首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To investigate effects of carprofen on indices of renal function and results of serum bio-chemical analyses and effects on cardiovascular variables during medetomidine-propofol-isoflurane anesthesia in dogs. ANIMALS: 8 healthy male Beagles. PROCEDURES: A randomized crossover study was conducted with treatments including saline (0.9% NaCl) solution (0.08 mL/kg) and carprofen (4 mg/kg) administered IV. Saline solution or carprofen was administered 30 minutes before induction of anesthesia and immediately before administration of medetomidine (20 microg/kg, IM). Anesthesia was induced with propofol and maintained with inspired isoflurane in oxygen. Blood gas concentrations and ventilation were measured. Cardiovascular variables were continuously monitored via pulse contour cardiac output (CO) measurement. Renal function was assessed via glomerular filtration rate (GFR), renal blood flow (RBF), scintigraphy, serum biochemical analyses, urinalysis, and continuous CO measurements. Hematologic analysis was performed. RESULTS: Values did not differ significantly between the carprofen and saline solution groups. For both treatments, sedation and anesthesia caused changes in results of serum biochemical and hematologic analyses; a transient, significant increase in urine alkaline phosphatase activity; and blood flow diversion to the kidneys. The GFR increased significantly in both groups despite decreased CO, mean arterial pressure, and absolute RBF variables during anesthesia. CONCLUSIONS AND CLINICAL RELEVANCE: Carprofen administered IV before anesthesia did not cause detectable, significant adverse effects on renal function during medetomidine-propofol-isoflurane anesthesia in healthy Beagles.  相似文献   

2.
OBJECTIVE: To evaluate the effect of medetomidine on minimum alveolar concentration (MAC), respiratory rate, tidal volume, minute volume (V(M)), and maximum inspiratory occlusion pressure (IOCP(max)) in halothane- and isoflurane-anesthetized dogs. ANIMALS: 6 healthy adult dogs (3 males and 3 females). PROCEDURE: The MAC of both inhalants was determined before and 5, 30, and 60 minutes after administration of medetomidine (5 microg/kg, IV). Dogs were subsequently anesthetized by administration of halothane or isoflurane and administered saline (0.9% NaCl) solution IV or medetomidine (5 microg/kg, IV). Respiratory variables and IOCP(max) were measured at specific MAC values 15 minutes before and 5, 30, and 60 minutes after IV administration of medetomidine while dogs breathed 0% and 10% fractional inspired carbon dioxide (FICO2). Slopes of the lines for VM/FICO2 and IOCP(max)/FICO2 were then calculated. RESULTS: Administration of medetomidine decreased MAC of both inhalants. Slope of V(M)/FICO2 increased in dogs anesthetized with halothane after administration of medetomidine, compared with corresponding values in dogs anesthetized with isoflurane. Administration of medetomidine with a simultaneous decrease in inhalant concentration significantly increased the slope for V(M)/FICO2, compared with values after administration of saline solution in dogs anesthetized with halothane but not isoflurane. Values for IOCP(max) did not differ significantly between groups. CONCLUSIONS AND CLINICAL RELEVANCE: Equipotent doses of halothane and isoflurane have differing effects on respiration that are most likely attributable to differences in drug effects on central respiratory centers. Relatively low doses of medetomidine decrease the MAC of halothane and isoflurane in dogs.  相似文献   

3.
OBJECTIVE: To compare effects of medetomidine and xylazine hydrochloride on results of cystometry and micturition reflexes in healthy dogs and results of urethral pressure profilometry (UPP) in sedated and conscious dogs. ANIMALS: 20 dogs. PROCEDURES: Urodynamic testing was performed 6 times in each dog (3 times after administration of xylazine [1 mg/kg of body weight, IV] and 3 times after administration of medetomidine (30 microg/kg, IM). Before each episode of sedation, UPP was performed. Heart and respiratory rates and indirect blood pressures were recorded prior to and 5, 10, 20, and 30 minutes after injection of sedative. Cystometry measurements included threshold volume, threshold pressure, and tonus limb. The UPP measurements included maximal urethral closure pressure (MUCP), functional profile length, and, in male dogs, plateau pressure. RESULTS: Mean MUCP was decreased markedly in xylazine- and medetomidine-sedated dogs. Xylazine and medetomidine also decreased plateau pressure in male dogs. The MUCP measurements were consistent among days for conscious and xylazine-sedated dogs but were inconsistent for medetomidine-sedated female dogs. The proportion of valid cystometry measurements was greater for xylazine (39 of 60) than for medetomidine (27 of 60). Cystometry was considered invalid when bladder pressure reached 30 cm H2O without initiation of a micturition reflex. CONCLUSIONS AND CLINICAL RELEVANCE: Medetomidine and xylazine have similar effects on measurement of UPP and cystometry. Medetomidine was less consistent among days for UPP in female dogs and produced fewer valid cystometry tests, compared with xylazine. For urodynamic evaluations, medetomidine administered IM cannot be substituted for xylazine administered IV.  相似文献   

