首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
A commercial microencapsulated diet was used as a total or partial replacement of live prey for feeding larvae of winter flounder Pseudopleuronectes americanus (Walbaum), a potential alternative finfish species for coldwater marine aquaculture. Growth performance (morphometric measurements and biochemical composition) and nutritional condition (RNA/DNA ratios) of larvae fed live prey (Brachionus plicatilis Müller), a microencapsulated diet or a mixed diet of live prey and microcapsules were compared. Newly hatched larvae were unable to digest microencapsulated diet; live prey at initial feeding was required for their survival and growth. Larvae offered a mixed diet showed slower growth than larvae fed exclusively with live prey. However, at the onset of stomach differentiation, RNA/DNA ratios (indicators of protein synthesis potential) of the larvae fed both diets became similar. We suggest that, at that stage (size 5.5–6.3 mm), enzymatic activity had developed enough to allow digestion of inert food. As the RNA/DNA ratio is a good indicator of nutritional condition, it appears to be an interesting tool for the assessment of diet adequacy in marine larval feeding technology.  相似文献   

2.
Marine Fish Larvae Feeding: Formulated Diets or Live Prey?   总被引:7,自引:0,他引:7  
In the rearing of larval marine fish, any diet that reduces dependance on live prey production is of technical and economic interest. Weaning juveniles with a completely developed digestive tract to a conventional diet, (i.e., "late weaning") can be successful in any marine fish species. For example, weaning one-month-old sea bass (20 mg) to the study's reference diet, Sevbar, resulted in over 85% survival (40% from hatching) and 1.25 g fish at day 90 (at 19 C)
In contrast, "early weaning" of larvae to special microdiets during the first month is still difficult. The best way to reduce live prey utilization in sea bass is to wean larvae at about 3–4 mg in size (day 20). If weaning could be accomplished 15 days earlier, Artemia savings could be as high as 80%. However, this introduces risks relative to growth retardation (30% weight loss) and lower juvenile quality, including greater size variability and skeletal abnormalities. Similar results have been obtained with commercial microparticles (Fry Feed Kyowa) and experimental microbound diets (MBD) made from raw materials (alginate MBD) or preferably from freeze-dried protein sources (zein MBD).
Total replacement of live prey is still impossible in marine fish. Sea bass larvae fed formulated diets exclusively from first feeding (0.3 mg larval wet weight), or even from their second week of life onwards, exhibited low survival and poor growth. Better results can be obtained when formulated diets are used in combination with live prey from first feeding, although the optimal ratio of live prey to formulated diet is still to be specified.  相似文献   

3.
Witch flounder Glyptocephalus cynoglossus has recently been identified as a candidate species for aquaculture in the northeastern United States and the Canadian Atlantic Provinces. This study investigated the optimal temperatures for witch flounder larval first feeding and for long term larval culture from hatching through metamorphosis. Maximum first feeding occurred between 15.0 and 16.2 C. Larvae did not survive beyond first feeding when reared at mean temperatures of 5.1, 10.4, or 19.5 C and were unable to initiate feeding at mean rearing temperatures below 6.0 C. At a rearing temperature of 15.0 C in 16-L tanks, mean larval survival to 60 days post hatch (dph) was 14.1%. Mean overall length-specific growth rate for larvae reared to 60 dph at 15.0 C was 3.5%/d and mean absolute growth was 0.62 mm/d. Subsequent larval growth at 15.6 C began to taper off towards 70 dph at the onset of weaning which overlapped with larval metamorphosis. Growth plateaued at 85 dph, followed by a rebound between 90 and 95 dph. Survival was 100% when weaning onto a dry, pelleted diet was initiated at 70 dph with a 10-d live diet co-feeding period. These results are favorable and encourage the further pursuit of commercial witch flounder culture.  相似文献   

