首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为提高草莓的总产量,合理监控和防治草莓病害是有效的手段,提出一种基于改进YOLOv5的草莓病害识别算法。该检测算法以CSPDarknet作为主干特征提取网络,能够有效提高模型的性能和训练效率,并使用EIOU Loss损失函数与K-means聚类算法,来提高模型的收敛速度。同时,在模型中增加CBAM注意力机制来提高检测精度,最终构建基于改进YOLOv5的CBAM-YOLOv5l算法。试验结果表明,改进后的模型较之原始模型,在检测精度上有所提升且依然能保证高效的检测速度。另外,经过训练的CBAM-YOLOv5l目标检测算法在验证集下的总体平均精度达到96.52%,平均检测时间为27.52 ms,对比YOLOv4、YOLOv4-Tiny、Faster_R-CNN等目标检测算法,该检测算法在精度上具有更大的优势,在实际的草莓果园环境中具有良好的鲁棒性与实时性,可以满足草莓病害识别精度的需求,能够可靠地提示草莓健康状态,从而及时地实现精准施药等保护措施。  相似文献   

2.
针对目前设施农业数字化栽培调控技术中对作物的生育期实时检测与分类问题,提出一种改进YOLOv4的温室环境下草莓生育期识别方法。该方法将注意力机制引入到YOLOv4主干网络的跨阶段局部残差模块(Cross Stage Partial Residual,CSPRes)中,融合草莓不同生长时期的目标特征信息,同时降低复杂背景的干扰,提高模型检测精度的同时保证实时检测效率。以云南地区的智能设施草莓为试验对象,结果表明,本研究提出的YOLOv4-CBAM(YOLOv4-Convolutional Block Attention Module)模型对开花期、果实膨大期、绿果期和成熟期草莓的检测平均精度(Average Precision,AP)分别为92.38%、82.45%、68.01%和92.31%,平均精度均值(Mean Average Precision,mAP)为83.79%,平均交并比(Mean Inetersection over Union,mIoU)为77.88%,检测单张图像时间为26.13 ms。YOLOv4-CBAM模型检测草莓生育期的mAP相比YOLOv4、YOLOv4-SE、YOLOv4-SC模型分别提高8.7%、4.82%和1.63%。该方法可对草莓各生育期目标进行精准识别和分类,并为设施草莓栽培的信息化、规模化调控提供有效的理论依据。  相似文献   

3.
水果是我国重要的经济作物之一,果业对于农民的增收和国家经济的发展都具有重要意义。为实现复杂自然环境下对果树树干的识别,提升当前果园生产水平,本文提出一种以YOLOv5模型为基线的果树树干识别检测模型(YOLOv5-SR)。在YOLOv5的backbone网络中以Rep VGG模块代替部分C3模块,利用Rep VGG模块结构重参数化特点实现提升网络模型的检测速度,满足实时性的要求;其次,在网络模型中引入Sim AM注意力机制模块,利用Sim AM注意力机制无参的特点在不影响模型速度的情况下加强对检测目标的提取能力,提升模型的检测精度。实验结果表明,改进后的模型相比较于YOLOv5,检测速度提升了10%,平均精度均值提升了6%,实现速度与精度上的提升。该研究满足在复杂环境下实时检测果树树干,有助于进一步推动智能化果园机器人的研发与应用。  相似文献   

4.
针对作物病害识别系统功能单一,缺乏系统升级机制,人工升级系统成本较大的问题,以番茄病害为例,提出了基于OpenCV的番茄叶片图像自动标注算法和改进YOLO v5的番茄病害识别模型;结合数据集自动划分、模型自动训练与评估、手机APP自动创建与更新理念,设计了一种可以自动升级的番茄病害识别系统;引入专家审查校正机制,提高了系统识别结果的可靠性。实验结果表明,该系统实现了对番茄的健康叶片与9类病害叶片进行识别,可以在实际应用中通过手机APP识别番茄病害的同时自动扩充番茄病害图像数据集,并根据数据扩充量自动启动系统的升级优化流程,由此不断提升该系统的番茄病害识别性能。该系统为番茄生产提供了一个便捷、可靠的番茄病害识别工具。  相似文献   