4.
OBJECTIVE: To evaluate the effects of the alpha2-adrenoceptor agonist medetomidine on respiratory rate (RR), tidal volume (V(T)), minute volume (V(M)), and central respiratory neuromuscular drive as determined by inspiratory occlusion pressure (IOP) during increasing fractional inspired concentrations of carbon dioxide (FiCO2) in conscious dogs. ANIMALS: 6 healthy dogs (3 males and 3 females). PROCEDURE: Dogs were administered 0, 5, or 10 microg of medetomidine/kg i.v. We measured RR, V(T), V(M), and IOP for the first 0.1 second of airway occlusion (IOP0.1) during FiCO2 values of 0%, 2.5%, 5.0%, and 75% at 15 minutes before and 5, 30, and 60 minutes after administration of medetomidine. RESULTS: Increases in FiCO2 significantly increased RR, V(T), and V(M). The i.v. administration of 5 and 10 microg of medetomidine/kg significantly decreased RR and V(M) at 5, 30, and 60 minutes for FiCO2 values of 2.5% and 5.0% and at 30 and 60 minutes for an FiCO2 value of 75%. The IOP0.1 was decreased after 30 minutes only for an FiCO2 value of 7.5% in dogs administered 5 and 10 microg of medetomidine/kg. The IOP0.1 was decreased at 60 minutes after administration of 10 microg of medetomidine/kg for an FiCO2 value of 7.5%. CONCLUSIONS AND CLINICAL RELEVANCE: The i.v. administration of medetomidine decreases RR, V(M), and central respiratory drive in conscious dogs. Medetomidine should be used cautiously and with careful monitoring in dogs with CNS depression or respiratory compromise.  相似文献   

5.
OBJECTIVE: To determine cardiopulmonary effects of total IV anesthesia with propofol and medetomidine in ponies and effect of atipamezole on recovery. ANIMALS: 10 ponies. PROCEDURE: After sedation was induced by IV administration of medetomidine (7 microg/kg of body weight), anesthesia was induced by IV administration of propofol 12 mg/kg) and maintained for 4 hours with infusions of medetomidine (3.5 microg/kg per hour) and propofol 10.07 to 0.11 mg/kg per minute). Spontaneous respiration was supplemented with oxygen. Cardiopulmonary measurements and blood concentrations of propofol were determined during anesthesia. Five ponies received atipamezole (60 microg/kg) during recovery. RESULTS: During anesthesia, mean cardiac index and heart rate increased significantly until 150 minutes, then decreased until cessation of anesthesia. Mean arterial pressure and systemic vascular resistance index increased significantly between 150 minutes and 4 hours. In 4 ponies, PaO2 decreased to < 60 mm Hg. Mean blood propofol concentrations from 20 minutes after induction onwards ranged from 2.3 to 3.5 microg/ml. Recoveries were without complications and were complete within 28 minutes with atipamezole administration and 39 minutes without atipamezole administration. CONCLUSIONS AND CLINICAL RELEVANCE: During total IV anesthesia of long duration with medetomidine-propofol, cardiovascular function is comparable to or better than under inhalation anesthesia. This technique may prove suitable in equids in which prompt recovery is essential; however, in some animals severe hypoxia may develop and oxygen supplementation may be necessary.  相似文献   

