首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work describes the ontogeny of the digestive tract in thick lipped grey mullet (Chelon labrosus) larvae reared until day 36 post-hatching with the semi-extensive technology in mesocosms. Diet was constituted by live preys, rotifers, Artemia and wild zooplankton, then compound diet was added from day 20 (p. h.). Linear growth, weight growth and digestive enzymes specific activities were studied during larval ontogeny. Pancreatic enzymes (trypsin and amylase) and intestinal enzymes (leucine-alanine peptidase “Leu-ala”, aminopeptidase N “AN” and alkaline phosphatase “AP”) were assayed in larvae sampled throughout the rearing trial to evaluate gastrointestinal maturation along the development.The trypsin specific activities were very high during the first two weeks and then declined as observed in marine fish species. A following increase in trypsin specific activity from day 20 was attributed notably to ingestion of particle compound diet. In contrast to the pattern generally described in fish larvae, amylase specific activity showed a continuous increase. This could be attributed to the fact that C. labrosus is an omnivorous species and suggests that the fish might be able to use efficiently diets containing higher levels of starch or other carbohydrates since the end of larval development.Relative expression of intestinal brush border membrane enzymes (AP and AN) and cytosolic enzyme (Leu-ala), showed an abrupt increase of both AP/leu-ala and AN/leu-ala ratios at day 8 (p. h.), indicating that maturation of intestinal tract in C. labrosus larvae is particularly precocious. It is assumed that larvae of C. labrosus might support early co-feeding and weaning strategies, which could reasonably be initiated since mouth opening.  相似文献   

2.
The leopard grouper is an endemic species of the Mexican Pacific with an important commercial fishery and good aquaculture potential. In order to assess the digestive capacity of this species during the larval period and aid in the formulation of adequate weaning diets, this study aimed to characterize the ontogeny of digestive enzymes during development of the digestive system. Digestive enzymes trypsin, chymotrypsin, acid protease, leucine–alanine peptidase, alkaline phosphatase, aminopeptidase N, lipase, amylase and maltase were quantified in larvae fed live prey and weaned onto a formulated microdiet at 31 days after hatching (DAH) and compared with fasting larvae. Enzyme activity for trypsin, lipase and amylase were detected before the opening of the mouth and the onset of exogenous feeding, indicating a precocious development of the digestive system that has been described in many fish species. The intracellular enzyme activity of leucine–alanine peptidase was high during the first days of development, with a tendency to decrease as larvae developed, reaching undetectable levels at the end of the experimental period. In contrast, activities of enzymes located in the intestinal brush border (i.e., aminopeptidase and alkaline phosphatase) were low at the start of exogenous feeding but progressively increased with larval development, indicating the gradual maturation of the digestive system. Based on our results, we conclude that leopard grouper larvae possess a functional digestive system at hatching and before the onset of exogenous feeding. The significant increase in the activity of trypsin, lipase, amylase and acid protease between 30 and 40 DAH suggests that larvae of this species can be successfully weaned onto microdiets during this period.  相似文献   

3.
California halibut Paralichthys californicus is an important commercial species with high aquaculture potential in Baja California Sur, México. To optimize the feeding process using live prey and/or inert diets, we evaluated alkaline proteases, pepsin, trypsin, chymotrypsin, leucine aminopeptidase, lipase, α-amylase, and acid and alkaline phosphatase activities on starved larvae and larvae fed live prey. Highest activities were observed for alkaline protease, trypsin, chymotrypsin, leucine aminopeptidase, and alkaline phosphatase in feeding larvae than starved larvae on day 4 after hatching. At day 5, a sizeable increase in all enzymatic activities was detected in feeding larvae. Alkaline protease, trypsin, chymotrypsin, and alkaline phosphatase decreases progressively from day 5 until day 18. At day 18, a slight pepsin activity was observed. This was considered an indicator of the start of digestive system maturation. We concluded that total enzymatic equipment for this species is complete between day 18 and 30 after hatching. Based on this evidence, early weaning from live prey to inert feed would be possible at this time.  相似文献   

