首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Residue retention and reduced tillage are both conservation agricultural practices that may enhance soil organic carbon (SOC) stabilization in soil. We evaluated the long‐term effects of no‐till (NT) and stover retention from maize on SOC dynamics in a Rayne silt loam Typic Hapludults in Ohio. The six treatments consisted of retaining 0, 25, 50, 75, 100 and 200% of maize residues on each 3 × 3 m plot from the crop of previous year. Soil samples were obtained after 9 yrs of establishing the experiment. The whole soil (0–10 and 10–20 cm of soil depths) samples under different treatments were analysed for total C, total N, recalcitrant C (NaOCl treated sample) and 13C isotopic abundance (0–10 cm soil depth). Complete removal of stover for a period of 9 yrs significantly (P < 0.01) decreased soil C content (15.5 g/kg), whereas 200% of stover retention had the maximum soil C concentration (23.1 g/kg). Relative distribution of C for all the treatments in different fractions comprised of 55–58% as labile and 42–45% as recalcitrant. Retention of residue did not significantly affect total C and N concentration in 10–20 cm depth. 13C isotopic signature data indicated that C4‐C (maize‐derived C) was the dominant fraction of C in the top 0–10 cm of soil layer under NT with maize‐derived C accounting for as high as 80% of the total SOC concentration. Contribution of C4‐C or maize‐derived C was 71–84% in recalcitrant fraction in different residue retained plots. Residue management is imperative to increase SOC concentrations and long‐term agro‐ecosystem necessitates residue retention for stabilizing C in light‐textured soils.  相似文献   

2.
不同有机物料对苏打盐化土有机碳和活性碳组分的影响   总被引:5,自引:1,他引:4  
【目的】在大同盆地苏打盐化土上,研究不同有机物料对春玉米产量、土壤有机碳及活性碳组分的影响,明确土壤有机碳及活性碳组分与主要盐碱指标的相关关系,为苏打盐化土改良及有机物料资源化利用提供理论支撑。【方法】2016-2017年在山西省北部怀仁县开展田间定位试验,设对照(CK)、风化煤、生物炭、牛粪和秸秆5个处理,各处理有机物料施用量按照每年9000 kg/hm^2等有机碳投入量折算,收获时对春玉米进行测产。2017年春玉米收获后,采集土壤样品测定土壤有机碳总量(SOC)和水溶性有机碳(WSOC)、易氧化有机碳(EOC)、轻组有机碳(LFOC)含量,分析土壤活性碳组分占有机碳的比例、土壤有机碳及活性碳组分与盐碱指标之间的关系。【结果】与CK相比,生物炭和秸秆处理春玉米产量无明显差异,而风化煤和牛粪处理春玉米产量则分别显著提高30.2%和30.3%。添加有机物料促进了0-20 cm土层SOC累积,其中以风化煤和牛粪处理效果最佳,较CK分别提高47.6%和36.1%。在有机碳组分方面,风化煤和牛粪处理提高WSOC、EOC含量的效果显著高于生物炭、秸秆处理;风化煤、牛粪和秸秆处理的LFOC含量显著高于生物炭处理。四类有机物料处理的WSOC占总有机碳的比例差异不显著,牛粪处理的占比显著高于CK。EOC占总有机碳的比例以牛粪处理最高,风化煤次之,且二者均显著高于CK处理;LFOC占总有机碳的比例则表现为秸秆、牛粪>风化煤、生物炭> CK。此外,添加有机物料能有效降低0-20 cm土层土壤pH、电导率(EC)和碱化度(ESP),其中以风化煤和牛粪处理降幅最大。相关分析表明,土壤SOC与pH、EC和ESP呈显著负相关。【结论】通过有机物料改良效果比较,发现牛粪和风化煤处理能促进苏打盐化土有机碳累积,提高可溶性、易氧化态及轻组有机碳组分在总有机碳中的占比,降低土壤pH、EC和ESP,明显提高春玉米产量。因此,风化煤和牛粪是山西北部苏打盐化土良好的改良剂。  相似文献   