6.
Using a randomized crossover design, this study compared the anesthetic and cardiorespiratory effects of three intramuscular anesthetic combinations in seven 2-year-old cats: tiletamine-zolazepam (8 mg/kg) and butorphanol (0.2 mg/kg) (TT); tiletamine-zolazepam (3 mg/kg), butorphanol (0.15 mg/kg), and medetomidine (15 microg/kg) (TTD); or the TTD protocol plus atipamezole (75 microg/kg IM) given 20 minutes later to reverse medetomidine. Analgesia was assessed using algometry and needle pricking. All three combinations effectively induced anesthesia suitable for orotracheal intubation within 5 minutes after injection. Hemoglobin oxygen saturation was lower than 90% at least once in all three groups between 5 and 15 minutes after drug administration. Blood pressure and heart and respiratory rates were within normal ranges. Both TT and TTD appeared to be effective injectable anesthetic combinations. TTD provided significantly better analgesia with a longer duration than did TT. Atipamezole administration shortened the duration of analgesia and decreased blood pressure but did not shorten total recovery time.  相似文献   

7.
OBJECTIVE: To evaluate the cardiovascular effects of the alpha2-adrenergic receptor agonist medetomidine hydrochloride in clinically normal cats. ANIMALS: 7 clinically normal cats. PROCEDURE: Cats were anesthetized with isoflurane, and thermodilution catheters were placed for measurement of central venous, pulmonary, and pulmonary capillary wedge pressures and for determination of cardiac output. The dorsal pedal artery was catheterized for measurement of arterial blood pressures and blood gas tensions. Baseline variables were recorded, and medetomidine (20 microg/kg of body weight, IM) was administered. Hemodynamic measurements were repeated 15 and 30 minutes after medetomidine administration. RESULTS: Heart rate, cardiac index, stroke index, rate-pressure product, and right and left ventricular stroke work index significantly decreased from baseline after medetomidine administration, whereas systemic vascular resistance and central venous pressure increased. However, systolic, mean, and diastolic arterial pressures as well as arterial pH, and oxygen and carbon dioxide tensions were not significantly different from baseline values. CONCLUSIONS AND CLINICAL RELEVANCE: When administered alone to clinically normal cats, medetomidine (20 microg/kg, IM) induced a significant decrease in cardiac output, stroke volume, and heart rate. Arterial blood pressures did not increase, which may reflect a predominant central alpha2-adrenergic effect over peripheral vascular effects.  相似文献   

8.
OBJECTIVES: To determine effects of commonly used diuretic treatments on glomerular filtration rate (GFR), renal blood flow (RBF), and urine output (UO) and compare 2 methods of GFR measurement in healthy awake cats. ANIMALS: 8 healthy cats. PROCEDURE: In a randomized crossover design, cats were randomly allocated to 4 groups: control; IV administration of fluids; IV administration of fluids and mannitol; and IV administration of fluids, dopamine, and furosemide. Inulin and para-aminohippuric acid were used for determination of plasma clearance for GFR and RBF, respectively. Plasma clearance of technetium-Tc-99m-diethylenetriaminepentacetic acid (99mTc-DTPA) was also used for GFR determination. RESULTS: Furosemide-dopamine induced the largest UO, compared with other groups. Both mannitol and fluid therapy increased RBF, compared with the control group. Mannitol, and not fluid therapy, increased RBF, compared with furosemide-dopamine. There were significant differences in GFR values calculated from 99mTc-DTPA and inulin clearances between the 2 groups. In all groups, use of 99mTc-DTPA caused underestimation of GFR, compared with use of inulin. CONCLUSIONS AND CLINICAL RELEVANCE: In healthy awake cats, administration of furosemide-dopamine did not increase GFR or RBF despite increased UO. Fluid therapy and fluid therapy plus mannitol improved RBF. Determination of GFR by use of 99mTc-DTPA cannot always be substituted for inulin clearance when accurate measurement is required.  相似文献   