4.
To optimize Senegalese sole‐weaning strategies, three experiments were performed. The first trial tested four weaning strategies with a 10 mg sole. Artemia‐fed sole grew threefold less than fish fed an inert diet. Sudden weaning (abrupt change from Artemia to inert diet) and weaning with co‐feeding produced larger sole than did a late weaning treatment; delayed weaning negatively affected fish growth. In the second experiment, the digestive capacity of early‐weaned 1, 2 and 4 mg sole was investigated. The highest growth was observed in sole weaned at 4 mg. Digestive enzyme profiles suggest that sole have an adaptation period to inert diets, with reduced feed intake. This adaptation period is inversely proportional to post‐larvae weight. The third experiment examined weaning with co‐feeding at different weights (2, 5 and 11 mg). These studies demonstrate that sole of 5–10 mg can be weaned, with high survival rates. On the basis of the digestive enzyme profiles, the early introduction of inert diets in co‐feeding with Artemia seems to affect intestinal processes in smaller postlarvae. This study also suggests that trypsin and alkaline phosphatase may be used as indicators of nutritional status in sole of <5 mg.  相似文献   

5.
We describe the development and distribution of intestinal aminopeptidase M, dipeptidyl aminopeptidase IV, non-specific esterase, alkaline phosphatase and acid phosphatase, using enzyme histochemistry techniques, in the spotted sand bass larvae ( Paralabrax maculatofasciatus ) under culture conditions. All digestive enzymes tested showed a positive reaction from first feeding (day 2) and throughout the study period (day 30). At first feeding, the main enzymatic activity was in the mucosa throughout the intestines. Later, enzymatic activity occurred in the liver, kidney and stomach. All enzymatic activities increased from days 15 to 20, remaining constant until the end of the study. This enzymatic activity suggests the onset of maturation of the digestive tract. After day 20, a positive reaction was recorded in the pyloric caeca for all tested enzymatic activities. Our study confirms the digestive and absorptive functions in the intestines in spotted sand bass larvae from first feeding. It also brings new insight to establish an early weaning strategy during cultivation of spotted sand bass larvae.  相似文献   

6.
The optimal time to wean fish larvae from live feed to artificial feed was explored in yellowtail kingfish Seriola lalandi (YTK). The same weaning regime started at five different days post hatching (DPH), namely 10 DPH (W10), 13 DPH (W13), 16 DPH (W16), 19 DPH (W19) and 22 DPH (W22). The activities of trypsin, lipase and alkaline phosphatase were detected in fish from 8 DPH throughout the experiment, but pepsin activity was first detected in fish on 15 DPH in the W10 and W13 treatments. The increase in pepsin activity was concomitant with the decrease in trypsin activity. Total fish lipids after weaning reduced by 40% in the W10 and W13 treatments, and increased by 20% in the W19 and W22. Fish survival rate in the W22 treatment was significantly higher than that in the W10 and W13 treatments. The results suggest that 16 DPH is the earliest day to wean and the best weaning window for YTK larvae should be 19–22 DPH. This study provides enzymatic evidence to guide the weaning process for YTK larvae, and offers a useful approach to explore optimal weaning time for fish larvae.  相似文献   

7.
This study evaluated weaning success of California halibut, Paralichthys californicus, larvae onto a microdiet at various stages of development utilizing growth, survival and digestive enzyme activity. Weaning onto a microdiet was evaluated at 16, 26, 36 and 46 days posthatch (dph). Alkaline and acid proteases and leucine aminopeptidase activities were measured after weaning and compared between the weaned treatment and Artemia‐fed controls. Survival was significantly lower in the microdiet‐fed treatments compared to the control groups. Growth was significantly reduced in all weaning treatments compared to the control, except for the 46 dph group. No differences in enzyme activities were detected between treatment and diet at 16 and 26 dph; however, activities were higher for the microdiet‐fed larvae at 36 and 46 dph. This study demonstrates that California halibut larvae possess a differentiated and effective digestive system early in development and can be weaned with relative success (>40% survival) before completion of the metamorphosis (i.e., 36 dph). The lack of weaning success at an early date cannot be entirely because of the absence of a functional stomach but could be related to, among other factors, the low‐microdiet ingestion rates observed and higher leaching of smaller microdiets.  相似文献   