4.
Weaning marine fish larvae from live prey to a dry microdiet is an important step towards optimizing the commercial production, but early weaning is constrained by the lack of sufficient digestive enzymes at first feeding. This study quantified the activity of five digestive enzymes throughout the larval period of pigfish (Orthopristis chrysoptera [L.]) to assess ontogenetic changes in digestive abilities, and then trials were conducted that determined the optimal time for weaning. The activity of all digestive enzymes was low or undetectable at first feeding (3 days post hatching, dph; 2.5 mm standard length, SL). A substantial increase in activity occurred at 5.7 mm SL (17 dph), 6.9 mm SL (21 dph), 7.7 mm SL (23 dph), 8.4 mm SL (25 dph) and 11.2 mm SL (30 dph) for bile salt‐dependent lipase, trypsin, chymotrypsin, amylase and acid protease respectively. During the weaning experiment, larvae were co‐fed live prey and microdiet beginning 15 dph (4.8 mm SL). Live prey was withdrawn from the diet at 24, 28, 32 or 36 dph, with the control receiving live prey and microdiet throughout (to 43 dph). There were no significant differences in mean final SL among treatments, but survival was significantly lower when larvae were weaned at 24 dph compared to 32–43 dph. Based on the digestive enzyme activity and survival, weaning larval pigfish at 32 dph (11.7 mm SL) when reared at 24°C is recommended.  相似文献   

5.
Sea bass (Dicentrarchus labrax) larvae were weaned at day 25 with microparticulated diets in which 10% of the nitrogen supply had different molecular forms: amino acid mixture (SLAA), casein hydrolysate (SLH) or fish meal (SLP). The control group (LP) was fed live prey. No difference was observed in larval growth between the weaned groups, but the survival was significantly higher in the SLH group. Trypsin secretion was stimulated in the SLAA group, whereas the SLH diet reduced the secretion from the exocrine pancreas. The activity of the leucine-alanine peptidase, located in the cytosol of enterocytes, remained high in all weaned groups. However, the activity of the peptidases of the brush border membrane increased during the development phase in the control group. These results suggest that weaning with a classic compound diet delays enterocyte differentiation by maintaining the larval features of digestion. A compound diet containing protein hydrolysate can attenuate the delay of intestinal maturation.  相似文献   

6.
The effects of culture parameters of tank color and feeding regimes were examined on larval white bass Morone chrysops during 1994–1995. Under high surface illumination (998 lux), dark tank walls were essential for effective prey capture. Larvae reared in clear glass aquaria did not grow and had died by day 6 of the study. In contrast, 48.7% of the larvae reared in black-walled tanks were alive on day 24 and had grown to 17.2 mm total length (TL). In another study, larvae were fed rotifers Brachionus plicatilis and Artemia nauplii in different feeding protocols. In one treatment only rotifers (10/mL) were fed day 1 (4 d post-hatch), rotifers and Artemia (3/mL) were fed days 2–4, and Artemia fed days 5–15. This protocol produced similar growth (mean size 11.7 mm TL) and survival (mean 30.3%) as slower weaning times from rotifers to Artemia . Juveniles (27-day-old, 17.2 mm TL) were converted to a dry crumble diet over a 14-d period by slow transfer from a combination diet consisting of live Artemia nauplii, frozen adult Artemia , plankton flakes and dry crumbles. Survival offish weaned to the dry diet was 64.5%. Most of the mortalities during the weaning period were fish with uninflated swim bladders which were cannibalized by larger fish. Using the above tank culture techniques, white bass were reared to a mean size of 73.2 mm TL (mean weight 5.8 g) over a 73-d period. This essentially closes the life cycle of white bass.  相似文献   

7.
The tongue sole Cynoglossus semilaevis, an inshore fish in China, has showed great potential in aquaculture recently. However, poor survival was recorded during the period of weaning from live Artemia to artificial diets. In this paper, the influence of co‐feeding larvae with live and inert diet on weaning performance was described. The C. semilaevis larvae were reared at 21 ± 1 °C and fed four different feeding regimes from 6 days post‐hatching (dph): A, Artemia (10 individuals mL?1); B, Artemia (5 individuals mL?1); C, mixed diet (10 Artemia individuals mL?1 and 12 mg L?1 inert diet); and D, mixed diet (5 Artemia individuals mL?1 and 12 mg L?1 inert diet). Rotifers were also supplied in all cases during the first days of feeding. Mixed diets of commercial formulated feed and live prey (rotifers and Artemia) allowed larvae to complete metamorphosis, achieving similar specific growth rate (SGR) (18.5 ± 1.4% and 18.7 ± 1.6%) and survival (40 ± 7.6% and 48.5 ± 6.8%) compared with larvae fed on live feed alone (SGR of 18.3 ± 1.2%, 19.3 ± 1.9% and survival of 41.2 ± 11.3%, 38 ± 4.9%). However, in metamorphosed fish, when live feed was withdrawn on 31 dph, there was significant difference (P < 0.05) in survival and growth among treatments. Metamorphosed fish, previously fed mixture diets during larval stages, had similar survival (62.1 ± 7.6% and 62.8 ± 3.9% for regimes C and D, respectively) but higher than that obtained for fish that previously fed on live feed (49.3 ± 2% and 42.1 ± 3.9% for regimes A and B, respectively) after weaning (day 60). The SGR of weaned fish previously fed live feed was similar (3.1 ± 0.6% and 2.92 ± 0.6% for regimes A and B, respectively) but lower than that recorded for fish that was fed from day 6 to day 30 on the mixed diet (4.5 ± 1.1% and 4.9 ± 0.3% for regimes C and D, respectively). It is suggested that weaning of C. semilaevis from early development would appear to be feasible and larval co‐feeding improves growth and survival.  相似文献   