9.
OBJECTIVE: To determine whether IV administration of a combination of medetomidine and ketamine depresses cardiopulmonary function in healthy adult gopher tortoises. DESIGN: Prospective study. ANIMALS: 3 adult male and 3 adult female nonreleasable gopher tortoises. PROCEDURE: Prior to the study, carotid and jugular catheters were surgically placed in each tortoise for blood collection, direct arterial blood pressure monitoring, and drug administration. Heart rate, direct carotid arterial blood pressure, and body temperature were measured before and every 5 minutes for 45 minutes after IV injection of medetomidine (100 microg/kg [45.5 microg/lb]) and ketamine (5 mg/kg [2.3 mg/lb]). Carotid arterial blood samples were collected before and 5, 15, 30, and 45 minutes after medetomidine-ketamine administration to determine pH, PO2, and PCO2. Atipamezole (500 mg/kg [227 microg/lb], IV) was administered 30 minutes after administration of medetomidine-ketamine. RESULTS: The medetomidine-ketamine combination caused a moderate increase in arterial blood pressure, and moderate hypercapnia and hypoxemia. There were no significant changes in heart rate or body temperature. Intravenous administration of atipamezole rapidly induced severe hypotension. CONCLUSIONS AND CLINICAL RELEVANCE: The combination of medetomidine and ketamine administered IV resulted in effective short-term immobilization adequate for minor diagnostic procedures in gopher tortoises. This combination also caused moderate hypoventilation, and it is recommended that a supplemental source of oxygen or assisted ventilation be provided. Atipamezole administration hastens recovery from chemical immobilization but induces severe hypotension. It is recommended that atipamezole not be administered IV for reversal of medetomidine in tortoises and turtles.  相似文献   

10.
The objective of this paper was to evaluate romifidine as a pre-medicant in dogs prior to propofol-isoflurane anaesthesia, and to compare it with medetomidine. For this, eight healthy dogs were anaesthetised. Each dog received three pre-anaesthetic protocols: R40 (romifidine, 40 microg/kg, IV), R80 (romifidine, 80 microg/kg, IV) or MED (medetomidine, 10 microg/kg, IV). Induction of anaesthesia was delivered with propofol and maintained with isoflurane. The following variables were studied before sedative administration and 10 min after sedative administration: heart rate (HR), mean arterial pressure (MAP), systolic arterial pressure (SAP) and diastolic arterial pressure (DAP) and respiratory rate (RR). During maintenance, the following variables were recorded at 5-min intervals: HR, MAP, SAD, DAP, arterial oxygen saturation (SpO(2)), end-tidal CO(2)(EtCO(2)), end-tidal concentration of isoflurane (EtISO) required for maintenance of anaesthesia and tidal volume (TV). Time to extubation, time to sternal recumbency and time to standing were also registered. HR and RR experimented a significantly decreased during sedation in all protocols respect to baseline values. Mean HR, MAP, SAP, DAP, SpO(2), EtCO(2), and TV during anaesthesia were similar for the three protocols. End tidal of isoflurane concentration was statistically similar for all protocols. Recovery time for R40 was significantly shorter than in R80 and MED. The studied combination of romifidine, propofol and isoflurane appears to be an effective drug combination for inducing and maintaining general anaesthesia in healthy dogs.  相似文献   

11.
Raekallio M., M. Hackzell and L. Eriksson: Influence of medetomidine on acid-base balance and urine excretion in goats. Acta vet. scand. 1994,35,283-288.– Seven goats were given medetomidine 5 μg/kg as an iv bolus injection. Venous blood samples were taken repeatedly and urine was collected continuously via a catheter up to 7h after the injection.Medetomidine caused deep clinical sedation. Base excess, pH and PCO2 in venous blood rose after medetomidine administration. There were no significant changes in plasma concentrations of sodium, calcium, magnesium, creatinine or osmolality, whereas potassium and bicarbonate concentrations increased, and phosphate and chloride decreased. Medetomidine increased plasma glucose concentration, and in 4 of 7 goats glucose could also be detected in urine. Medetomidine did not influence urine flow rate, free water clearance, bicarbonate and phosphate excretion or pH, but renal chloride, sodium, potassium, calcium, magnesium and creatinine excretion were reduced.The results suggest that the metabolic alkalosis recorded after medetomidine administration is not caused by increased renal acid excretion.  相似文献   

12.
The effects of intramuscularly administered medetomidine and butorphanol (MB), and medetomidine, butorphanol, atropine (MBA) on glomerular filtration rate (GFR) were determined in six dogs as measured by 99m-Tc-labeled diethylenetriaminepentaacetic acid (99mTc-DTPA) nuclear scintigraphy. Direct systolic, diastolic, and mean arterial blood pressures and heart rate were measured at regular time intervals before, during, and after GFR calculations. The mean GFR measurement following MB was significantly greater (4.44 ml/min/kg) than following MBA (3.82 ml/min/kg) or saline treatment (3.41 ml/min/kg). There was no significant difference between the mean GFR measurements following MBA injection and following saline injection. Diastolic and mean arterial pressures following MBA injection were significantly higher than the values recorded after either MB or saline alone. Heart rate following MB administration was significantly lower than that recorded for dogs receiving MBA or saline alone. The results of this study indicate that the administration of medetomidine in combination with butorphanol significantly increases total GFR in healthy dogs, while the administration of the combination of medetomidine, butorphanol, and atropine does not.  相似文献   