8.
为了解黄条鰤(Seriola aureovittata)早期发育阶段的消化生理特性,测定了黄条鰤胚胎、仔稚幼鱼阶段脂肪酶、淀粉酶、胰蛋白酶和碱性磷酸酶活性变化。结果显示,在黄条鰤仔鱼出膜前胚胎阶段,即能检测到脂肪酶、淀粉酶和碱性磷酸酶活性;初孵仔鱼体内(1 d)初次检测出胰蛋白酶的活性。脂肪酶和碱性磷酸酶比活力在仔鱼孵化后迅速增强(P<0.05),在4 d开口时,2种酶比活力达最高值;淀粉酶比活力在7 d时达最大值;胰蛋白酶比活力在仔鱼阶段缓慢上升,15 d时比活力最大。稚鱼阶段内脏团中脂肪酶、碱性磷酸酶和胰蛋白酶活性基本维持稳定,幼鱼阶段内脏团脂肪酶、碱性磷酸酶和胰蛋白酶活性都呈现上升趋势;稚鱼和幼鱼阶段内脏团中淀粉酶活性下降并基本稳定于较低水平。研究表明,黄条鰤仔稚幼鱼发育过程中,各种消化酶活性变化明显,且与其发育阶段和食性密切相关。在尚未摄食饵料的早期仔鱼体内已存在消化酶,认为其是母源传递而来,不是由外源性饵料所致;幼鱼阶段内脏团脂肪酶、碱性磷酸酶和胰蛋白酶比活力明显提高,这反映出随苗种生长发育,其肠道结构和消化机能逐渐完善,并且对脂肪、蛋白质的需求逐渐增强。  相似文献   

9.
为了解黄条(Seriola aureovittata)早期发育阶段的消化生理特性,测定了黄条胚胎、仔稚幼鱼阶段脂肪酶、淀粉酶、胰蛋白酶和碱性磷酸酶活性变化。结果显示,在黄条仔鱼出膜前胚胎阶段,即能检测到脂肪酶、淀粉酶和碱性磷酸酶活性;初孵仔鱼体内(1 d)初次检测出胰蛋白酶的活性。脂肪酶和碱性磷酸酶比活力在仔鱼孵化后迅速增强(P<0.05),在4 d开口时,2种酶比活力达最高值;淀粉酶比活力在7 d时达最大值;胰蛋白酶比活力在仔鱼阶段缓慢上升,15 d时比活力最大。稚鱼阶段内脏团中脂肪酶、碱性磷酸酶和胰蛋白酶活性基本维持稳定,幼鱼阶段内脏团脂肪酶、碱性磷酸酶和胰蛋白酶活性都呈现上升趋势;稚鱼和幼鱼阶段内脏团中淀粉酶活性下降并基本稳定于较低水平。研究表明,黄条仔稚幼鱼发育过程中,各种消化酶活性变化明显,且与其发育阶段和食性密切相关。在尚未摄食饵料的早期仔鱼体内已存在消化酶,认为其是母源传递而来,不是由外源性饵料所致;幼鱼阶段内脏团脂肪酶、碱性磷酸酶和胰蛋白酶比活力明显提高,这反映出随苗种生长发育,其肠道结构和消化机能逐渐完善,并且对脂肪、蛋白质的需求逐渐增强。  相似文献   

10.
Black snook, Centropomus nigrescens, have been identified as a promising candidate for aquaculture although, like many of the Centropomid species, high mortality associated with early larval stages presents a significant bottleneck to their commercialization. The digestive capacity of black snook larvae throughout the first 37 d after hatch (d.a.h.) was evaluated by quantifying digestive enzyme activities using biochemical techniques. Results showed that black snook larvae have alkaline proteases at hatching, which are known to be important during the first days of feeding for digestion. Toward the end of the study, acid proteases concentration increased (37 d.a.h.). Enzymes for lipid digestion, pancreatic lipase and bile salt‐activated lipase, were already present in the larvae before exogenous feeding commenced, and their activity increased with age and growth (length). Intracellular digestion, measured as the activity of leucine‐alanine peptidase, was high early on (5 d.a.h.) and decreased as development progressed (next 32 d). In contrast, alkaline phosphatase activity was lowest at first feeding and subsequently increased with age. Overall patterns in enzyme activity suggest the possibility of live feed weaning before 32 d.a.h. if artificial diets can be properly balanced.  相似文献   