3.
The large dryland area of the Loess Plateau (China) is subject of developing strategies for a sustainable crop production, e.g., by modifications of nutrient management affecting soil quality and crop productivity. A 19 y long‐term experiment was employed to evaluate the effects of fertilization regimes on soil organic C (SOC) dynamics, soil physical properties, and wheat yield. The SOC content in the top 20 cm soil layer remained unchanged over time under the unfertilized plot (CK), whereas it significantly increased under both inorganic N, P, and K fertilizers (NPK) and combined manure (M) with NPK (MNPK) treatments. After 18 y, the SOC in the MNPK and NPK treatments remained significantly higher than in the control in the top 20 cm and top 10 cm soil layers, respectively. The MNPK‐treated soil retained significant more water than CK at tension ranges from 0 to 0.25 kPa and from 8 to 33 kPa for the 0–5 cm layer. The MNPK‐treated soil also retained markedly more water than the NPK‐treated and CK soils at tensions from 0 to 0.75 kPa and more water than CK from 100 to 300 kPa for the 10–15 cm layer. There were no significant differences of saturated hydraulic conductivity between three treatments both at 0–5 and 10–15 cm depths. In contrast, the unsaturated hydraulic conductivity in the MNPK plot was lower than in the CK plot at depths of 0–5 cm and 10–15 cm. On average, wheat yields were similar under MNPK and NPK treatments and significantly higher than under the CK treatment. Thus, considering soil‐quality conservation and sustainable crop productivity, reasonably combined application of NPK and organic manure is a better nutrient‐management option in this rainfed wheat–fallow cropping system.  相似文献   

4.
不同耕作方式对土壤有机碳、微生物量及酶活性的影响   总被引:12,自引:2,他引:10  
【目的】依托8年长期(2005~2012)固定道定位试验,研究不同耕作方式对土壤有机碳、土壤微生物量、土壤酶活性在0—90 cm土层的分布特征,为优化中国西北干旱区的耕作方式提供理论依据。【方法】试验包括固定道垄作(PRB)、固定道平作(PFT)与传统耕作(CT)三种耕作模式下的土壤有机碳土壤总有机碳(TOC)、颗粒有机碳(POC)、土壤微生物量碳(MBC)、土壤微生物量氮(MBN)、土壤微生物量磷(MBP)、蔗糖酶、过氧化氢酶、脲酶及小麦产量进行了测定和分析。【结果】在0—90 cm土层,不同耕作方式下的TOC、POC、MBC、MBN、MBP、蔗糖酶活性、脲酶活性均随着土层的增加呈下降趋势,过氧化氢酶活性呈先下降后增大的分布特征;在0—60 cm,固定道保护性耕作能够显著增加心土层作物生长带土壤有机碳储量,有机碳储量大小为PRBPFTCT;PRB、PFT较CT可以显著增加0—10 cm作物生长带TOC、POC、MBC、MBN、MBP含量、蔗糖酶、脲酶活性,其大小为PRBPFTCT;耕作方式对过氧化氢酶活性影响不显著;TOC、POC、MBC、MBN、MBP、蔗糖酶活性、脲酶活性、过氧化氢酶活性之间均达到了显著或极显著相关。【结论】PRB较PFT、CT能够提高耕作层(0—10 cm)土壤有机碳含量、土壤微生物量、土壤酶活性, 增加作物产量, 增大0—60 cm土层有机碳储量,耕作方式(PRB、PFT及CT)对10 cm以下土层土壤环境改善作用不明显。  相似文献   