5.
为实现饮料生产线PET饮料瓶液位检测系统集成化和简单化,使用机器视觉方法取代传统传感器触发PET饮料瓶装液位检测程序,实现生产线PET瓶装饮料液位快速识别定位,提出了基于改进YOLOv7的生产线PET瓶装饮料液位快速识别与定位方法。在原YOLOv7的基础上,将原SPPCSPC池化金字塔结构改进为更快的SPPFCSPC结构,并使用SIoU损失函数对原有损失函数进行改进。通过实测实验,改进YOLOv7液位识别模型对包含有色彩失真和噪点的PET饮料瓶身、瓶装液位识别精度为98.9%、96.3%,且单幅图像识别并框定时间均长为12.1ms。且模型能在采集图像样本色彩失真、多噪点和图像旋转情况下仍能实现高精度液位识别与定位。  相似文献   

6.
基于卷积神经网络的草莓识别方法   总被引:6,自引:0,他引:6  
针对目前草莓识别定位大多在简单环境下进行、识别效率较低的问题,提出利用改进的YOLOv3识别方法在复杂环境中对草莓进行连续识别检测。通过训练大量的草莓图像数据集,得到最优权值模型,其测试集的精度均值(MAP)达到87. 51%;成熟草莓的识别准确率为97. 14%,召回率为94. 46%;未成熟草莓的识别准确率为96. 51%,召回率为93. 61%。在模型测试阶段,针对夜晚环境下草莓图像模糊的问题,采用伽马变换得到的增强图像较原图识别正确率有显著提升。以调和平均值(F)作为综合评价指标,对比多种识别方法在不同果实数量、不同时间段及视频测试下的实际检测结果,结果表明,YOLOv3算法F值最高,每帧图像的平均检测时间为34. 99 ms,视频的平均检测速率为58. 1 f/s,模型的识别正确率及速率均优于其他算法,满足实时性要求。同时,该方法在果实遮挡、重叠、密集等复杂环境下具有良好的鲁棒性。  相似文献   

7.
为快速准确获取玉米收获过程中遗失籽粒数信息,进行收割损失调节等管理,对比评估了单阶段和两阶段主流目标检测网络对田间玉米籽粒计数的性能。首先,利用RGB相机获取包含不同背景和不同光照的图像数据,并进一步生成数据集;其次,构建籽粒识别的不同目标检测网络,包括Mask R-CNN、EfficientDet-D5、YOLOv5-L、YOLOX-L,并利用所采集的420幅有效图像对构建的四种网络进行训练、验证、测试,图像数分别为200、40和180幅;最后,依据测试集图像的识别结果进行籽粒计数性能评价。试验结果表明,YOLOv5-L网络对测试集图像检测的平均精度为78.3%,模型尺寸仅为89.3 MB;籽粒计数的检测正确率、漏检率和F1值分别为90.7%、9.3%和91.1%,处理速度为55.55 f/s,识别与计数性能均优于Mask R-CNN、EfficientDet-D5和YOLOX-L网络,并对具有不同地表遮挡程度和籽粒聚集状态的图像具有较强的鲁棒性。深度学习目标检测网络YOLOv5-L可实现实际作业中玉米收获损失籽粒的实时监测,精度高、适用性强。  相似文献   

8.
在草莓采摘机器人的应用前景广阔的市场背景下,本系统将草莓的识别算法移植到嵌入式平台MyRIO上实现,通过图像采集、图像分割、灰度形态学处理、高级形态学处理等一系列操作后,基本复原了成熟草莓的形态,为草莓识别市场化应用提供了一个方向。  相似文献   

