首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
2Ai-2染色体在小麦部分同源染色体代换背景中的遗传   总被引:2,自引:2,他引:0  
用中间偃麦草2Ai-2染色体特异的EST-PCR标记检测5个小麦-中间偃麦草二体异代换系(包括端体代换系)与普通小麦中国春(CS)杂交后代群体,研究外源染色体2Ai-2通过杂种向后代的传递率及其结构变异,并用基因组原位杂交进行验证。结果表明,第二部分同源群不同染色体代换背景对外源染色体传递的影响不同,在2B代换系的杂种中外源染色体或片段显示优先传递,而在2D代换系的杂种中其传递力则较低,2B代换背景更有利于2Ai-2染色体或片段的传递;外源染色体在杂种后代传递过程中会发生变异,在多数组合中,变异出现在着丝粒处;与短臂相比,外源染色体长臂更容易在世代中丢失;端体代换系中的外源染色体端体在杂种后代传递过程中容易丢失,且也会发生结构变异。基因组原位杂交结果证明了分子标记跟踪外源染色体的可靠性。  相似文献   

2.
为了明确小麦与八倍体小偃麦远缘杂交培育的小麦新种质CH7015中抗白粉病基因的来源及其在染色体上的具体位置。将CH7015与感病品种台长29杂交,对其F_1、BC_1、F_2群体接种白粉病,进行抗病性鉴定和抗感杂交后代的遗传分析,选取分布于小麦21对染色体上的825对SSR引物,采用群体分离分析法(BSA)对台长29×CH7015的F_2群体进行标记筛选。结果显示,CH7015抗性受1对显性核基因控制,其抗白粉病基因PmCH7015可能来源于中间偃麦草。通过抗感基因池和群体筛选,获得5个连锁标记,分别为:Xwmc657、Xgpw2328、Xwmc68、Xgpw4079和Xgpw7272。其中,Xwmc68和Xgpw4079位于PmCH7015两侧,遗传距离分别为8.2,1.4 cM。中国春缺体-四体和双端体的验证结果将抗病基因定位于小麦4B染色体的短臂上(4BS)。综上所述,由于小麦4BS染色体上尚无有关抗白粉病基因的报道,因此,推测PmCH7015是一个新发现的抗白粉病基因位点,其抗性可能来源于中间偃麦草。  相似文献   

3.
为了探索中间偃麦草SGT1基因在小麦抗病反应中的应用潜力,采用RT-PCR和RACE方法克隆出中间偃麦草SGT1基因,命名为TiSGT1。该基因编码蛋白具有SGT1蛋白典型的功能域结构,与大麦SGT1序列高度同源。通过基因重组技术构建了TiSGT1的高效组成型表达载体,通过基因枪法将该载体转化到小麦品种扬麦12基因组中。对转基因植株PCR、Southern杂交与RT-PCR分析表明,TiSGT1基因可在T0、T1和T2代转基因小麦中遗传和表达。黄矮病、白粉病抗性鉴定结果表明,SGT1的超量表达可以提高小麦对黄矮病、白粉病的抗性,TiSGT1可以作为小麦广谱抗病性改良的潜在基因资源。  相似文献   

4.
中间偃麦草SGT1基因的克隆及其抗病功能的分析   总被引:3,自引:1,他引:2  
为了探索中间偃麦草SGT1基因在小麦抗病反应中的应用潜力,采用RT-PCR和RACE方法克隆出中间偃麦草SGT1基因,命名为TiSGT1。该基因编码蛋白具有SGT1蛋白典型的功能域结构,与大麦SGT1序列高度同源。通过基因重组技术构建了TiSGT1的高效组成型表达载体,通过基因枪法将该载体转化到小麦品种扬麦12基因组中。对转基因植株PCR、Southern杂交与RT-PCR分析表明,TiSGT1基因可在T0、T1和T2代转基因小麦中遗传和表达。黄矮病、白粉病抗性鉴定结果表明,SGT1的超量表达可以提高小麦对黄矮病、白粉病的抗性,TiSGT1可以作为小麦广谱抗病性改良的潜在基因资源。  相似文献   

5.
西农979中长穗偃麦草(Thinopyrum ponticum)的遗传成分分析   总被引:1,自引:0,他引:1  
西农979是我国黄淮麦区优质高产、早熟耐寒兼抗赤霉病的小麦新品种。十倍体长穗偃麦草(Thinopyrum ponticum)7E染色体携带有抗赤霉病和抗叶锈病等多种抗性基因。为明确西农979品种的遗传基础,以西农979及其主要供体亲本小偃6号、早优504、陕229、陕213和西农881为材料进行系谱分析,结果表明,西农979及其主要供体亲本陕229、陕213、西农881均为小偃6号的衍生系;小偃6号是十倍体长穗偃麦草的衍生系。在此基础上,利用十倍体长穗偃麦草7E染色体上106个特异分子标记进行分析,发现有6个标记在西农979和小偃6号中扩增出了十倍体长穗偃麦草的特异片段,西农979和小偃6号均携带有十倍体长穗偃麦草7E染色体短臂上分子标记Xwmc653-Xwmc809之间的75.10~77.46cM区段,标记Xcfd31-Xgwm350之间的86.16~87.32cM区段,以及7E染色体长臂标记Xmag1932-Xdauk144之间的147.71~149.51cM区段。结果表明,西农979携带的十倍体长穗偃麦草7E染色体上的遗传物质源自小偃6号,这为进一步研究和利用西农979提供了理论参考。  相似文献   