5.
Abstract

Soil carbon sequestration in agricultural lands has been deemed a sustainable option to mitigate rising atmospheric CO2 levels. In this context, the effects of different tillage and C input management (residue management and manure application) practices on crop yields, residue C and annual changes in total soil organic C (SOC) (0–30 cm depth) were investigated over one cycle of a 4-year crop rotation (2003–2006) on a cropped Andisol in northern Japan. For tillage practices, the effects of reduced tillage (no deep plowing, a single shallow harrowing for seedbed preparation [RT]) and conventional deep moldboard plow tillage (CT) were compared. The combination of RT, residue return and manure application (20 Mg ha?1 in each year) increased spring wheat and potato yields significantly; however, soybean and sugar beet yields were not influenced by tillage practices. For all crops studied, manure application enhanced the production of above-ground residue C. Thus, manure application served not only as a direct input of C to the soil, but the greater crop biomass production engendered enhanced subsequent C inputs to the soil from residues. The SOC contents in both the 0–5 cm and 5–10 cm layers of the soil profile were greater under RT than under CT treatments because the crop residue and manure were densely incorporated into the shallow soil layers. Comparatively, neither tillage nor C input management practices had significant effects on annual changes in SOC content in either the 10–20 cm or 20–30 cm layers of the soil profile. When soil C sequestration rates, as represented by annual changes in total SOC (0–30 cm), were assessed on a total soil mass basis, an anova showed that tillage practices had no significant effect on total C sequestration, but C input management practices had significant positive effects (P ≤ 0.05). These results indicate that continuous C input to the soil through crop residue return and manure application is a crucial practice for enhancing crop yields and soil C sequestration in the Andisol region of northern Japan.  相似文献   

6.
Based on a 28‐year in situ experiment, this paper investigated the impacts of organic and inorganic fertiliser applications on soil organic carbon (SOC) content and soil hydraulic properties of the silt loam (Eumorthic Anthrosols) soils derived from loess soil in the Guanzhong Plain of China. There were two crop (winter wheat and summer maize) rotations with conventional tillage. The treatments included control without fertiliser application, organic manure application (M), chemical fertiliser application (NP), and the application of organic manure with chemical fertiliser (MNP). The results showed that the 28‐year organic manure applications (M and MNP) significantly (p < 0·05) increased SOC content at surface layer (0–10 cm), but the effect of chemical fertilisers alone on SOC was not significant. Organic manure treatments (M and MNP) apparently improved soil hydraulic properties. Compared with control, field capacity and total porosity significantly (p < 0·05) increased while soil bulk density significantly (p < 0·05) decreased for organic manure applications. The M and MNP treatments increased soil water retentions by 3·2–10·8%, which was dependent of suction tensions. However, the NP treatment had no significantly impact on soil water retention compared with control. Neither organic nor inorganic fertiliser applications significantly changed saturated hydraulic conductivity. However, a clear difference was observed for unsaturated hydraulic conductivity between the M and the control at 0–5 cm. Overall, long‐term applications of organic manuring increased SOC content and amended soil hydraulic properties. However, the effects of chemical fertilisers on these soil properties were limited. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In this study, 24 years (1990–2013) of data from a long-term experiment, in Stillwater, Oklahoma (OK), were used to determine the effect of beef manure on soil test phosphorus (STP), soil organic carbon (SOC), and winter wheat (Triticum aestivum L.) yield. Beef manure was applied every 4 years at a rate of 269 kg nitrogen (N) ha?1, while inorganic fertilizers were applied annually at 67 kg N ha?1, 14.6 kg phosphorus (P) ha?1, and 27.8 kg potassium (K) ha?1 for N, P, and K, respectively. Averaged across years, application of beef manure, and inorganic P maintained STP above 38 mg kg?1 of Mehlich-3 extractable P, a level that is far beyond crop requirements. A more rapid decline in SOC was observed in the check plot compared to the manure-treated plot. This study shows that the application of animal manure is a viable option to maintaining SOC levels, while also optimizing grain yield.  相似文献   

