was high (82–87%) and no significant differences were found between treatments. Protein digestibility of either microalgae was high, with 92% for SPM and 94% for C. muelleri, with no significant differences between them. The results in this study indicate that an adequate balance of nutrients in relation to the requirements of the species is critical. To simultaneously improve FL and DI, a 30% substitution of C. muelleri by SPM is suggested. This is equivalent to feeding 0.15 mg larvae− 1 day− 1 dry weight basis of a 70% C. muelleri/30% SPM diet, representing 0.078 mg protein larvae− 1 day− 1, 0.026 mg lipids larvae− 1 day− 1 and 2.732 J larvae− 1 day− 1.  相似文献   

12.
Cultured adults of ezo abalone, Haliotis discus hannai (shell length, 89.3 ± 6.4 mm and flesh dry weight, 13.0 ± 1.6 g; n = 12) were exposed to different temperatures (10 and 25 °C) to determine whether respiration effects were induced by artificial closure of the second and third tremata (respiratory pores). A respirometer was used to determine the oxygen consumption rates (OCRs) as measures of metabolic activity. The closed tremata were the second and third of the four open tremata anterior to the head of the abalone. The OCRs of starved abalone were measured under constant conditions (CC: constant dark and constant temperature) during a 240-h period, consisting of 120 h before and 120 h after the closure of tremata. The endogenous rhythm of the OCRs in cultured ezo abalone exhibited a dominant circadian rhythm (unimodal rhythm) in the latter half of the experimental period and occasionally showed a weaker but similar circatidal rhythm (bimodal rhythm) in the first half of the experimental period regardless of temperature. The results from the present study indicate that the rhythmicity of the OCRs in starved abalone is not affected by closure of the second and third tremata. This study offers essential physiological information for utilizing tremata in developing a tagging technique in abalone.  相似文献   

13.
Growth of Atlantic salmon Salmo salar L. smolt is poor in the period immediately following transfer to seawater, and the fish may use endogenous reserves to meet metabolic requirements at this time. Fat dynamics of smolt that differed in ‘fat status’ (10–12 versus 5–7% body fat) at the time of transfer to seawater were examined in fish fed either high‐(31% fat, 41% protein) or low‐fat (18% fat, 49% protein) feeds during seawater rearing. Samples were taken at intervals over 14 weeks to monitor changes in fat of the fillet, viscera and remaining carcass (head, skeleton, skin and ‘belly flap’). Growth rates (SGRs) were low during the first 3–6 weeks, but improved with time and SGRs for the 14 weeks were approximately 1% d?1. Fat status of the smolt appeared to influence growth in seawater, because the fish that had been held on the high‐fat feed in fresh water grew less well than those given low‐fat feed at that time. At transfer to seawater, the fillet housed 20–25% of the body fat, and the carcass over 50%. After 14 weeks, the fillet held 32–35% of the body fat, and viscera 19–26%, but the carcass, with 40–49%, was still the major fat depot irrespective of dietary treatment. Thus, the carcass is a major fat storage depot in Atlantic salmon smolt, but the fillet appears to become more important as the fish increase in size.  相似文献   

14.
A growth experiment was conducted to determine the optimal dietary protein requirement for juvenile ivory shell reared in indoor aerated aquaria. Six isoenergetic experimental diets using fish meal, casein and gelatin as protein sources were formulated to contain graded levels of protein (27, 33, 38, 43, 49 and 54% of dry diet, respectively). Triplicate groups of 40 shells (average weight 93.50 ± 1.70 mg) were stocked in 120-l tanks and fed to apparent satiation twice daily for 8 weeks. The results showed that the growth performance and feed utilization were significantly affected by dietary protein level (P < 0.05). Maximum weight gain, mean protein gain, specific growth rate and soft body to shell ratio occurred at 43% dietary protein level (P < 0.05). There were significant differences in protein, lipid, moisture and ash content in soft body; except that ash content in shell was not significantly affected by dietary protein level. Pepsin activity in soft body tissue significantly increased with dietary protein level up to 43%, and trypsin-like enzyme activity increased with dietary protein level up to 49%. However, lipase activity in soft body decreased with increasing dietary protein level. However, no significant differences (P < 0.05) in survival, calcium, phosphorus concentration in the shell and soft body were found among dietary treatments. Quadratic regression analysis of weight gain against dietary protein level indicated that the optimal dietary protein requirement for maximum growth and feed utilization of juvenile ivory shell is 45% of dry diet.  相似文献   