6.
小麦品种中梁22抗条锈病基因的遗传分析和分子作图   总被引:8,自引:0,他引:8  
对中梁22/铭贤169杂交F2群体苗期抗条锈病鉴定及中国春单体系抗病基因的染色体定位发现, 中梁22携带1个显性(暂命名YrZhong22)和1个隐性抗病基因, 前者位于5B染色体。由中梁22´铭贤169的F2群体构建抗病、感病池, 用SSR标记结合集群分离分析法(BSA), 建立了与YrZhong22连锁的4个微卫星标记Xwmc289、Xwmc810、Xgdm116和Xbarc232, 并将YrZhong22定位于小麦5BL染色体。YrZhong22与相邻微卫星位点Xwmc810和Xgdm116的遗传距离分别是2.7 cM和4.4 cM。系谱分析及分子标记分析表明, YrZhong22可能是一个来自中间偃麦草的新抗条锈病基因。  相似文献   

7.
本研究以普通小麦品种‘中国春’染色体组DNA为封阻,用生物素(biotin-16-d UTP)标记的大麦染色体组DNA作为探针,通过基因组原位杂交法解析了来自杂交组合CS×(CS+Betzes 2H)杂种后代X99-13的遗传组成,此材料含有42条染色体,其中1条大麦染色体,2条小麦-大麦易位染色体和39条小麦染色体,鉴定为小麦-大麦代换易位系。以小麦第二部分同源群短臂探针psr131进行RFLP分析,结果表明此代换易位系是涉及小麦染色体2B和大麦染色体2H的代换易位。为进一步选育小麦-大麦2H纯合易位系及利用其上的α-淀粉酶抑制蛋白基因打下了坚实的物质基础。  相似文献   

8.
利用已知植物抗病基因编码氨基酸保守区域NBS-LRR(核苷酸结合位点-富亮氨酸区域)设计了42个简并引物组合,运用抗病基因类似物多态性(resistance gene analog polymorphism,RGAP)分子标记技术,对中国春、中国春-长穗偃麦草双二倍体及其附加系和代换系基因组DNA进行PCR扩增。结果表明,共有38对引物组合获得扩增产物,其中35对在普通小麦中国春、中国春-长穗偃麦草双二倍体中能扩增出多态性,平均每个引物组合扩增出38.5个片段。在普通小麦背景下,共获得275条长穗偃麦草E基因组多态性谱带,占扩增总谱带数的17.44%,揭示出在普通小麦背景下E基因组和普通小麦A、B、D基因组间的高丰度遗传变异。另外,利用RGAP分子标记技术,构建了一套完整的长穗偃麦草1E~7E染色体的特异RGAP标记。为小麦背景中长穗偃麦草外源遗传物质的快速检测提供了新途径。  相似文献   

9.
管启良 《作物学报》1980,6(3):129-138
根据多年来对(普通小麦×长穗偃麦草)杂种 F1—F4及与小麦回交后的杂种 B1F1选株的细胞学观察和分析,讨论了八倍体小偃麦的形成途径。认为小麦和偃麦草杂交后,需要与小麦回交1—2次,在于使染色体组重新组合,形成 AABBDDEE 和 AABBDDFF 两种染色体组型的八倍体。类型基本稳定的八  相似文献   

10.
抗BYDV小麦——中间偃麦草易位系α-淀粉酶2同工酶的研究   总被引:12,自引:2,他引:10  
陈孝  钱幼婷 《作物学报》1998,24(1):16-20
对抗大麦黄矮病毒病的普通小麦--中间偃麦草易位系F94631和F94885-2进行抗性和α-淀粉酶2同工酶电泳图谱的研究,证明抗性基因和控制α-淀粉酶2形成的结构基因α-Amy-Ag2(α-Amy-X2)均位于中间偃麦草第76组染色体长臂上。这两个基因都呈显著遗传性。α-Amy-X2控制形成二条α-淀粉酶2特异酶带,可认为是7Ai-1长臂的生化标记,经BYDV抗性和α-淀粉酶2遗传分析,推断这两个  相似文献   