8.
The research was carried out to determine the effect of basin‐based conservation agriculture (CA) on selected soil quality parameters. Paired plots (0.01 ha) of CA and conventional tillage based on the animal‐drawn mouldboard plough (CONV) were established between 2004 and 2007 on farm fields on soils with either low (12–18% – sandy loams and sandy clay loams) or high clay levels (>18–46% – sandy clays and clays) as part of an ongoing project promoting CA in six districts in the smallholder farming areas of Zimbabwe. We hypothesized that CA would improve soil organic carbon (SOC), bulk density, aggregate stability, soil moisture retention and infiltration rate. Soil samples for SOC and aggregate stability were taken from 0 to 15 cm depth and for bulk density and soil moisture retention from 0 to 5, 5 to 10 and 10 to 15 cm depths in 2011 from maize plots. Larger SOC contents, SOC stocks and improved aggregate stability, decreased bulk density, increased pore volume and moisture retention were observed in CA treatments. Results were consistent with the hypothesis, and we conclude that CA improves soil quality under smallholder farming. Benefits were, however, greater in high clay soils, which is relevant to the targeting of practices on smallholder farming areas of sub‐Saharan Africa.  相似文献   

9.
Changes in grain yields and soil organic carbon (SOC) from a 26 y dryland fertilization trial in Pingliang, Gansu, China, were recorded. Cumulative C inputs from straw and root and manure for fertilizer treatments were estimated. Mean wheat (Triticum aestivum L.) yields for the 18 y ranged from 1.72 t ha–1 for the unfertilized plots (CK) to 4.65 t ha–1 for the plots that received manure (M) annually with inorganic N and P fertilizers (MNP). Corn (Zea mays L.) yields for the 6 y averaged 2.43 and 5.35 t ha–1 in the same treatments. Yields declined with year except in the CK for wheat. Wheat yields for N only declined with time by 117.8 kg ha–1 y–1 that was the highest decrease among all treatments, and that for NP declined by 84.7 kg ha–1 y–1, similar to the declines of 77.4 kg ha–1 y–1 for the treatment receiving straw and N annually and P every second year (SNP). Likewise, the corn yields declined highly for all treatments, and the declined amounts ranged from 108 to 258 kg ha–1 y–1 which was much higher than in wheat. These declined yields were mostly linked to both gradual dry weather and nutrients depletion of the soil. The N only resulted in both P and K deficiency in the soil, and soil N and K negative balances in the NP and MNP were obvious. Soil organic carbon (SOC) in the 0–20 cm soil layer increased with time except in the CK and N treatments, in which SOC remained almost stable. In the MNP and M treatments, 24.7% and 24.0% of the amount of cumulative C input from organic sources remained in the soil as SOC, but 13.7% of the C input from straw and root in the SNP, suggesting manure is more effective in building soil C than straw. Across the 26 y cropping and fertilization, annual soil‐C sequestration rates ranged from 0.014 t C ha–1 y–1 for the CK to 0.372 t C ha–1 y–1 for the MNP. We found a strong linear relationship (R2 = 0.74, p = 0.025) between SOC sequestration and cumulative C input, with C conversion–to–SOC rate of 16.9%, suggesting these dryland soils have not reached an upper limit of C sequestration.  相似文献   

10.
ABSTRACT

Animal manure is used in crop production to improve crop yield and soil properties. The impact of cattle manure applied in one year on yield and soil properties in the subsequent years has not been extensively studied. This work evaluated the effect of manure application on winter wheat grain yield (Triticum aestivum L.), soil organic carbon (SOC), and soil pH. Cattle manure was applied once every four years at a rate of 267 kg N ha?1. Grain yield and soil samples (0–15 cm) were collected annually from the Magruder Plots, Oklahoma. Soil samples were analyzed using a glass electrode (pH) and LECO dry combustion analyzer (SOC). The highest yield (2.8 Mg ha?1) occurred in the second year after manure application. Yield in the second year exceeded yield in the first year by 66%. Yields in the third and fourth year were similar to yields in the other years. No changes in soil pH and SOC were observed in each of the four years that constituted the manure application cycle. Cattle manure (267 kg N ha?1) could be applied once to serve a four-year period without major yield differences while also improving soil pH and SOC when compared to the check.  相似文献   