8.
In recent years, a great deal of interest has emerged in the development of microdiets as an economic alternative to live food, in the larval culture of marine fish species. The ability to grow Sparus aurata larvae on a prototype microparticulate diet was examined. To achieve this objective, four feeding regimes differing in the time when the microdiet was introduced (3, 7 or 12 days) and one based exclusively on an inert diet were tested, during the first 22 days of larval life. Significant differences in larval growth were found between the experimental feeding regimes and their corresponding controls (enriched rotifers during the whole experimental period); the larvae in the co-feeding regimes and with an exclusive microparticulate diet were always significantly smaller than larvae fed on rotifers alone. However, the difference was minimised by introducing the inert diet at a later date. A lower survival was found in larvae with a co-feeding regime, in comparison with the control treatments and the survival was significantly lower in larvae fed exclusively on a microparticulate diet. The fatty acid analysis revealed that the experimental microencapsulated diet and the rotifers enriched with Protein Selco® presented relatively similar fatty acid content. In spite of the slightly higher (n?3)/(n?6) and Docosahexaenoic acid (DHA)/Eicosapentaenoic acid (EPA) ratios and somewhat lower highly unsaturated fatty acid (HUFA) content found in the inert diet, the fatty acid composition of the diets cannot explain the differences found in larval performance. The results revealed that the complete replacement of live prey with the tested microparticulate diet is still not possible in S. aurata larval rearing. Nevertheless, better growth and survival results and a substantial reduction in the daily supply of live food can be achieved with a combination of microdiet and live prey.  相似文献   

9.
A feeding protocol was developed for red drum larvae based on combining a commercial microparticulate diet (Kyowa Fry Feed) with live prey (rotifers) in a closed, water reuse system. In five trials, growth and survival were measured on larvae reared on a combination of live and microdiet for 1–5 d and then microdiet alone. Results in each trial were compared to control larvae reared on live rotifers Brachionus plicatilis and brine shrimp nauplii Artemia salinas. The most satisfactory combination was feeding live food and microdiet together for the first five days and then completely discontinuing live prey, eliminating the need to feed brine shrimp to the larvae. Growth rates of larvae fed progressively larger sizes of the microdiet were as good as larvae reared on live prey. Both groups metamorphosed to the juvenile stage at less than one month. Survival rates on the five day live food and microdiet combination were a remarkable 60% from egg to the juvenile stage. The successful weaning of red drum to microdiets paves the way to produce a semipurified diet to test nutrient requirements of larval fish.  相似文献   

10.
Early weaning trials were conducted with cod larvae to investigate the effectiveness of microparticulate diets (microbound and microcoated) with and without lipid-walled capsules (LWCs). The microparticulate diets were evaluated by measuring physical parameters of the diet in the water column (leaching and settling rate), palatability (intestinal fullness), performance of the diet (survival and growth), and examination of the diet in the larval intestine (histological analysis). A feeding trial was conducted using four experimental diets (carrageenan microbound diet, carrageenan microbound diet with LWCs, zein microcoated diet and zein microcoated diet with LWC), one commercial diet (BioKyowa: A-250) and a live feed control (rotifers and Artemia ). Survival of cod larvae to 39 days post-hatch ranged from 5 to 10% with the experimental diets, 22.9% with the BioKyowa diet, and 36.5% with live prey. There was evidence of food absorption with all diets in the form of lipid vacuoles in the midgut and supranuclear vacuoles in the hindgut. Large vacuoles in the midgut were more abundant in the enterocytes of larvae fed the experimental diets compared with larvae on the BioKyowa diet and the live feed control. Based on observations of intestinal fullness, the experimental diets appeared to be less palatable than the BioKyowa diet. As a result, it took longer to wean the larvae and higher mortality was experienced during weaning. Once successfully weaned, the experimental diets yielded growth rates equivalent to larvae feeding on the commercial diet for the remainder of the experiment.  相似文献   