11.
Z. S. Lin    D. H. Huang    L. P. Du    X. G. Ye    Z. Y. Xin 《Plant Breeding》2006,125(2):114-119
Among the regenerated plants derived from immature hybrid embryos of wheat–Thinopyrum intermedium disomic addition line Z6 × common wheat variety ‘Zhong8601’, a plant with a telocentric chromosome and barley yellow dwarf virus (BYDV) resistance was obtained. The telocentric chromosome paired with an entire Thinopyrum chromosome to form a heteromorphic bivalent at meiotic metaphase I. Genomic in situ hybridization showed that the telosome originated from Th. intermedium. Two ditelosomic additions and one disomic substitution were identified among the offspring of the plant. Two random amplified polymorphic DNA molecular markers were identified among 150 random primers used to detect the different arms of the alien chromosome. These might be useful for developing translocation lines with BYDV resistance.  相似文献   

12.
Chromosome compositions of seven lines, derived from hybrids between a wheat cultivar and the wheat-Thinopyrum intermedium addition line Z6, with barley yellow dwarf virus (BYDV) resistance, were determined by genomic in situ hybridization, cytogenetic and SSR assays. The results showed that line N522 was a disomic addition line, lines N420 and N439 were 2Ai-2(2B) chromosome substitution lines, lines N431 and N452 were 2Ai-2(2D) chromosome substitution lines, line N523 was a 2Ai-2S(2D) ditelosomic substitution line, and line N530 was a double ditelosomic line with the mitotic chromosome number of 2n = 40 + 4t. One pair of telosomes in line N530 lacked several proximal SSR markers of chromosome 2AS, but possessed certain terminal markers, which were consistent with an acrocentric structure, and the other pair of chromosome arms were presumably 2Ai-2S telosomes with BYDV-resistance. These wheat-Th. intermedium lines provide useful genetic resources for developing alien chromosome translocation lines.  相似文献   

13.
用小麦族7个部分同源群的40个RFLP探针对小麦——纤毛鹅观草二体附加系进行分析,在证实了原有细胞学鉴定结果的基础上,又进一步提供了纤毛鹅观草染色体部分同源群的分子证据。即96K025,96K026中添加的一对纤毛鹅观草染色体B属于第2部分同源群;96K012, 96K013中添加的一对染色体E属于第5部分同源群。对以上株系的衍生株系  相似文献   

14.
Chinese cultivar Jingzhouheimai of Secale cereale L. confers resistance to several important wheat diseases, making it a useful resource for wheat improvement. Octoploid amphiploid (2n = 8x = 56; AABBDDRR) was synthesized by hybridization of Jingzhouheimai with hexaploid wheat landrace Huixianhong and doubling of the F1 chromosome number. This amphiploid was backcrossed to the wheat parent to produce wheat-rye chromosome addition lines. The existing six disomic addition lines (all except 6R) were screened with 16 rye-specific DNA markers and three putative markers for 6R were identified. These markers were used in selection of chromosome 6R addition lines, confirmed by the genomic in situ hybridization (GISH). In this manner, seven monosomic 6R and five disomic addition were selected, as well as one mono-telosomic 6RS addition, one mono-telosomic and one ditelosomic 6RL additions. In turn these 6R addition lines were used to develop additional 15 6R-specific markers of which six were allocated to the arm 6RS and nine to 6RL. Screening for the powdery mildew resistance identified chromosome arm 6RL as the carrier of the resistance locus. Therefore, DNA markers identified as specific to the 6RL arm can be used to monitor the introgression of the resistance locus into wheat.  相似文献   

15.
为筛选普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记,根据已定位于普通小麦第一部分同源群的EST序列设计104对STS引物,对中国春、鹅观草、黑麦及簇毛麦进行多态性分析。在104对STS引物中,有53对在对照普通小麦中国春与鹅观草、黑麦及簇毛麦之间存在多态性。利用普通小麦-黑麦1R~7R二体异附加系筛选出5对黑麦1R染色体特异标记,分别是CINAU 19-500、CINAU20-950、CINAU21-1500、CINAU22-310和CINAU23-2000;利用普通小麦-簇毛麦1V~7V二体异附加系筛选出5对簇毛麦1V染色体特异标记,分别是CINAU23-1700、CINAU24-1050、CINAU25-1650、CINAU26-500和CINAU27-620;利用鹅观草二体异附加系DA1Rk#1、异代换系DS1Rk#1(1A)、端体系DA1Rk#1L、易位系T1Rk#1S·W、长臂缺失系Del1Rk#1L筛选出5对鹅观草1Rk#1特异标记,分别是CINAU27-960、CINAU28-1360、CINAU29-480、CINAU30-560和CINAU31-520。研究表明,可以利用普通小麦的EST序列设计PCR引物,转化成STS标记,筛选普通小麦近缘物种黑麦、簇毛麦及鹅观草等染色体特异的分子标记,快速检测和追踪导入普通小麦背景中的黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体或染色体片段,为深入研究普通小麦远缘杂种材料提供新的工具。  相似文献   