11.
Human-induced degradation of natural resources in general and of soil in particular, is a major problem in many regions, including the Sudano-Sahelian zone. The combined effects of tillage and manure application on Lixisol properties and on crop performance were investigated at Saria, Burkina Faso, to find efficient soil management practices to improve soil fertility. A randomized block design with four treatments (hand hoeing only, hand hoeing+manure, ploughing only, oxen ploughing+manure) in three replications was started in 1990. Ten years later, total soil organic (SOC), particulate organic matter and C mineralization were measured. Initial SOC concentration was 4 mg/g and dropped to 2.1 mg/g soil in ploughed plots without manure and to 2.5 mg/g soil in hoed plots without manure. Manure addition mitigated the decrease of SOC in ploughed plots and even built up SOC in hoed plots, where it increased to 5.8 mg/g soil. Manure had a large effect on the fractions in which SOC was stored. In ploughed plots, a large amount of SOC was stored in physical particles >0.25 mm, while in hand hoed plots the maximum SOC was stored in finer fractions. In the topsoil, hoeing and manure resulted in a higher SOC than ploughing with no manure. However, in the 15–25 cm layer, particularly in September, particulate organic matter was greater in ploughed plots with manure than in hoed plots with manure. Crop yields were highest on ploughed+manure plots and lowest on ploughed plots with no manure. We conclude that applying manure annually mitigates the negative effect of ploughing and hand hoeing on SOC and related properties and therefore can contribute to the sustainability of the agricultural system in the Sudano-Sahelian zone.  相似文献   

12.
The aim of this study was to assess the changes in soil organic carbon (SOC) stock in relation to the carbon (C) input from nine wheat-based cropping systems and untilled grass. The SOC pool ranged from 32.1 to 49.4 Mg ha?1 at 0–20 cm and from 94 to 171 Mg ha?1 at 0–100 cm for the arable soil, while in untilled grassland, it was higher (54 and 185 Mg C ha?1, respectively). SOC stock was observed to be lower at the unfertilized 2-year rotation and higher at the 4-year rotation with manure and mineral fertilization. The study showed a winter wheat yield decrease of 176.8 kg ha?1 for a 1- Mg ha?1 SOC stock change in the 0–20-cm soil depth. The estimated C input for SOC stock maintenance was from 266 to 340 g C m?2 year?1 for winter wheat and rotations, respectively. Additional C input did not increase the SOC pool, suggesting that arable plots had a limited ability to increase SOC. These results provide guidance for the selection of management practices to improve C sequestration.  相似文献   

13.
有机物覆盖对核桃园土壤有机碳库及酶活性的影响   总被引:5,自引:1,他引:4  
【目的】 地面覆盖是重要的地面管理措施,简单省力,不仅可以提高土壤肥力,还可以促进土壤微域生态系统的可持续发展。研究核桃园有机物覆盖对土壤有机碳库及酶活性的影响,可为推广有机覆盖管理措施提供理论依据。 【方法】 基于核桃园连年有机物覆盖试验,采用随机区组设计,以不覆盖为对照,研究了地面覆盖有机肥、碎木屑后,土壤有机碳库、碳库管理及酶活性的变化及三者间的关系。 【结果】 1) 有机物覆盖处理提高了土壤各有机碳组分含量,随着土层的加深效应下降,覆盖有机肥效果优于覆盖碎木屑。在0—20 cm土层,覆盖有机肥处理的总有机碳含量、可溶性有机碳含量及易氧化有机碳含量分别为对照的1.66倍、1.33倍、6.99倍,覆盖碎木屑处理的稳定性有机碳含量为对照的1.42倍。2) 有机物覆盖处理在一定程度上提高了土壤碳库活度、碳库活度指数、碳库指数及碳库管理指数,随土层的加深处理间差异减小。在0—80 cm土层,覆盖有机肥处理的碳库活度及碳库活度指数为对照的2.9~5.9倍,覆盖碎木屑处理的为对照的1.3~2.5倍;覆盖有机肥处理的碳库指数为对照的1.1~1.7倍,覆盖碎木屑处理的为对照的1.1~1.5倍;覆盖有机肥处理的碳库管理指数是对照的3.3~9.8倍,覆盖碎木屑处理的为对照的1.6~2.8倍。3) 有机物覆盖处理提高了核桃生长期内的土壤过氧化氢酶活性、中性蛋白酶活性、脲酶活性和纤维素酶活性,覆盖有机肥处理的提高幅度为4.2%~103.0%,覆盖碎木屑的提高幅度为3.5%~47.3%。4) 土壤总有机碳含量与碳库指数、碳库活度指数、碳库管理指数均呈显著正相关,土壤脲酶活性、土壤纤维素酶活性与土壤总有机碳含量、可溶性有机碳含量及易氧化有机碳含量呈极显著正相关。 【结论】 地面覆盖有机肥、碎木屑可以提高核桃园土壤的碳库活度及土壤酶活性。   相似文献   