15.
In coral aquaculture, sexual reproduction increasingly plays an important role for serving trade and reef restoration purposes. However, until coral juveniles reach a semi-stable size which makes them less vulnerable against algal growth and sedimentation, high mortality rates may occur in the first several weeks to months after settlement. In the present study, the influence of several food sources on the growth and survival of newly settled primary polyps was studied under laboratory conditions for 5 months. In order to estimate effects on specimens of both reproductive modes, experiments were carried out with the brooder, Favia fragum, and with the broadcast spawner, Acropora tenuis. Primary polyps kept in 2-liter aquaria were daily fed with freshly hatched Artemia salina, the micro algae Phaeodactylum tricornutum and a commercially available dry food (Nori Micro, Zoolife®), respectively, at various concentrations. Growth rates in both species were significantly higher in the Artemia treatment with maximum rates of 9.4 ± 4.9 mm2 (mean ± S.D.; d = 5 months) for F. fragum and 26.8 ± 10.3 mm2 (d = 5 months) for A. tenuis compared to all other treatments and the control (no additional food). Survival in F. fragum was overall higher than 60% in all treatments with maximum rates of 85.0 ± 12.6% at the highest Artemia concentration. Survival rates in A. tenuis ranged from 28.9 ± 4.7% (lowest Nori concentration) to 86.2 ± 5.9% (medium Artemia concentration). The present study shows that Artemia nauplii may greatly enhance the growth and partly enhance the survival of early sexual recruits which may significantly help to more rapidly overcome the early and most fragile post-settlement stages. As a consequence, the residence time for sexual coral recruits in cost- and labour-intensive hatcheries may be greatly reduced.  相似文献   

16.
Morphologically differentiated sex chromosomes are found in only few salmonid species. Some populations of rainbow trout, Oncorhynchus mykiss, exhibit chromosomal polymorphism related to sex. We found sex-related chromosomal polymorphism in fish from the synthetic Rutki strain, Poland, in approximately 85% (n = 22) of examined males (XY-like) whereas the remaining males (n = 4) possessed chromosomes similar to these observed in females (XX-like). To investigate whether males possessing XX-like chromosomes were genotypic males or genotypic females with altered phenotypic sex, androgenetic progeny of four males (representing both XY-like and XX-like forms, n = 2 + 2) was examined. Androgenetic progeny (F1) of all four fathers consisted of both phenotypic females and males. F1 male progeny of two fathers showed XX-like chromosomes whereas F1 male progeny of the other two fathers possessed YY-like (supermale) chromosomes. F1 were reared further until they were sexually mature. Two males from each of four F1 families were used to produce F2 androgenetic and control F2 generation. All F2 individuals, androgenetics and control, were phenotypic males at sexual maturation. The results indicate that males possessing XX-like chromosomes are genetic males and they are not sex-reversed females. Thus, the Y chromosome can exist in different morphological forms in farmed rainbow trout. The YS chromosome (shorter form, unlike the X chromosome) has a shorter or absent p-arm and lacks the pericentromeric cluster of AT-rich chromatin and the 5S rDNA sequences that are found in the YL chromosome (longer form, like the X chromosome).  相似文献   

17.
The blue swimmer crab, Portunus pelagicus, is an emerging aquaculture species in the Indo-Pacific. Two experiments were performed to determine the effects of salinity on survival, growth and haemolymph osmolality of early juvenile P. pelagicus crabs. The salinities tested for the first experiment were 10, 15, 25 and 40 ppt, and for the second experiment 5, 20, 30, 35 and 45 ppt. Each salinity experiment was triplicated, with each replicate consisting of 10 stage 4 juveniles. Each experiment lasted 45 days. Mortalities and incidence of “molt death syndrome” were recorded daily, while the intermolt period, carapace length, carapace width and wet weight were measured at each molt. At the end of the experiments the haemolymph osmolality and dry weights were measured.

Results demonstrate that salinity significantly affects both the survival and growth of early P. pelagicus juveniles. Mortality was significantly higher (p < 0.01) for juveniles cultured at salinities ≤ 15 ppt and at 45 ppt. At a salinity of 5 ppt a complete mortality occurred on day 20. In all salinity treatments, the majority of mortalities were due to “molt death syndrome”. In experiment 1, immediate effects of salinity on growth and development were seen at 10 ppt as the intermolt period was significantly longer (p < 0.01) and the mean carapace size increase was significantly less (p < 0.01) at the first molt compared to the other treatments. Meanwhile, the specific growth rates (carapace length, width and wet weight) were significantly lower (p < 0.05) at high salinities (≥ 40 ppt) due to longer intermolt periods and significantly lower (p < 0.05) carapace size or wet weight increases.