11.
Two experiments were conducted in order to determine the appropriate age and stocking density of vundu catfish Heterobranchus longifilis at the weaning time. In the first experiment, five triplicate groups of 100 larvae (initial mean weight=3.4 mg) per aquaria were stocked from first feeding [day 3 post‐hatch (p.h.)] to day 30 p.h., and then weaned, on days 3 (W3), 5 (W5), 8 (W8) and 14 (W14), and an unweaned group (An). Significant differences were observed in growth, survival, cannibalism, coefficient of weight variation and body composition among larvae weaned at different ages and the control group. The later the larvae were weaned, the better were the growth performances [final mean weight: from 65.1 to 201.1 mg and specific growth rate (SGR): from 11.0 to 15.2% day?1] and the survival (from 36.5% to 74.3%). The experiment with stocking densities of 5, 10, 25 and 50 larvae L?1 showed that increasing the stocking density decreased growth performances and weight variation but improved the survival rate of larvae. The best growth performances (SGR=13.4 and 11.4% day?1) with the lowest survival rates (70.3% and 77.3%) were observed in larvae stocked at densities of 5 and 10 larvae L?1 respectively.  相似文献   

12.
Ontogenetic development of digestive system in crimson snapper (Lutjanus erythopterus Bloch 1790) larvae was histologically and enzymatically (alkaline phosphatase, amylase, lipase, pepsin, trypsin) examined from hatching to 36 days post hatching (DPH). The ontogenetic development of crimson snapper larval fish ontogeny was divided into three distinct phases: phase I starting from hatch to the onset of exogenous feeding, phase II starting from first feeding (2–3 DPH) until the formation of gastric glands (13–14 DPH) and phase III beginning from the appearance of gastric glands and continuing onwards. The specific activities of amylase, lipase, trypsin showed sharp increase and reached to the maximum from hatch to 4 DPH, 10 DPH, 20 DPH, respectively, followed by a declining trend with irregular fluctuation. In contrast to other enzymes, the specific activities of alkaline phosphatase showed a gradual increase from hatch to 29 DPH, followed by a sharp increase towards 36 DPH. The specific activity of pepsin was firstly detected on 17 DPH and gradually increased towards the end of this study. The total activities of these five enzymes showed a gradual increase till 29 DPH, followed by a sharp increase towards 36 DPH except for amylase and lipase reaching maximum at 32 DPH. The present study provides better understanding of the digestive ontogeny of crimson snapper during the larval stage and a guide to feeding and weaning of this economically important fish in hatcheries.  相似文献   

13.
Spotted sand bass Paralabrax maculatofasciatus is a potential aquaculture species in Northwest Mexico. In the last few years it has been possible to close its life cycle and to develop larviculture technology at on pilot scale using live food, however survival values are low (11%) and improvements in growth and survival requires the study of the morpho-physiological development during the initial ontogeny. In this research digestive activity of several enzymes were evaluated in larvae, from hatching to 30 days after hatching (dah), and in live prey (rotifers and Artemia), by use of biochemical and electrophoretic techniques. This paper, is the first of two parts, and covers only the biochemical analysis. All digestive enzyme activities were detected from mouth opening; however the, maximum activities varied among different digestive enzymes. For alkaline protease and trypsin the maximum activities were detected from 12 to 18 dah. Acid protease activity was observed from day 12 onwards. The other digestive enzymes appear between days 4 and 18 after hatching, with marked fluctuations. These activities indicate the beginning of the juvenile stage and the maturation of the digestive system, in agreement with changes that occur during morpho-physiological development and food changes from rotifers to Artemia. All enzymatic activities were detected in rotifers and Artemia, and their contribution to enhancement the digestion capacity of the larvae appears to be low, but cannot be minimised. We concluded that the enzymatic equipment of P. maculatofasciatus larvae is similar to that of other marine fish species, that it becomes complete between days 12 and 18 after hatching, and that it is totally efficient up to 25 dah.  相似文献   