14.
长期秸秆还田显著降低褐土底层有机碳储量   总被引:2,自引:0,他引:2  
  【目的】  秸秆还田作为一种有效的培肥方式,对土壤固碳效果显著,但对于深层土壤有机碳的影响还存在不确定性。分析不同秸秆还田方式下褐土剖面土壤有机碳(SOC)储量变化,为褐土区秸秆还田措施优化和固碳减排等提供科学依据。  【方法】  长期秸秆还田试验开始于1992年,采用裂区设计,主区为化肥春季和秋季施用,副区为4个秸秆还田处理:秸秆不还田 (CK)、秸秆覆盖还田 (SM)、秸秆粉碎后直接还田 (SC) 和秸秆过腹还田 (CM)。在2013年春玉米收获后采集0—100 cm土层土壤样品,分析不同秸秆还田方式下SOC和土壤养分含量。  【结果】  在春季和秋季施肥下,与CK相比,CM、SM和SC处理表层 (0—20 cm) SOC含量显著提高,而SM和SC处理40—60和80—100 cm SOC含量显著降低。同时,与CK处理相比各处理SOC储量变化量在处理间存在显著差异。在春季和秋季施肥下,与CK相比,SM、SC和CM处理表层SOC储量平均分别增加2.32、5.42和12.60 t/hm2,且CM处理显著高于SM和SC处理;而在底层 (40—100 cm) 平均分别降低3.98、6.99和3.76 t/hm2;0—100 cm,CM处理SOC储量增加9.62 t/hm2,而SM和SC处理平均分别降低1.81和5.36 t/hm2。冗余分析结果表明,有机碳输入和土壤养分对表层碳储量变化的总解释率为90.10%,而对下层 (20—100 cm) 的总解释率仅为31.80%。其中,影响表层碳储量变化的主要因子是有效磷 (解释率为80.10%),而下层则是全氮 (25.28%)。  【结论】  在施用化肥基础上,长期秸秆还田促进表层碳累积,但底层氮素供应不足引起碳耗竭。总体上,秸秆过腹还田是褐土区农田培肥和增产的最优秸秆还田方式。  相似文献   