9.
作物病害的初期快速准确识别是减小作物经济损失的重要保障。针对实际生产环境中,作物叶片黄化曲叶病毒病(Yellow leaf curl virus,YLCV)患病初期无法应用传统图像处理算法通过颜色或纹理特征进行准确和快速识别,并且YOLO v5s通用模型在复杂环境下识别效果差和效率低的问题,本文提出一种集成改进的叶片病害检测识别方法。该方法通过对Plant Village公开数据集中单一患病叶片图像以及实际生产中手机拍摄获取的患病作物冠层图像两种来源制作数据集,并对图像中的患病叶片进行手动标注等操作,以实现在复杂地物背景和叶片遮挡等情况下正确识别目标,即在健康叶片、患病叶片、枯萎叶片、杂草和土壤中准确识别出所有的患病叶片。此外,用智能手机在生产现场拍摄图像,会存在手机分辨率、光线、拍摄角度等多种因素,会导致识别正确率降低等问题,需要对采集到的图像进行预处理和数据增强以提高模型识别率,通过对YOLO v5s原始模型骨干网络重复多次增加CA注意力机制模块(Coordinate attention),增强YOLO算法对关键信息的提取能力,利用加权双向特征金字塔网络(Bidirectional feature pyramid network,BiFPN),增强模型不同特征层的融合能力,从而提高模型的泛化能力,替换损失函数EIoU(Efficient IoU loss),进一步优化算法模型,实现多方法叠加优化后系统对目标识别性能的综合提升。在相同试验条件下,对比YOLO v5原模型、YOLO v8、Faster R-CNN、SSD等模型,本方法的精确率P、召回率R、平均识别准确率mAP0.5、mAP0.5:0.95分别达到97.40%、94.20%、97.20%、79.10%,本文所提出的算法在提高了精确率与平均精度的同时,保持了较高的运算速度,满足对作物黄化曲叶病毒病检测的准确性与时效性的要求,并为移动端智能识别作物叶片病害提供了理论基础。  相似文献   

10.
随着智慧农业技术和大田种植技术的不断发展,自动除草具有广阔的市场前景。关于除草剂自动喷洒的有效性,农田杂草的精准、快速地识别和定位是关键技术之一。基于此提出一种改进的YOLOv5算法实现农田杂草检测,该方法通过改进数据增强方式,提高模型泛化性;通过添加注意力机制,增强主干网络的特征提取能力;通过改进框回归损失函数,提升预测框的准确率。试验表明,在芝麻作物和多种杂草的复杂环境下,本文方法的检测平均精度均值mAP为90.6%,杂草的检测平均精度AP为90.2%,比YOLOv5s模型分别提高4.7%和2%。在本文试验环境下,单张图像检测时间为2.8 ms,可实现实时检测。该研究内容可以为农田智能除草设备提供参考。  相似文献   

11.
为实现对不同品种核桃的分类与定位,提出一种基于深度学习的核桃检测方法。首先,以新疆南疆地区主产的三种核桃为对象进行图像采集,并对图像进行翻转、裁剪、去噪、光照变换等操作制作核桃数据集;然后,采用基于YOLOv5的检测模型进行试验,并与YOLOv3、YOLOv4和Faster RCNN算法进行比较。结果表明,基于YOLOv5的模型对新2、新光和温185核桃检测的平均精度均值分别为99.5%、98.4%和97.1%,单幅图像检测耗时为7 ms。在相同数据集、相同试验环境下,该模型的检测速度是Faster RCNN的7倍,该模型的检测精度比YOLOv4高2.8%且模型大小仅为YOLOv4的1/14。试验结果表明,基于YOLOv5的核桃检测方法在检测精度和速度上是所有对比算法中最高的,适合本研究的检测需求,可为机器人自主分拣核桃提供研究基础。  相似文献   

12.
刘志军 《南方农机》2023,(23):68-73
【目的】解决麦穗检测中麦穗之间相互遮挡、麦穗在图像中难以检测和不同环境造成目标模糊等情况导致麦穗检测精度低的问题。【方法】笔者提出一种基于改进YOLOv5s的算法,通过将数据集同时进行离线增强和在线增强,再将YOLOv5s的骨干网络进行改进,增添具有注意力机制的transformer模块,强化主干网络的全局特征信息提取能力,neck结构由原来的PAFPN改为具有双向加强融合的BiFPN特征融合网络,进行多尺度的特征融合。最后,在head部分使用EIoU-NMS来替代NMS,提高对遮挡麦穗的识别度。【结果】相比于其他改进单一结构的YOLOv5s模型,此综合性改进模型具有更好的检测效果,使mAP@0.5:0.95提高了1.4%,改进的算法比原始YOLOv5s算法的mAP@0.5提高了1.8%。【结论】使用离线增强和在线增强的方式可以使模型的精度有所提升;该模型的改进有效增强了麦穗识别过程中特征融合的效率,提高了麦穗检测的效果,能够为后续相关模型的改进升级提供参考。  相似文献   