14.
In order to assess the digestive physiological capacity of the American shad Alosa sapidissima and to establish feeding protocols that match larval nutritional requirements, we investigated the ontogenesis of digestive enzymes (trypsin, amylase, lipase, pepsin, alkaline phosphatase, and leucine aminopeptidase) in larvae, from hatching to 45 days after hatching (DAH). We found that all of the target enzymes were present at hatching, except pepsin, which indicated an initial ability to digest nutrients and precocious digestive system development. Trypsin rapidly increased to a maximum at 14 DAH. Amylase sharply increased until 10 DAH and exhibited a second increase at 33 DAH, which coincided with the introduction of microdiet at 30 DAH, thereby suggesting that the increase was associated with the microdiet carbohydrate content. Lipase increased until 14 DAH, decreased until 27 DAH, and then increased until 45 DAH. Pepsin was first detected at 27 DAH and then sharply increased until 45 DAH, which suggested the formation of a functional stomach. Both alkaline phosphatase and leucine aminopeptidase markedly increased until 18 DAH, which indicated intestinal maturation. According to our results, we conclude that American shad larvae possess the functional digestive system before mouth opening, and the significant increases in lipase, amylase, pepsin, and intestinal enzyme activities between 27 and 33 DAH suggest that larvae can be successfully weaned onto microdiets around this age.  相似文献   

15.
The digestive tract of many marine fish larvae undergoes numerous morphological and functional changes during ontogeny that can substantially influence larval survival under culture conditions. Increasing our knowledge of the digestive capacity and nutritional requirements of the larvae of new candidate species for aquaculture will aid in the development of optimal feeding protocols and greatly improve production under hatchery conditions. In this study, we assess the proteolytic capacity of California halibut (Paralichthys californicus) larvae using biochemical and histological analyses. Newly hatched larvae were reared in a semiclosed recirculating system and fed with highly unsaturated fatty acid (HUFA)–enriched rotifers from hatching until 19 d posthatch (dph) and HUFA‐enriched Artemia nauplii thereafter. Total and specific activity of trypsin and leucine‐aminopeptidase (LAP) and acid and alkaline protease activities were assessed throughout development using spectrophotometric techniques. Trypsin‐like activity and LAP and alkaline protease activities were detected shortly after hatching and before the opening of the mouth. Acid protease activity was not detected until 36–40 dph, concomitant with the development of the gastric glands. The specific activity of trypsin and LAP showed two distinct peaks at 8 and 20 dph. The second peak coincided with the shift from rotifers to Artemia. Hence, newly hatched California halibut larvae possess alkaline proteolytic activity before first feeding. Based on the digestive capacity evaluated in this study and the timing of the development of the functional stomach, we propose that California halibut can be adequately weaned to formulated microdiets around 36 dph.  相似文献   

16.
The function of digestive physiology during ontogenetic development is essential to ensure high survival and growth rates. In order to evaluate the digestive physiological capacity of the black Amur bream (Megalobrama terminalis), changes of morphology and digestive enzyme activity (trypsin, lipase, amylase, pepsin, leucine aminopeptidase and alkaline phosphatase) in larvae were examined from hatching to 40 days after hatching (DAH). Results indicated that fluctuation patterns differed between the total and specific activities of the digestive enzymes. The total activities of these six enzymes gradually increased throughout the fish growth. The specific activity of trypsin peaked at 5 DAH and then decreased dramatically, while it increased remarkably again from 8 to 10 DAH and remained stable level after 20 DAH. Pepsin activity was first examined in M. terminalis at 15 DAH and gradually elevated towards the end of the experiment. The specific activity of lipase displayed obvious peaks at 5 and 20 DAH. For the amylase, its specific activity reached plateau at 4 DAH, underwent sharp decrease, and remained stable after 20 DAH. In addition, we found that the specific activity of alkaline phosphatase raised significantly from hatching to 5 DAH, and tended to keep slight fluctuation after 15 DAH. From the above, we concluded that the specific activities of digestive enzymes in the larvae varied constantly from 3 to 20 DAH and turned relatively stable after 20 DAH. The present study provides effective information that is useful to improve the seedling cultivation and the technology for healthy breeding.  相似文献   

