首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
禽流感区域控制重点环节--抗体监测应用技术的探讨   总被引:1,自引:1,他引:0  
通过对母源抗体的消长规律、免疫抗体的消长规律和不同日龄蛋禽群首次免疫效果对比探讨,摸索出适合本地区的禽流感免疫方案;通过对不同疫苗厂家的产品免疫效果的测定,选出了本地区防控禽流感的适宜疫苗;通过对不同品种禽群疫苗免疫效果的监测,探讨了不同品种禽群对禽流感疫苗的免疫应答;并探讨了禽流感阻击战中的防控措施和抗体监测的重要性与作用。  相似文献   

2.
业界新闻     
英国《新科学家》杂志报道称,禽流感疫苗可能导致禽流感病毒发生新的变异,为家禽免疫就像“定时炸弹”,有可能加大禽流感病毒在人类传播的危险。农业部总畜牧师、新闻发言人贾幼陵称,我国为禽类免疫使用的禽流感疫苗不会成为“定时炸弹”。 贾幼陵表示,我国所使用的动物疫苗属于灭活疫苗,不会引发禽流感病毒变异或疫情扩散。他说,对于高致病性禽  相似文献   

3.
H9N2亚型禽流感病毒(AIV)1994年在广东家禽中首次出现,随后几年逐渐传播到其他省份。H5N1亚型AIV 1996年在广东首次出现,2004年以来在多个省引起禽流感暴发。我国使用疫苗免疫防控H9N2和H5N1亚型AIV已有多年。虽然在免疫后的家禽养殖场H5N1和H9N2病毒检出率极低,但在一些活禽市场病毒检出率却比较高。由于H5病毒是世界动物卫生组织(OIE)规定的“通报”病毒,市场监测阳性往往被怀疑为养殖场有病毒流行但未被“通报”。陈化兰院士团队通过详实的实验研究,揭开了活禽市场病毒繁衍和传播的真相,对如何进一步做好禽流感防控工作提供了重要科学依据。该研究近日在线发表在《Science China Life Sciences》。  相似文献   

4.
禽流感是由A型流感病毒引起的一种急性呼吸道传染病,家禽、野鸟和部分哺乳动物均可感染.禽流感给中国养殖业造成了巨大的损失,同时,随着病毒的种间传播,人类的生命安全也受到了严重威胁.目前,疫苗免疫仍是防控禽流感最主要的手段,传统的疫苗主要有鸡胚灭活苗和禽流感弱毒疫苗.虽然在过往几次禽流感暴发过程中,传统疫苗发挥了重要作用,但其自身却存在诸多弊端,因此研制新型疫苗来弥补传统疫苗的不足是很有必要的.文章主要对禽流感重组活载体疫苗、基因工程亚单位疫苗、DNA疫苗和病毒样颗粒疫苗等新型疫苗的研究进展进行综述,旨在为禽流感的防控提供参考.  相似文献   

5.
禽流感疫苗研究进展   总被引:2,自引:0,他引:2  
免疫预防是当前防控禽流感的主要措施,禽流感疫苗分为全病毒灭活疫苗、减毒活疫苗、核酸疫苗、重组病毒载体疫苗、病毒样颗粒疫苗和亚单位疫苗等。禽流感易发生变异和重组,因而,开放出安全有效的新型疫苗和研制先进的免疫辅助物对于禽流感的防控至关重要。  相似文献   

6.
我国自2004年实行高致病性禽流感(HPAIV,简称禽流感)强制免疫以来,禽流感基本得到了有效的控制。但在十几年的防控过程中,禽流感疫情仍然不断发生,引起这种情况的因素较为复杂。其中水禽(鸭、鹅)在禽流感的发生、传播、流行、变异和跨种传播中起着重要的作用。水禽(鸭、鹅)是禽流感病毒重要的传播媒介,是禽流感病毒的储存器、放大器和混合器。它们既可以携带多种亚型的低致病性禽流感病毒,又能长期储存陆禽(鸡等)来源的高致病性禽流感病毒,促使禽流感病毒重组。通过直接或间接接触野生水禽和鸡,将禽流感病毒的传播放大。通过接触野生水禽,可促使高致病性禽流感病毒远距离传播。研究水禽在禽流感流行中的作用对我国禽流感的防控具有重要意义。  相似文献   

7.
H7N9型禽流感是一种新型禽流感。在非典病毒以后,再次引起人们警觉的病毒就是H7N9了,这种病毒通过鸟禽对人类进行传播,而其发展速度也让人感到震惊,对它表示无奈而且恐惧。专家介绍,禽流感病毒主要存在于病禽和感染禽的消化道、呼吸道和禽体脏器组织中。一般冬春2个季节较为高发。因此,加强对人群H7N9型禽流感的预防措施,可提高人群对H7N9型禽流感的防控能力,并对减少发病率和传播具有重要意义。  相似文献   