13.
针对果园目标检测时相机抖动以及物体相对运动导致检测图像模糊的问题,本文提出一种将DeblurGAN-v2去模糊网络和YOLOv5s目标检测网络相融合的D2-YOLO一阶段去模糊识别深度网络,用于检测识别果园模糊场景图像中的障碍物。为了减少融合网络的参数量并提升检测速度,首先将YOLOv5s骨干网络中的标准卷积替换成深度可分离卷积,并且在输出预测端使用CIoU_Loss进行边界框回归预测。融合网络使用改进的CSPDarknet作为骨干网络进行特征提取,将模糊图像恢复原始自然信息后,结合多尺度特征进行模型预测。为了验证本文方法的有效性,选取果园中7种常见的障碍物作为目标检测对象,在Pytorch深度学习框架上进行模型训练和测试。试验结果表明,本文提出的D2-YOLO去模糊识别网络准确率和召回率分别为91.33%和89.12%,与分步式DeblurGAN-v2+YOLOv5s相比提升1.36、2.7个百分点,与YOLOv5s相比分别提升9.54、9.99个百分点,能够满足果园机器人障碍物去模糊识别的准确性和实时性要求。  相似文献   

14.
为提升设施农业远程监控系统的数据可视化与信息化程度,设计了一种温室远程监控系统,该系统主要由巡检机器人、移动通信网络、云服务器与远程监控中心组成,实现了温室端与远程监控中心端之间的文本、图像、视频3类数据传输。综合应用机器学习、深度学习算法实现人机交互与温室端番茄识别任务。基于Haar级联算法与LBPH算法实现了管理员人脸识别,识别成功率达90%;基于YOLO v3与ResNet-50算法分别识别手部与手部关键点,单手、双手的识别置信度分别为0.98与0.96;基于提取的食指指尖坐标与左右手部候选框中心点坐标实现了手指交互与图像尺寸缩放的功能。应用Swin Small+Cascade Mask RCNN网络模型,针对农业数据集有限的问题,对比分析了应用迁移学习方法前后的番茄检测效果。试验结果表明,应用迁移学习方法后,模型收敛速度有所提升且收敛后的损失值均有所下降;同时,IoU为0、0.5、0.75时的平均精度(mask AP)分别提升了7.8、 6.4、7.2个百分点,模型性能更优。  相似文献   

15.
毛桃等果实的准确检测是实现机械化、智能化农艺管理的必要前提。然而,由于光照不均和严重遮挡,在果园中实现毛桃,尤其是套袋毛桃的检测一直面临着挑战。本研究基于改进YOLOv5s和多模态视觉数据提出了面向机械化采摘的毛桃多分类准确检测。具体地,构建了一个多类标签的裸桃和套袋毛桃的RGB-D数据集,包括4127组由消费级RGB-D相机获取的像素对齐的彩色、深度和红外图像。随后,通过引入方向感知和位置敏感的注意力机制,提出了改进的轻量级YOLOv5s(小深度)模型,该模型可以沿一个空间方向捕捉长距离依赖,并沿另一个空间方向保留准确的位置信息,提高毛桃检测精度。同时,通过将卷积操作分解为深度方向的卷积与宽度、高度方向的卷积,使用深度可分离卷积在保持模型检测准确性的同时减少模型的计算量、训练和推理时间。实验结果表明,使用多模态视觉数据的改进YOLOv5s模型在复杂光照和严重遮挡环境下,对裸桃和套袋毛桃的平均精度(Mean Average Precision,mAP)分别为98.6%和88.9%,比仅使用RGB图像提高了5.3%和16.5%,比YOLOv5s提高了2.8%和6.2%。在套袋毛桃检测方面,改进YOLOv5s的mAP比YOLOX-Nano、PP-YOLO-Tiny和EfficientDet-D0分别提升了16.3%、8.1%和4.5%。此外,多模态图像、改进YOLOv5s对提升自然果园中的裸桃和套袋毛桃的准确检测均有贡献,所提出的改进YOLOv5s模型在检测公开数据集中的富士苹果和猕猴桃时,也获得了优于传统方法的结果,验证了所提出的模型具有良好的泛化能力。最后,在主流移动式硬件平台上,改进后的YOLOv5s模型使用五通道多模态图像时检测速度可达每秒19幅,能够实现毛桃的实时检测。上述结果证明了改进的YOLOv5s网络和含多类标签的多模态视觉数据在实现果实自动采摘系统视觉智能方面的应用潜力。  相似文献   