11.
ABSTRACT

Low survival rates during larval stages constitute a major bottleneck in the successful culture of many marine and some freshwater fish. The availability of live food is recognized as a critical factor influencing larval survival. Live food is still superior to the best larval diets in terms of larval survival and growth. This paper reviews important ecological and ethological aspects of feeding, from hatching tothe weaning stage, and relates them to problems in larval culture. In general, freshwater fish larvae are easier to raise than marine fish larvae, because at hatching they are larger and endowed with more yolk reserves, are less sensitive to starvation, and canbe weaned to artificial diets sooner. The feeding behavior of the larvae can be analyzed in terms of the sequential components of predation: search, encounter, pursuit, attack, capture, and ingestion. The searching efficiency and encounter rates of the visual predator are influenced by prey parameters such as body size, conspicuousness, and evasiveness. Turbidity of the water and light intensity also affect prey detection. To changing prey densities, the larvae show typical Type II functional responses, which are influenced by prey handling time, which in turn is largely a function of prey size. Knowledge of larval functional responses is helpful in providing the right concentrations oflive food for larval culture. The larvae are initially gape-limited and exhibit prey size selectivity but gradually widen their prey size range as they grow. An aquacultural application of this is the commonly employed feeding protocol, prey size sequencing, in which progressively larger live food items are offered as the larvae grow. A thorough knowledge of the feeding behavior is also essential in the formulation of acceptable larval diets.  相似文献   

12.
The study investigated the combined effect of weaning from live feed to a commercial dry pellet at 10, 15, 20, 25 or 30 days posthatching (dph) and co‐feeding for 1, 3 or 6 days on survival and growth of Coregonus peled larvae. Additional groups fed only live Artemia sp. nauplii (ART), and only Biomar LARVIVA ProWean 100 (DRY) were included. A final survival rate of 66.4%–85.5% was observed in groups weaned after 20 dph. Final body weight (BW) and total length (TL) were significantly lower in groups weaned at 10 and 15 dph, regardless of the duration of co‐feeding. Larvae reached 29–37 mg BW and TL of 17.7–19.0 mm in groups weaned at 20, 25 and 30 dph. The recommended minimum duration of feeding with live food, based on these results, is 20 days. Based on the significantly higher yield of larvae weaned after 20 dph irrespective of co‐feeding duration, it can be concluded that abrupt weaning to dry food after 20 days of feeding with live prey can provide adequate production while reducing the effort and costs associated with live feed.  相似文献   

13.
Problems of limited number of dry feeds as supplement or replacement of live feeds have led to poor larval nutrition in many species of fish. Therefore, the suitability of co‐feeding 8‐day‐old African catfish (Clarias gariepinus) posthatch larvae using live feed (Artemia salina) and formulated dry diet containing freshwater atyid shrimp (Caridina nilotica) during weaning was investigated. The experiment ended after 21 days of culture and respective groups compared on the basis of growth performance, survival, feed utilization and nutrient utilization. Larvae co‐fed using 50%Artemia and 50% formulated dry diet resulted in significantly (P < 0.05) better growth performance, food gain ratio (FGR), protein efficiency ratio (PER) and productive protein values (PPV) than other treatments. The lowest growth performance occurred in larvae weaned using 100% formulated and commercial dry diets. Better survival of over 90% was obtained in larvae weaned using 50%Artemia and 50% dry diet, while abrupt weaning using 100% dry diets resulted in lower survival (<75%). These results support a recommendation of co‐feeding C. gariepinus larvae using a formulated dry diet containing C. nilotica and 50% live feed when weaning is performed after 8 days posthatching period.  相似文献   