8.
《畜牧与兽医》2016,(9):139-144
猪流感病毒能够跨越物种传播并广泛流行,对人畜健康与社会经济危害严重,因此防控该病毒的发生和流行意义重大。在防控方法中效果最明显,应用最广泛,研究最成熟的是用猪流感疫苗免疫。利用基因工程技术研制的猪流感疫苗能有效降低猪群中猪流感的发病率和猪作为人-禽流感储存宿主引起流感跨种传播的可能性。本文通过分析总结猪流感基因工程疫苗的种类、制作方法和免疫效果,为今后猪流感疫苗的研究提供参考。  相似文献   

9.
自2013年以来,H7N9亚型流感对我国养禽业和人类公共卫生造成了极大影响。疫苗作为重要防疫工具,在H7N9亚型流感防控中起到了至关重要的作用。目前我国批准使用的H7N9禽流感全病毒灭活疫苗安全性高、免疫效果好,已在国内广泛应用。随着对H7N9亚型流感病毒研究的不断深入,研究人员对核酸疫苗、亚单位疫苗、病毒样颗粒疫苗及通用流感疫苗等新型疫苗进行了探索和尝试,并取得了一定的进展,为我国禽流感疫苗的开发与应用夯实了技术基础。本文对各类型H7N9亚型禽流感疫苗的研发情况以及优点和应用情况进行了综述,以期为更好地防控禽H7N9亚型流感提供帮助。  相似文献   

10.
禽流感免疫是防控禽流感的主要措施。目前,国内禽流感疫苗有三类:全病毒灭活疫苗、重组禽流感病毒灭活疫苗、基因工程疫苗。莆田市荔城区使用国家规定可用于禽流感强制免疫的疫苗即禽流感灭活疫苗(H5N2亚型N28株)和重组禽流感病毒灭活疫苗(H5N1亚型.Re-1株),这两种均为油乳剂灭  相似文献   

11.
Although it is well accepted that the present Asian H5N1 panzootic is predominantly an animal health problem, the human health implications and the risk of human pandemic have highlighted the need for more information and collaboration in the field of veterinary and human health. H5 and H7 avian influenza (AI) viruses have the unique property of becoming highly pathogenic (HPAI) during circulation in poultry. Therefore, the final objective of poultry vaccination against AI must be eradication of the virus and the disease. Actually, important differences exist in the control of avian and human influenza viruses. Firstly, unlike human vaccines that must be adapted to the circulating strain to provide adequate protection, avian influenza vaccination provides broader protection against HPAI viruses. Secondly, although clinical protection is the primary goal of human vaccines, poultry vaccination must also stop transmission to achieve efficient control of the disease. This paper addresses these differences by reviewing the current and future influenza vaccines and vaccination strategies in birds.  相似文献   

12.
Vaccination against avian influenza (AI) infections caused by viruses of the H5 and H7 subtypes has been used in several occasions in recent years with the general objective of controlling and in some cases eradicating the disease. To contain AI infections effectively, vaccination should only be used as part of a comprehensive control strategy that also includes biosecurity, quarantine, surveillance, education, and elimination of infected and at-risk poultry. Although properly used, potent AI vaccines can prevent disease and death, increase resistance to infection, reduce virus replication and shedding, and reduce viral transmission, they cannot completely prevent AI virus replication. A wide variety of vaccines against AI has been developed and tested in experimental conditions, but only inactivated whole AI virus vaccines and recombinant H5-AI vaccines have been licensed and widely used in various countries. AI vaccination programmes should be adapted to local conditions to guarantee efficacy and sustainability. In particular, vaccination programmes should be modulated in diverse situations according to the virus strain involved, the characteristics of the poultry producing sector, the capacity of the veterinary infrastructure, and the availability of adequate resources. Based on the eco-epidemiological situation in the affected region/area/compartment and the assessment of the risk of AI introduction, different vaccination strategies could be implemented to control AI: (i) routine vaccination performed in endemic areas; (ii) emergency vaccination in the face of an epidemic; and (iii) preventative vaccination carried out whenever a high risk of virus incursion is identified.  相似文献   

13.
H9N2亚型禽流感病毒疫苗研究进展   总被引:2,自引:0,他引:2  
H9N2亚型禽流感病毒在世界范围内广泛存在,给养禽业造成巨大的经济损失,并危害人类健康。流感病毒抗原易发生漂移和转换,使流感病毒的防控变得困难。疫苗接种是防控禽流感最有效的手段之一,全病毒灭活疫苗保护效果好,制备简单,是流感病毒常用的疫苗,但该疫苗局部副反应大,并伴随生物安全问题。随着分子生物学技术的发展,活载体疫苗、核酸疫苗、亚单位疫苗等新型疫苗的开发,给H9N2亚型禽流感病毒的防控提供了新的手段。新型疫苗除具有传统疫苗的保护效果外,在生物安全和普遍防控方面具有广泛的优势,是流感病毒疫苗发展的新方向。  相似文献   