The haemolymph osmolality exhibited a positive linear relationship with the culture medium with an isosmotic point of 1106 mOsm/kg, equal to a salinity of approximately 38 ppt. Based on the osmolality graph, high metabolic cost for osmoregulation due to increased hyper- and hypo-osmotic stress appeared to cause lower survival and specific growth rates of the crabs. The results demonstrate that a salinity range of 20–35 ppt is suitable for the culture of early juvenile P. pelagicus.  相似文献   


18.
Effects of exogenous (water temperature) and endogenous (lipid droplet adherence) factors were experimentally tested on early survival of southern hake Merluccius australis reared under controlled conditions. Experiments to determine the effect of temperature (10, 12 and 14 °C) on larval growth rates and yolk-sac absorption rates of unfed southern hake were carried out under laboratory conditions. There was no significant differences in growth rates at the temperature range tested (ANCOVA, F = 0.164, p > 0.25), but yolk-sac absorption rates and mortality increased with temperature (ANCOVA, F = 53.84, p < 0.001). A high percentage (between 31 and 81%) of hake eggs showed a lipid droplet not adhered (i.e., freely moving in the yolk, and not located in the posteriormost portion of the yolk-sac). In a second experiment, fed southern hake larvae with the lipid droplet not adhered during embryonic development did not survive after yolk-sac absorption. This study provides the first data on the influence of the lipid droplet absorption on larval survival of cultured hake, and can be used as an early indication of the quality of the batch.  相似文献   

19.
The activities of main digestive enzyme (proteases, amylase and lipase) and animal husbandry (mainly growth and survival) were studied in common pandora Pagellus erythrinus larvae until 30 days after hatching (DAH). Three different illumination levels (10, 30 and 100 lx) were compared in triplicate and green water technique was carried out. At the end of the experiment, illumination did not affect neither survival nor growth except 10 lx treatment. Similarly, specific growth rate (SGR) was different in 10 lx treatment (p < 0.05), although no differences were found in group 30 and 100 lx treatments (p > 0.05). In all groups, trypsin and chymotrypsin specific activities were firstly detected on day 3 related with mouth opening and slightly increased until 20 and 25 DAH respectively, and after this date specific activities of those decreased. Although, there was a significant difference between 10 lx treatment and other experimental groups (p < 0.05), no differences were found in other treatments (p > 0.05). Pepsin was firstly detected on day 25 related with stomach formation and sharp increase was observed until 30 DAH and then slight decrease was measured from this date and no differences were found between all groups. Amylase was firstly determined on day 2 and increased to day 5. After this date, slight decreases were measured in all groups and continued until end of experiments. The highest specific activity of amylase was determined in 30 lx treatment and no significant differences were found between groups (p > 0.05). Lipase was firstly detected on day 4 and increased to day 10. Then, activity of lipase decreased until day 15 and increased again until 25 DAH. Slight decreases were found in all groups until day 30 and continued to end of experiments. No significant differences were detected among groups (p > 0.05).

Finally, the significant improvement in survival, larval development and specific enzyme activities of larvae were determined in 30 lx treated group. It is thought that this phenomenon is related to optimal keeping conditions provided by the medium illumination level for Pagellus erythrinus larvae.  相似文献   


20.
A growth experiment was conducted to investigate the effects of replacement of fish meal (FM) by meat and bone meal (MBM) in diets on the growth and body composition of large yellow croaker (Pseudosciaena crocea). Six isonitrogenous (43% crude protein) and isoenergetic (20 kJ g− 1) diets replacing 0, 15, 30, 45, 60 and 75% FM protein by MBM protein were formulated. Each diet was randomly allocated to triplicate groups of fish in sea floating cages (1.0 × 1.0 × 1.5 m), and each cage was stocked with 180 fish (initial average weight of 1.88 ± 0.02 g). Fish were fed twice daily (05:00 and 17:30) to apparent satiation for 8 weeks. The water temperature ranged from 26.5 to 32.5 °C, salinity from 32 to 36‰, and dissolved oxygen content was approximately 7 mg l− 1 during the experimental period. Survival decreased with increasing dietary MBM and the survival in the fish fed the diet with 75% protein from MBM was significantly lower than other groups (P < 0.05). There were no significant differences in specific growth rate (SGR) among the fish fed the diets with 0 (the control group), 15, 30 and 45% protein from MBM. However, SGR in the fish fed the diets with 60 and 75% protein from MBM were significantly lower than other groups (P < 0.05). No significant differences in feeding rate were observed among dietary treatments. The digestibility experiment showed that the apparent digestibility coefficients (ADC) of dry matter, protein, lipid and energy of MBM were significantly lower compared with those of FM (P < 0.05). Essential amino acid index was found to be correlated positively with SGR in the present study, suggesting that essential amino acid balance was important. Body composition analysis showed that the carcass protein and essential amino acids were not significantly affected by dietary MBM. The lipid and n-3 highly unsaturated fatty acid (n-3 HUFA) in fish muscle, however, significantly decreased with increasing dietary MBM. These results showed that 45% of FM protein could be replaced by MBM protein in diets of large yellow croaker without significantly reducing growth. It was suggested that the reduced growth with higher MBM was due to lower digestibility and imbalance of essential amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号