15.
In a field experiment, the effect of combination of different organic manures on the productivity of crops and soil quality were evaluated in deep vertisols of central India. Combinations of cattle dung manure (CDM), poultry manure (PM), and vermicompost (VC) vis‐à‐vis mineral fertilizers were tested in four cropping systems involving soybean (Glycine max L.), durum wheat (Triticum durum Desf.), mustard (Brassica juncea L.), chickpea (Cicer arietinum L.), and isabgol (Plantago ovata Forsk). The organic manures were applied based on the N‐equivalent basis and nutrient requirement of individual crop. The grain yields of durum wheat and isabgol were higher in the treatment that received a combination of CDM + VC + PM whereas in mustard, CDM + PM and in chickpea, CDM + VC recorded the higher yields. The yield levels in these organic‐manure combinations were similar to the yields obtained with mineral fertilizers. Among the cropping systems, soybean–durum wheat and among the nutrient sources, the combination of CDM + VC + PM recorded the highest total productivity. At the end of the 3‐year cropping cycle, application of organic manures improved the soil‐quality parameters viz., soil organic carbon (SOC), soil available nutrients (N, P, and K), soil enzymes (dehydrogenase and alkaline phosphatase), and microbial biomass C in the top 0–15 cm soil. Bulk density and mean weight diameter of the soil were not affected by the treatments. Among the cropping systems, soybean–durum wheat recorded the highest SOC and accumulated higher soil available N, P, and K. In conclusion, the study clearly demonstrated that the manures applied in different combinations improved the soil quality and produced the grain yields which are at par with mineral fertilizers.  相似文献   

16.
Organic manure application is a feasible approach to alleviate the deterioration of soil erosion on soil organic carbon (SOC). However, to what extent manure application can restore carbon contents in SOC fractions in the eroded Phaeozems remains unknown. A 5-year field experiment was conducted in an artificially eroded Phaeozem with up to 30 cm of topsoil being removed. Chemical fertiliser, or chemical fertiliser plus cattle manure was applied. The contents of SOC were 23.6, 21.6 and 15.1 g C kg?1 soil for non-soil removal control, 10 and 30 cm of topsoil removal, respectively. Compared with the chemical fertiliser-only treatment, the chemical fertiliser plus manure application markedly increased SOC contents by 30–45% and C sequestration rates by 7.1–9.0-fold, especially in the fraction of 53–250 μm particulate organic carbon. However, with manure applied, SOC content in the fraction of mineral associated organic carbon in the 30 cm topsoil-removed soil was 2.9 g kg?1, 14.7% less than control (3.4 g kg?1). The combination of chemical fertliser and manure application effectively restored SOC in the eroded Phaeozems mainly through increasing the size of 53–250 μm particulate organic C fraction, but did not improve the SOC stability in severely eroded Phaeozems.  相似文献   

17.
Crop and land management practices affect both the quality and quantity of soil organic matter (SOM) and hence are driving forces for soil organic carbon (SOC) sequestration. The objective of this study was to assess the long‐term effects of tillage, fertilizer application and crop rotation on SOC in an agricultural area of southern Norway, where a soil fertility and crop rotation experiment was initiated in 1953 and a second experiment on tillage practices was initiated in 1983. The first experiment comprised 6‐yr crop rotations with cereals only and 2‐yr cereal and 4‐yr grass rotations with recommended (base) and more than the recommended (above base) fertilizer application rates; the second experiment dealt with autumn‐ploughed (conventional‐till) plots and direct‐drilled plots (no‐till). Soil samples at 0–10 and 10–30 cm depths were collected in autumn 2009 and analysed for their C and N contents. The quality of SOM in the top layer was determined by 13C solid‐state NMR spectroscopy. The SOC stock did not differ significantly because of rotation or fertilizer application types, even after 56 yr. However, the no‐till system showed a significantly higher SOC stock than the conventional‐till system at the 0–10 cm depth after the 26 yr of experiment, but it was not significantly different at the 10–30 cm depth. In terms of quality, SOM was found to differ by tillage type, rate of fertilizer application and crop rotation. The no‐till system showed an abundance of O‐alkyl C, while conventional‐till system indicated an apparently indirect enrichment in alkyl C, suggesting a more advanced stage of SOM decomposition. The long‐term quantitative and qualitative effects on SOM suggest that adopting a no‐tillage system and including grass in crop rotation and farmyard manure in fertilizer application may contribute to preserve soil fertility and mitigate climate change.  相似文献   