17.
The effects of weaning strategies of cobia (Rachycentron canadum L.) larvae to commercial microdiets, either from rotifers or from Artemia, on growth, survival and enzymatic digestive capacity, were investigated. In the first experiment, cobia larvae were weaned from rotifers by co-feeding with a microdiet (Otohime) from 8, 13 or 20 days post-hatching (dph). The larvae in the control treatment were fed rotifers (2–12 dph), Artemia nauplii from 7 dph, and co-fed with the microdiet from 20 dph. In the second experiment, the larvae were weaned from Artemia, which was fed to the larvae from 7 dph, by co-feeding with a microdiet (NRD) from 8, 13 or 18 dph. The larvae in control treatment were fed rotifers, then Artemia to the end of the experiment (28 dph). Weaning of cobia larvae onto a microdiet directly from rotifers significantly reduced growth, survival and digestive capacity of the larvae and did not lead to larval acceptance of the microdiet, compared to those weaned from Artemia in the first experiment. Early weaning of cobia larvae onto NRD microdiet (on 8 or 13 dph) from Artemia in the second experiment also reduced growth, survival rate and gut maturation index, compared to those fed live feed. With available microdiets, weaning of cobia larvae could start from Artemia at around 18 dph in order to obtain comparable growth, survival and gut maturation to larvae fed live feed.  相似文献   

18.
The activities of several digestive enzymes during larval development of the spotted sand bass (Paralabrax maculatofasciatus) were evaluated using electrophoretic techniques. The results show the presence of three isoforms of alkaline protease from day 2 after hatching (ah) and the early appearance of one pepsin-like band from day 12 ah onwards. In addition, two lipase bands first appeared on day 2 ah, and there was a change in the molecular weight of one band from day 15 ah onwards. Several α-amylase isoforms were observed from hatching up to day 5 ah. These results indicate that the important digestive enzymes develop rapidly in these larvae, supporting the possibility of early weaning at day 12 ah using artificial diets.  相似文献   

19.
We describe digestive enzyme activity during the larval development of spotted rose snapper, Lutjanus guttatus. Trypsin, chymotrypsin, leucine aminopeptidase, pepsin, amylase, lipase, and acid and alkaline phosphatase activities were evaluated using spectrophotometric techniques from hatching through 30 days. The spotted rose snapper larvae present the same pattern of digestive enzyme activity previously reported for other species in which pancreatic (i.e., trypsin, chymotrypsin, amylase, and lipase) and intestinal (i.e., acid and alkaline phosphatases and leucine aminopeptidase) enzymatic activities are present from hatching allowing the larvae to digest and absorb nutrients in the yolk-sac and live prey by the time of first feeding. The digestive and absorption capacity of the spotted rose snapper increases during the larval development. A significant increase in individual activity of all enzymes occurs at 20 DAH, and around 25 DAH, the juvenile-type of digestion is observed with the appearance of pepsin secreted by the stomach, suggesting that maturation of the digestive function occurs around 20–25 DAH. Our results are in agreement with a previous suggestion that early weaning may be possible from 20 DAH. However, the patterns of enzymatic activities reported in our study should be considered during the formulation of an artificial diet for early weaning of the spotted rose snapper.  相似文献   

20.
Weaning success of pond‐cultured pikeperch and wild‐caught perch (mean length 51 and 48 mm respectively) was evaluated using different weaning techniques and different formulated feeds. Juveniles that were fed formulated feed grew as well as or better than juveniles that were weaned successively using zooplankton or yolk. Four different formulated feeds (agglomerated marine larvae feed, marine larvae feed, trout feed and a semi‐moist feed) were evaluated regarding specific growth rate (SGR), condition factor and a subjective stomach fullness estimate. The agglomerated marine larvae feed gave significantly better weaning performance than the other feeds regarding all parameters (SGR = 7.3% day?1 and 3.4% day?1 for pikeperch and perch respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号