13.
Oxygenation status was evaluated in medetomidine-sedated dogs breathing room air (M) or 100 percent oxygen (MO2). Medetomidine (40 microg/kg IV) administration resulted in peripheral vasoconstriction and decreased venous saturation as measured by an increased oxygen extraction ratio in peripheral tissues. Providing 100 percent oxygen insufflation via face mask reduced desaturation by increasing oxygen content but did not prevent vasoconstriction or reduce the oxygen extraction ratio in peripheral tissues. Atipamezole (200 microg/kg IV) reversed medetomidine-induced vasoconstriction and increased oxygen supply to tissues as indicated by a lower tissue oxygen extraction ratio. The authors conclude that 100 percent oxygen insufflation via face mask during medetomidine sedation (40 micrograms/kg [corrected] IV) benefits tissue oxygenation in healthy dogs.  相似文献   

14.
OBJECTIVE: To investigate the disposition kinetics of ampicillin and sulbactam after IV and IM administration of an ampicillin-sulbactam (2:1) preparation and determine the bioavailability of the combined preparation after IM administration in turkeys. ANIMALS: 10 healthy large white turkeys. PROCEDURE: In a crossover study, turkeys were administered the combined preparation IV (20 mg/kg) and IM (30 mg/kg). Blood samples were collected before and at intervals after drug administrations. Plasma ampicillin and sulbactam concentrations were measured by use of high-performance liquid chromatography; plasma concentration-time curves were analyzed via compartmental pharmacokinetics and noncompartmental methods. RESULTS: The drugs were distributed according to an open 2-compartment model after IV administration and a 1-compartment model (first-order absorption) after IM administration. For ampicillin and sulbactam, the apparent volumes of distribution were 0.75+/-0.11 L/kg and 0.74+/-0.10 L/kg, respectively, and the total body clearances were 0.67+/-0.07 L x kg(-1) x h(-1) and 0.56+/-0.06 L x kg(-1) x h(-), respectively. The elimination half-lives of ampicillin after IV and IM administration were 0.78+/-0.12 hours and 0.89+/-0.17 hours, respectively, whereas the corresponding half-lives of sulbactam were 0.91+/-0.12 hours and 0.99+/-0.16 hours, respectively. Bioavailability after IM injection was 58.87+/-765% for ampicillin and 53.75+/-5.35% for sulbactam. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that a regimen of loading and maintenance doses of 300 mg of the ampicillin-sulbactam (2:1) combination/kg every 8 hours could be clinically useful in turkeys. This dosage regimen maintained plasma concentrations of ampicillin > 0.45 microg/mL in turkeys.  相似文献   

15.
The cardiovascular effects of medetomidine, detomidine, and xylazine in horses were studied. Fifteen horses, whose right carotid arteries had previously been surgically raised to a subcutaneous position during general anesthesia were used. Five horses each were given the following 8 treatments: an intravenous injection of 4 doses of medetomidine (3, 5, 7.5, and 10 microg/kg), 3 doses of detomidine (10, 20, and 40 microg/kg), and one dose of xylazine (1 mg/kg). Heart rate decreased, but not statistically significant. Atrio-ventricular block was observed following all treatments and prolonged with detomidine. Cardiac index (CI) and stroke volume (SV) were decreased with all treatments. The CI decreased to about 50% of baseline values for 5 min after 7.5 and 10 microg/kg medetomidine and 1 mg/kg xylazine, for 20 min after 20 microg/kg detomidine, and for 50 min after 40 microg/kg detomidine. All treatments produced an initial hypertension within 2 min of drug administration followed by a significant decrease in arterial blood pressure (ABP) in horses administered 3 to 7.5 microg/kg medetomidine and 1 mg/kg xylazine. Hypertension was significantly prolonged in 20 and 40 microg/kg detomidine. The hypotensive phase was not observed in 10 microg/kg medetomidine or detomidine. The changes in ABP were associated with an increase in peripheral vascular resistance. Respiratory rate was decreased for 40 to 120 min in 5, 7.5, and 10 microg/kg medetomidine and detomidine. The partial pressure of arterial oxygen decreased significantly in 10 microg/kg medetomidine and detomidine, while the partial pressure of arterial carbon dioxide did not change significantly. Medetomidine induced dose-dependent cardiovascular depression similar to detomidine. The cardiovascular effects of medetomidine and xylazine were not as prolonged as that of detomidine. KEY WORDS: cardiovascular effect, detomidine, equine, medetomidine, xylazine.  相似文献   