14.
OBJECTIVE: To evaluate the vaccine efficacy of a fowlpox virus recombinant expressing the H7 haemagglutinin of avian influenza virus in poultry. PROCEDURE: Specific-pathogen-free poultry were vaccinated with fowlpox recombinants expressing H7 or H1 haemagglutinins of influenza virus. Chickens were vaccinated at 2 or 7 days of age and challenged with virulent Australian avian influenza virus at 10 and 21 days later, respectively. Morbidity and mortality, body weight change and the development of immune responses to influenza haemagglutinin and nucleoprotein were recorded. RESULTS: Vaccination of poultry with fowlpox H7 avian influenza virus recombinants induced protective immune responses. All chickens vaccinated at 7 days of age and challenged 21 days later were protected from death. Few clinical signs of infection developed. In contrast, unvaccinated or chickens vaccinated with a non-recombinant fowlpox or a fowlpox expressing the H1 haemagglutinin of human influenza were highly susceptible to avian influenza. All those chickens died within 72 h of challenge. In younger chickens, vaccinated at 2 days of age and challenged 10 days later the protection was lower with 80% of chickens protected from death. Chickens surviving vaccination and challenge had high antibody responses to haemagglutinin and primary antibody responses to nucleoprotein suggesting that although vaccination protected substantially against disease it failed to completely prevent replication of the challenge avian influenza virus. CONCLUSION: Vaccination of chickens with fowlpox virus expressing the avian influenza H7 haemagglutinin provided good protection against experimental challenge with virulent avian influenza of H7 type. Although eradication will remain the method of first choice for control of avian influenza, in the circumstances of a continuing and widespread outbreak the availability of vaccines based upon fowlpox recombinants provides an additional method for disease control.  相似文献   

15.
为了解广西玉林市2020年规模禽场禽流感病毒感染状况,采用荧光RT-PCR方法,对广西玉林市7个县(市、区)42个规模化禽场采集的1260份禽喉/泄殖腔棉拭子样品进行了通用型禽流感病毒核酸检测(荧光PCR),并对检测为阳性的样本进行H5、H7亚型(双重荧光PCR)和H9亚型(荧光PCR)分型鉴定。结果显示:在42个规模化禽场中,未检出H5和H7亚型高致病性禽流感病毒阳性样品;在2个鸡场中检出18份H9亚型低致病性禽流感病毒阳性样品,在2个鸡场和4个鸭场中检出115份其他亚型低致病性禽流感病毒阳性样品。结果表明:在高致病性禽流感(H5+H7)三价灭活疫苗强制免疫政策下,广西玉林市规模化禽场的高致病性禽流感病毒感染风险较小,但仍须加强禽流感的免疫、监测,做好综合防控,以降低禽流感病毒由低致病性重组变异为高致病性的风险。本检测为指导广西玉林市禽流感防控提供了依据。  相似文献   

16.
珠三角地区H7N9禽流感传播途径具有复杂性和特殊性。为进一步明确传播途径,基于家禽产业链视角,在H7N9禽流感最为严重的广州市、深圳市、佛山市,采用分层抽样法选取有代表性且能反映整体情况的养殖场、批发市场、屠宰场、农贸市场,调查H7N9禽流感的动物防疫和个人防护情况。结果显示:养殖场的生物安全隔离仍不完善,存在活禽接触候鸟感染禽流感的风险;批发市场和屠宰场防疫水平高,人感染风险较低;农贸市场的动物防疫条件和个人防护不充分,易扩散病毒;最有可能的传播途径是与候鸟接触后携带病毒的活禽,通过"养殖—批发—零售"产业链蔓延。该结论在明确"禽传人"、"活禽市场环境暴露"观点上深化了产业链各环节间的传播路径。因此,珠三角地区H7N9禽流感的防控重点要加强养殖环节的生物安全隔离,并做好零售环节中活禽与人之间的防控。  相似文献   