18.
‘Deep incorporation of corn straw’ (CSDI) is to concentrate the burial of corn straw into the subsurface soil layer (20–40 cm) and to break the plough pan, thereby creating a loosened plough layer (0–20 cm) and a fertile subsurface soil layer. However, its impacts on soil organic carbon (SOC) and the microbial community remain poorly understood. A field experiment was conducted to investigate the effects of 1-year CSDI (CD1), 3-year CSDI (CD3) and 5-year CSDI (CD5) on soil aggregates and aggregate-associated SOC, as well as bacterial and fungal community characteristics (examined by the high-throughput gene sequencing method). The results demonstrated that SOC and soil fungal diversity were decreased by CD1, but increased by CD3 and CD5. Compared with the control, CD5 promoted 2–0.25 mm soil macroaggregation, significantly increased SOC by 8.94% and aggregate-associated SOC by 5.96%–8.84%, consequently improving the physical protection of SOC by soil aggregates. CD3 and CD5 enhanced the richness and diversity of soil bacteria and fungi, and altered community composition. For soil bacteria, the relative abundance of Acidobacteria and Chloroflexi was increased, while that of Firmicutes, Gemmatimonadetes, Sphingomonas and Bacillus was decreased. For soil fungi, the relative abundance of Ascomycota, Zygomycota, Mortierella and Fusarium was greatly improved, but that of Basidiomycota was reduced. These obvious variations in microbial community structure were beneficial to straw degradation and SOC accumulation. Overall, the optimization of microbial community with CSDI plays a positive role in promoting soil organic matter, nutrient cycling and carbon sequestration, and thus improving soil fertility.  相似文献   

19.
The study was based on data from selected long-term field trials established at the Experimental Fields of the Institute of Field and Vegetable Crops, Novi Sad (Serbia). The effect of tillage systems on SOC concentration and SOC stock was most pronounced at 0–10 cm depth. In a 0–40 cm soil layer, in a 7-year period, no-till (NT) sequestrated 863 kg SOC ha?1 yr?1 more compared to moldboard plow tillage (PT), while the effects of disc tillage (DT) and chisel tillage (CT) were not significantly different. Unfertilized three-crop rotation (CSW) compared to two-crop rotation (CW) enhanced SOC storage in a 0–30 cm soil layer by 151 kg C ha?1 yr?1 in a 56-year period. Within fertilized treatments, SOC concentration was highest under continuous corn (CC). Mineral fertilization (F) non-significantly increased the SOC stock compared to no fertilization in corn monoculture in a 32-year period. The incorporation of mineral fertilizers and harvest residues (F + HR) and mineral fertilizers and farmyard manure (F + FYM) sequestered 195 and 435 kg C ha?1 yr?1 more than the unfertilized plot, respectively, in a 0–30 cm soil layer, in a 35-year period. Irrigation did not significantly affect SOC sequestration.  相似文献   

20.
Soil organic carbon (SOC) consists of various classes of organic substances that can be pooled as labile and non-labile fractions. Previous studies have suggested that plant invasion increases SOC content, but whether invasion consistently alters SOC fractions remains unclear. Consequently, the present study was conducted to observe the effects of Praxelis clematidea invasion on SOC fractions in a tropical savanna of southern China. Soil samples were collected in two surface soil layers (0–10 and 10–20 cm) from non-, slightly and severely invaded plots to analyse the total SOC, readily oxidizable SOC (ROC), and non-readily oxidizable SOC (NROC) content. The results showed that severe P. clematidea invasion significantly increased the SOC content by 47% in the surface soil (p < 0.001). The increase in SOC content largely originated from the accumulation of NROC (the non-labile fraction), rather than ROC which typically is regarded as the labile OC fraction. This change may be beneficial to long-term soil C stabilization because chemical recalcitrance is an important pathway to prevent SOC from decomposition. Although the mechanisms for NROC accumulation have not been thoroughly elucidated to date, our results suggest that P. clematidea invasion may facilitate soil C sequestration in this tropical savanna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号