14.
The leopard grouper is an endemic species of the Mexican Pacific with an important commercial fishery and good aquaculture potential. In order to assess the digestive capacity of this species during the larval period and aid in the formulation of adequate weaning diets, this study aimed to characterize the ontogeny of digestive enzymes during development of the digestive system. Digestive enzymes trypsin, chymotrypsin, acid protease, leucine–alanine peptidase, alkaline phosphatase, aminopeptidase N, lipase, amylase and maltase were quantified in larvae fed live prey and weaned onto a formulated microdiet at 31 days after hatching (DAH) and compared with fasting larvae. Enzyme activity for trypsin, lipase and amylase were detected before the opening of the mouth and the onset of exogenous feeding, indicating a precocious development of the digestive system that has been described in many fish species. The intracellular enzyme activity of leucine–alanine peptidase was high during the first days of development, with a tendency to decrease as larvae developed, reaching undetectable levels at the end of the experimental period. In contrast, activities of enzymes located in the intestinal brush border (i.e., aminopeptidase and alkaline phosphatase) were low at the start of exogenous feeding but progressively increased with larval development, indicating the gradual maturation of the digestive system. Based on our results, we conclude that leopard grouper larvae possess a functional digestive system at hatching and before the onset of exogenous feeding. The significant increase in the activity of trypsin, lipase, amylase and acid protease between 30 and 40 DAH suggests that larvae of this species can be successfully weaned onto microdiets during this period.  相似文献   

15.
First feeding success is critical to larval marine finfish and optimization of live feed densities is important for larval performance and the economics of commercial hatchery production. This study investigated various rotifer feeding regimes on the prey consumption, growth and survival of yellowtail kingfish Seriola lalandi larvae over the first 12 days post hatch (dph). The common practice of maintaining high densities of rotifers (10–30 ind. mL?1) in the rearing tank was compared to a low density feeding technique, where 5–8 ind. mL?1 of rotifers were offered. A ‘hybrid’ feeding regime offered rotifers at the high density treatment until 5 dph and the lower feeding densities thereafter. There was no significant difference in larval survival (hybrid: 28.9 ± 7%, low density: 17.3 ± 5% and high density: 17.2 ± 9%) or growth (hybrid: 6.12 ± 0.18 mm, low density: 6.03 ± 0.10 mm and high density: 6.11 ± 0.23 mm) between treatments. Rotifer ingestion was independent of rotifer density throughout the trial and increased with larval age, with larvae at 4 dph ingesting 22 ± 1.5 rotifers larvae?1 h?1 and by 11 dph ingesting 59 ± 1.6 rotifers larvae?1 h?1. These data demonstrate that from first feeding, yellowtail kingfish larvae are efficient at capturing prey at the densities presented here and consequently significant savings in rotifer production costs as well as other potential benefits such as facilitation of early weaning and improved rotifer nutritional value may be obtained by utilizing lower density rotifer feeding regimes.  相似文献   

16.
Fish larvae present high amino acid requirements due to their high growth rate. Maximizing this growth rate depends on providing a balanced amino acid diet which can fulfil larval amino acid nutritional needs. In this study, two experimental microencapsulated casein diets were tested: one presenting a balanced amino acid profile and another presenting an unbalanced amino acid profile. A control diet, live feed based, was also tested. Trials were performed with larvae from 1 to 25 days after hatching (DAH). Microencapsulated diets were introduced at 8 DAH in co-feeding with live feed and at 15 DAH larvae were fed the microencapsulated diets alone. Results showed a higher survival for the control group (8.6 ± 1.3% versus 4.2 ± 0.6% and 3.2 ± 1.8%) although dry weight and growth were similar in all treatments. The proportion of deformed larvae as well as the ammonia excretion was lower in the group fed a balanced diet than in the unbalanced or control groups (38.3% deformed larvae in control, 30% in larvae fed unbalanced diet and 20% on balanced diet group). Furthermore, larvae fed the microencapsulated diets presented higher docosahexaenoic acid and arachidonic acid levels. This study demonstrates that dietary amino acid profile may play an important role in larval quality. It also shows that balanced microencapsulated diets may improve some of the performance criteria, such as skeletal deformities, compared to live feeds.  相似文献   