16.
OBJECTIVE: To determine the cardiorespiratory effects of preemptive atropine administration in dogs sedated with medetomidine. DESIGN: Randomized crossover trial. ANIMALS: 12 healthy adult dogs. PROCEDURES: Dogs underwent 6 treatments. Each treatment consisted of administration of atropine (0.04 mg/kg [0.018 mg/lb] of body weight, IM) or saline solution (0.9% NaCl, 1 ml, IM) and administration of medetomidine (10, 20, or 40 microg/kg [4.5, 9.1, or 18.2 microg/lb], IM) 10 minutes later. Treatments were administered in random order, with a minimum of 1 week between treatments. Cardiorespiratory effects before and after atropine and medetomidine administration were assessed. Duration of lateral recumbency and quality of sedation and recovery were assessed. RESULTS: Bradycardia (heart rate < 60 beats/min) was seen in all dogs when saline solution was administered followed by medetomidine, and the dose of medetomidine was not associated with severity or frequency of bradycardia or second-degree heart block. However, a medetomidine dose-dependent increase in mean and diastolic blood pressures was observed, regardless of whether dogs received saline solution or atropine. Preemptive atropine administration effectively prevented bradycardia and second-degree heart block but induced pulsus alternans and hypertension. The protective effects of atropine against bradycardia lasted 50 minutes. Blood gas values were within reference limits during all treatments and were not significantly different from baseline values. Higher doses of medetomidine resulted in a longer duration of lateral recumbency. CONCLUSIONS AND CLINICAL RELEVANCE: Preemptive administration of atropine in dogs sedated with medetomidine effectively prevents bradycardia for 50 minutes but induces hypertension and pulsus alternans.  相似文献   

17.
OBJECTIVE: To evaluate effects of anesthesia, surgery, and intravenous administration of fluids on plasma concentrations of antidiuretic hormone (ADH), concentration of total solids (TS), PCV, arterial blood pressure (BP), plasma osmolality, and urine output in healthy dogs. ANIMALS: 22 healthy Beagles. PROCEDURE: 11 dogs did not receive fluids, and 11 received 20 ml of lactated Ringer's solution/kg of body weight/h. Plasma ADH adn TS concentrations, PCV, osmolality, and arterial BP were measured before anesthesia (T0) and after administration of preanesthetic agents (T1), induction of anesthesia (T2), and 1 and 2 hours of surgery (T3 and T4, respectively). Urine output was measured at T3 and T4. RESULTS: ADH concentrations increased at T1, T3, and T4, compared with concentrations at T0. Concentration of TS and PCV decreased at all times after administration of preanesthetic drugs. Plasma ADH concentration was less at T3 in dogs that received fluids, compared with those that did not. Blood pressure did not differ between groups, and osmolality did not increase > 1% from To value at any time. At T4, rate of urine production was less in dogs that did not receive fluids, compared with those that did. CONCLUSIONS AND CLINICAL RELEVANCE: Plasma ADH concentration increased and PCV and TS concentration decreased in response to anesthesia and surgery. Intravenous administration of fluids resulted in increased urine output but had no effect on ADH concentration or arterial BP. The causes and effects of increased plasma ADH concentrations may affect efficacious administration of fluids during the perioperative period in dogs.  相似文献   