17.
Influenza A viruses have been isolated from humans, from several other mammalian species and a wide variety of avian species, among which, wild aquatic birds represent the natural hosts of influenza viruses. The majority of the possible combinations of the 15 haemagglutinin (HA) and nine neuraminidase (NA) subtypes recognized have been identified in isolates from domestic and wild birds. Infection of birds can cause a wide range of clinical signs, which may vary according to the host, the virus strain, the host's immune status, the presence of any secondary exacerbating microorganisms and environmental factors. Most infections are inapparent, especially in waterfowl and other wild birds. In contrast, infections caused by viruses of H5 and H7 subtypes can be responsible for devastating epidemics in poultry. Despite the warnings to the poultry industry about these viruses, in 1997 an avian H5N1 influenza virus was directly transmitted from birds to humans in Hong Kong and resulted in 18 confirmed infections, thus strengthening the pandemic threat posed by avian influenza (AI). Indeed, reassortant viruses, harbouring a combination of avian and human viral genomes, have been responsible for major pandemics of human influenza. These considerations warrant the need to continue and broaden efforts in the surveillance of AI. Control programmes have varied from no intervention, as in the case of the occurrence of low pathogenic (LP) AI (LPAI) viruses, to extreme, expensive total quarantine-slaughter programmes carried out to eradicate highly pathogenic (HP) AI (HPAI) viruses. The adoption of a vaccination policy, targeted either to control or to prevent infection in poultry, is generally banned or discouraged. Nevertheless, the need to boost eradication efforts in order to limit further spread of infection and avoid heavy economic losses, and advances in modern vaccine technologies, have prompted a re-evaluation of the potential use of vaccination in poultry as an additional tool in comprehensive disease control strategies. This review presents a synthesis of the most recent research on AI that has contributed to a better understanding of the ecology of the virus and to the development of safe and efficacious vaccines for poultry.  相似文献   

18.
The risk and the size of an outbreak of avian influenza virus (AIV) could be restricted by vaccination of poultry. A vaccine used for rapid intervention during an AIV outbreak should be safe, highly effective after a single administration and suitable for mass application. In the case of AIV, aerosol vaccination using live virus is not desirable because of its zoonotic potential and because of the risk for virus reassortment. The rational design of novel mucosal-inactivated vaccines against AIV requires a comprehensive knowledge of the structure and function of the lung-associated immune system in birds in order to target vaccines appropriately and to design efficient mucosal adjuvants. This review addresses our current understanding of the induction of respiratory immune responses in the chicken. Furthermore, possible mucosal vaccination strategies for AIV are highlighted.  相似文献   

19.
Avian influenza virus: prospects for prevention and control by vaccination   总被引:6,自引:0,他引:6  
Although vaccination does not always prevent infection of avian influenza (AI) virus, the clear benefit of vaccination is in its ability to prevent disease and to reduce the amount of virus in circulation. Thus, judicious use of vaccination can be an important component of an AI control program. However, the long-term use of vaccination without eradication may result in the selection of the antigenically divergent strains, which compromises the value of vaccination. In this review, the effectiveness of currently available and future AI vaccines is discussed with suggestions for the ideal use of vaccination even with antigenic drift of the virus.  相似文献   

20.
Avian influenza: eradication from commercial poultry is still not in sight   总被引:1,自引:0,他引:1  
Avian influenza viruses are highly infectious micro-organisms that primarily affect birds. Nevertheless, they have also been isolated from a number of mammals, including humans. Avian influenza virus can cause large economic losses to the poultry industry because of its high mortality. Although there are pathogenic variants with a low virulence and which generally cause only mild, if any, clinical symptoms, the subtypes H5 and H7 can mutate from a low to a highly virulent (pathogenic) virus and should be taken into consideration in eradication strategies. The primary source of infection for commercial poultry is direct and indirect contact with wild birds, with waterfowl forming a natural reservoir of the virus. Live-poultry markets, exotic birds, and ostriches also play a significant role in the epidemiology of avian influenza. The secondary transmission (i.e., between poultry farms) of avian influenza virus is attributed primarily to fomites and people. Airborne transmission is also important, and the virus can be spread by aerosol in humans. Diagnostic tests detect viral proteins and genes. Virus-specific antibodies can be traced by serological tests, with virus isolation and identification being complementary procedures. The number of outbreaks of avian influenza seems to be increasing - over the last 5 years outbreaks have been reported in Italy, Hong Kong, Chile, the Netherlands, South Korea, Vietnam, Japan, Thailand, Cambodia, Indonesia, Laos, China, Pakistan, United States of America, Canada, South Africa, and Malaysia. Moreover, a growing number of human cases of avian influenza, in some cases fatal, have paralleled the outbreaks in commercial poultry. There is great concern about the possibility that a new virus subtype with pandemic potential could emerge from these outbreaks. From the perspective of human health, it is essential to eradicate the virus from poultry; however, the large number of small-holdings with poultry, the lack of control experience and resources, and the international scale of transmission and infection make rapid control and long-term prevention of recurrence extremely difficult. In the Western world, the renewed interest in free-range housing carries a threat for future outbreaks. The growing ethical objections to the largescale culling of birds require a different approach to the eradication of avian influenza.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号