17.
Growth, development, antioxidant enzymes, stress proteins (HSP70 and HSP60), lipid peroxidation (LP) and histology in Solea senegalensis larvae were followed from 8 to 30 days post hatching (dph). Larvae were fed on three different diets: (1) live Artemia nauplii, (2) microcapsules elaborated by internal gelation, (MA) and (3) these same microcapsules but 10-fold supplemented with vitamin A (MAV). The Artemia fed group showed higher growth and a faster metamorphosis than the ones fed with microencapsulated diets, although all had similarly high survival rates of 80%. Vitamin A (VA) supplementation improved growth and development from 15 dph in relation to the strictly inert diet (MA). Larvae fed with Artemia showed organs and tissues with a normal pattern of development, whereas histological alterations were seen in larvae fed with both inert diets. The antioxidant enzymes: catalase (KAT), superoxide dismutase (SOD), and total glutathione peroxidase (t-GPX) as well as LP levels and stress proteins (HSP70 but not HSP60), measured in whole larvae, showed diet and age dependence in their response. Larvae fed with both inert diets showed similar biomarker activities, but these activities were different (p < 0.05) from larvae fed with Artemia. That is, KAT and HSP70 were lower in larvae fed with live prey and t-GPX and LP levels were lower in larvae fed with the inert food. Among the factors responsible for increased antioxidant defenses were the initiation of metamorphosis and the use of inert food. This study suggests the usefulness of the biomarkers selected as tools to evaluate the effects of compound diets on larvae.  相似文献   

18.
19.
Interest in the culture of flatfishes has increased globally due to high consumer demand and decreased commercial landings. The Southern flounder Paralichthys lethostigma inhabit South Atlantic and Gulf of Mexico waters and support important commercial and recreational fisheries. In spring, 1996, a two-part larval rearing study was performed with Southern flounder to examine the effects of three larval diets and two light intensities on survival, growth, and pigmentation. The first part of the study consisted of feeding 6 d post-hatch (dph) (3.0 ± 0.1 mm TL) larvae three diets: 1) rotifers Brachionus plicatilis at a rate of 10/mL from day 1–9 and Artemia nauplii (3/mL) from day 7 through metamorphosis; 2) rotifers fed day 1 through metamorphosis and Artemia fed day 7 through metamorphosis; or 3) same diet as treatment 1 plus a commercial larval diet added day 13 through metamorphosis. The second part of the study examined the effects of two light levels: low-light (mean 457 lux) and high-light (mean 1362 lux). At 24 C, metamorphosis began on day 23 (mean fish size 8.2 ± 0.6 mm TL) in all treatments and was completed by day 30. Analysis of survival, size, and pigmentation data indicated there were no significant differences among feed treatments or between light treatments. Overall survival was 33.4% (±15.9) and mean length was 11.5 mm TL ± 1.3. Only 35% of the larvae were normally pigmented. Reexamination of the pigmentation on day 37 indicated fish reared at the low light intensity through metamorphosis (day 30) but exposed to high light intensity for 1 wk post-metamorphosis had become significantly more pigmented.  相似文献   

20.
Mulloway (Argyrosomus japonicus) is an emerging aquaculture species in Australia, but there is a need to improve the production technology and lower costs, including those associated with larval rearing and live feeds. Three experiments were conducted to determine appropriate weaning strategies from live feeds, rotifers (Brachionus plicatilis) and Artemia, to cheaper formulated pellet diets. Experiment 1 examined the effects of feeding Artemia at different levels [0%, 50% or 100% ration of Artemia fed from 18 days after hatching (dah); based on current hatchery protocols] and a pellet diet from two larval ages (14 or 23 dah). In addition, rotifers were supplied to larvae in all treatments for the duration of the experiment (14–29 dah), at which time all larvae were successfully weaned onto the pellet diet. No significant (P>0.05) differences existed between the growth of fish fed a 50% and 100% ration of Artemia; however, fish fed a 0% ration of Artemia had significantly (P<0.05) reduced growth. The time of pellet introduction had no significant (P>0.05) effects on the growth of larvae. Experiments 2 and 3 were designed to determine the size [total length (TL), mm] at which mulloway larvae selected Artemia equally or in preference to rotifers, and pellet (400 μm) equally or in preference to Artemia respectively. Each day, larvae were transferred from a holding tank to experimental vessels and provided with rotifers (2 mL?1), Artemia (2 mL?1) or a combination of rotifers (1 mL?1) and Artemia (1 mL?1) (Experiment 2), and Artemia (2 mL?1), a pellet diet or a combination of Artemia (1 mL?1) and a pellet diet that was broadcast every 15 min (Experiment 3). After 1 h, a sub‐sample of larvae was randomly selected from each replicate vessel (n=5) and the gut contents were examined under a light microscope. Mulloway larvae began selecting Artemia equally to rotifers at 5.2 ± 0.5 mm TL and selected pellets equally to Artemia at 10.6 ± 1.8 mm TL. Our results have led to the establishment of weaning protocols for larval mulloway, which optimize larval growth while reducing feed cost by minimizing the amount of Artemia used during production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号