18.
Medetomidine is the most potent and selective alpha2-agonist used in veterinary medicine and its effects can be antagonized by the alpha2-antagonist atipamezole. The pharmacokinetics of medetomidine and atipamezole were studied in a cross-over trial in eight lactating dairy cows. The animals were injected intravenously (i.v.) with medetomidine (40 microg/kg) followed by atipamezole i.v. (200 microg/kg) or saline i.v. after 60 min. Drug concentrations in plasma were measured by HPLC. After the injection of atipamezole, the concentration of medetomidine in plasma increased slightly, the mean increment being 2.7 ng/mL and the mean duration 12.1 min. However, atipamezole did not alter the pharmacokinetics of medetomidine. It is likely that the increase in medetomidine concentration is caused by displacement of medetomidine by atipamezole in highly perfused tissues. The volume of distribution at steady state (Vss) for medetomidine followed by saline and medetomidine followed by atipamezole was 1.21 and 1.32 L/kg, respectively, whereas the total clearance (Cl) values were 24.2 and 25.8 mL/min x kg. Vss and Cl values for atipamezole were 1.77 mL/kg and 48.1 mL/min x kg, respectively. Clinically, medetomidine significantly reduced heart rate and increased rectal temperature for 45 min. Atipamezole reversed the sedative effects of medetomidine. However, all the animals, except one, relapsed into sedation at an average of 80 min after injection of the antagonist.  相似文献   

19.
ObjectiveTo evaluate the effects of intravenous (IV) or intramuscular (IM) hyoscine premedication on physiologic variables following IV administration of medetomidine in horses.Study designRandomized, crossover experimental study.AnimalsEight healthy crossbred horses weighing 330 ± 39 kg and aged 7 ± 4 years.MethodsBaseline measurements of heart rate (HR), cardiac index (CI), respiratory rate, systemic vascular resistance (SVR), percentage of patients with second degree atrioventricular (2oAV) block, mean arterial pressure (MAP), pH, and arterial partial pressures of carbon dioxide (PaCO2) and oxygen (PaO2) were obtained 5 minutes before administration of IV hyoscine (0.14 mg kg?1; group HIV), IM hyoscine (0.3 mg kg?1; group HIM), or an equal volume of physiologic saline IV (group C). Five minutes later, medetomidine (7.5 μg kg?1) was administered IV and measurements were recorded at various time points for 130 minutes.ResultsMedetomidine induced bradycardia, 2oAV blocks and increased SVR immediately after administration, without significant changes in CI or MAP in C. Hyoscine administration induced tachycardia and hypertension, and decreased the percentage of 2oAV blocks induced by medetomidine. Peak HR and MAP were higher in HIV than HIM at 88 ± 18 beats minute?1 and 241 ± 37 mmHg versus 65 ± 16 beats minute?1 and 192 ± 38 mmHg, respectively. CI was increased significantly in HIV (p ≤ 0.05). Respiratory rate decreased significantly in all groups during the recording period. pH, PaCO2 and PaO2 were not significantly changed by administration of medetomidine with or without hyoscine.Conclusion and clinical relevanceHyoscine administered IV or IM before medetomidine in horses resulted in tachycardia and hypertension under the conditions of this study. The significance of these changes, and responses to other dose rates, requires further investigation.  相似文献   

20.
The pharmacokinetic properties of ceftazidime, a third generation cephalosporin, were investigated in five cats after single intravenous (IV) and intramuscular (IM) administration at a dose rate of 30 mg/kg. Minimum inhibitory concentrations (MICs) of ceftazidime for some Gram-negative (Escherichia coli, n=11) and Gram-positive (Staphylococcus spp., n=10) strains isolated from clinical cases were determined. An efficacy predictor, measured as the time over which the active drug exceeds the bacteria minimum inhibitory concentration (T>MIC), was calculated. Serum ceftazidime disposition was best fitted by a bi-compartmental and a mono-compartmental open model with first-order elimination after IV and IM dosing, respectively. After IV administration, distribution was rapid (t(1/2(d)) 0.04+/-0.03 h), with an area under the ceftazidime serum concentration:time curve (AUC((0-infinity))) of 173.14+/-48.69 microg h/mL and a volume of distribution (V((d(ss)))) of 0.18+/-0.04 L/kg. Furthermore, elimination was rapid with a plasma clearance of 0.19+/-0.08 L/hkg and a t(1/2) of 0.77+/-0.06 h. Peak serum concentration (C(max)), T(max), AUC((0-infinity)) and bioavailability for the IM administration were 89.42+/-12.15 microg/mL, 0.48+/-0.49 h, 192.68+/-65.28 microg h/mL and 82.47+/-14.37%, respectively. Ceftazidime MIC for E. coli ranged from 0.0625 to 32 microg/mL and for Staphylococcus spp. from 1 to 64 microg/mL. T>MIC was in the range 35-52% (IV) and 48-72% (IM) of the recommended dosing interval (8-12h) for bacteria with a MIC(90)4 microg/mL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号