16.
Genomic in situ hybridization (GISH) and restriction fragment length polymorphism (RFLP) were used to identify the Leymus multicaulis (XXNN, 2n = 28) chromosomes in wheat-L. muliticaulis derivatives. Fifteen lines containing L. multicaulis alien chromosomes or chromosomal fragments were identified. All alien chromosomes or fragments in these 15 lines were from the X genome and none were from the N genome. Eleven L. multicaulis disomic addition lines and four translocation-addition lines were identified with chromosome rearrangements among homoeologous groups 2, 3, 6 and 7. Only homoeologous group 1 lacked rearrangements in addition or translocation chromosomes. The results revealed that translocation in non-homoeologous chromosomes widely exists in the Triticeae and therefore it is necessary to identify the alien chromosomes (segments) in a wheat background using these combined techniques. During the course of the work, probe PSR112, was found to detect X genome addition lines involving L. multicaulischromosomes. This may prove to be a valuable probe for the identification of alien chromosomes in a wheat background. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
为发掘和利用荆州黑麦所携抗梭条花叶病基因,综合利用分子细胞遗传学与分子标记技术结合多年抗性鉴定,从高感梭条花叶病小麦地方品种辉县红与荆州黑麦杂交后代(F7~F9)中选育出二体异附加系5个(分别添加1R、2R、R3、5R和R7)、5RS端二体异附加系1个和多重异附加代换系2个(染色体组成分别为20’’+2R(2D)’’+4R’’和19’’+1R(1B)’’+2R(2B)’’+4R’’)。鉴定表明,双二倍体荆辉1号高抗梭条花叶病,表明黑麦抗性基因可在小麦背景中稳定表达,2R、R7二体异附加系及2个含2R的多重异附加代换系均表现高抗,推测2R和R7上可能携带抗病基因。这些材料是研究荆州黑麦抗性基因遗传及小麦抗病育种的新种质。  相似文献   

18.
普通小麦中国春-百萨偃麦草异染色体系的分子标记分析   总被引:3,自引:0,他引:3  
综合利用HMW-Glu亚基、STS、SSR和RFLP等分子标记对普通小麦中国春、百萨偃麦草、中国春-百萨偃麦草双二倍体和11个中国春-百萨偃麦草异染色体系进行了分析。结果表明,14对SSR、10对STS引物和6个RFLP标记可以特异追踪百萨偃麦草染色质。C7-17及其后代株系C7-17-2等编码百萨偃麦草特异HMW-Glu亚基,添加染色体涉及与小麦第1部分同源群染色体部分同源的1J;1对STS、3对SSR和1个RFLP探针可以特异追踪二体附加系CH05中的百萨偃麦草染色体,并揭示最初根据分带核型确定的J3与小麦第2部分同源群染色体具有较高的部分同源性;2对STS、1个RFLP探针和1对SSR可以追踪CH09的外源染色体,并揭示最初确定的J7与小麦第3部分同源群染色体具有较高的部分同源性;1对STS和1个RFLP探针在CH03、CH04和CH34中具有相同的多态,3个附加系可能添加了相同染色体,最初确定的J1、J2和J?与小麦第7部分同源群染色体具有较高的部分同源性;3对SSR引物可以特异追踪CH12中附加的大片段易位染色体和CH11中的小片段易位染色体,推测易位可能涉及同一条百萨偃麦草染色体。发现13个标记(5个STS、3个RFLP探针和5个SSR)可以追踪未涉及到的4J和5J等染色体。  相似文献   

19.
Two disomic barley chromosome addition lines and five translocated chromosome addition lines of common wheat cultivar Shinchunaga were isolated. They were derived from a hybrid plant between Shinchunaga and cultivated barley Nyugoruden (New Golden) by backcrossing with wheat and self pollination. Barley chromosomes added to chromosome arms involved in the translocated chromosomes were identified by C-banding method and by crossing these lines with Chinese Spring/Betzes addition lines. Two disomic addition lines were identified to have chromosome 6 and 7 of barley, respectively. Two of the five translocated chromosome addition lines were clarified to have same chromosome constitution, 42 wheat chromosomes and a pair of translocated chromosomes constituted with a long arm of chromosome 5B of wheat and a short arm of chromosome 7 of barley. The other three lines could not be identified due to chromosome rearrangement. Performances of these seven lines on agronomic characters were examined. Addition of barley chromosome 7 induced early heading, and chromosome 6 showed lated heading. Almost all of the lines except that of chromosome 6 showed short culm length and all showed reduced number of tillers, spikelets and grains per ear, and low seed fertility. These lines would be useful for genetic analyses in wheat and barley and for induction of useful genes of barley into wheat. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号