16.
[目的/意义]实现复杂的自然环境下农作物害虫的识别检测,改变当前农业生产过程中依赖于专家人工感官识别判定的现状,提升害虫检测效率和准确率具有重要意义。针对农作物害虫目标检测具有目标小、与农作物拟态、检测准确率低、算法推理速度慢等问题,本研究提出一种基于改进YOLOv8的复杂场景下农作物害虫目标检测算法。[方法]首先通过引入GSConv提高模型的感受野,部分Conv更换为轻量化的幻影卷积(Ghost Convolution),采用HorBlock捕捉更长期的特征依赖关系,Concat更换为BiFPN (Bi-directional Feature Pyramid Network)更加丰富的特征融合,使用VoVGSCSP模块提升微小目标检测,同时引入CBAM (Convolutional Block Attention Module)注意力机制来强化田间虫害目标特征。然后使用Wise-IoU损失函数更多地关注普通质量样本,提高网络模型的泛化能力和整体性能。之后,对改进后的YOLOv8-Extend模型与YOLOv8原模型、YOLOv5、YOLOv8-GSCONV、YOLOv8-BiFPN、...  相似文献   

17.
为提高YOLOv4目标检测算法对苹果叶片小型病斑的检测性能,提出了一种PSA(金字塔压缩注意力)-YOLO算法。在CSPDarknet53的基础上融合了Focus结构和PSA机制,并采用网络深度减小策略,构建了参数量小、精确度高的PSA-CSPDarknet-1轻量化主干网络。其次在网络颈部,搭建了空间金字塔卷积池化模块,用极小的计算代价增强了对深层特征图的空间信息提取能力,并采用α-CIoU损失函数作为边界框损失函数,提高网络对高IoU阈值下目标的检测精度。根据实验结果,PSA-YOLO网络在苹果叶片病斑识别任务中的AP50达到88.2%。COCO AP@[0.5∶0.05∶0.95]达到49.8%,比YOLOv4提升3.5个百分点。网络对于小型病斑的特征提取能力提升幅度更大,小型病斑检测AP比YOLOv4提升3.9个百分点。在单张NVIDIA GTX TITAN V显卡上的实时检测速度达到69帧/s,相较于YOLOv4网络提升13帧/s。  相似文献   

18.
针对实时目标检测、识别问题,应用MPC5200为核心的高性能运算处理器,设计了一种高帧频、大视场的智能汽车实时图像处理系统。阐述了实时图像处理系统的硬件组成、工作原理和图像处理算法。在对目标检测识别算法的实验分析基础上,开发了实时图像处理软件,实现了视频图像的采集和图像目标的实时处理。该系统对目标的检测、识别能力达到了智能汽车的实时性要求。  相似文献   

19.
基于改进YOLOv5m的采摘机器人苹果采摘方式实时识别   总被引:1,自引:0,他引:1  
为准确识别果树上的不同苹果目标,并区分不同枝干遮挡情形下的果实,从而为机械手主动调整位姿以避开枝干对苹果的遮挡进行果实采摘提供视觉引导,提出了一种基于改进YOLOv5m面向采摘机器人的苹果采摘方式实时识别方法。首先,改进设计了BottleneckCSP-B特征提取模块并替换原YOLOv5m骨干网络中的BottleneckCSP模块,实现了原模块对图像深层特征提取能力的增强与骨干网络的轻量化改进;然后,将SE模块嵌入到所改进设计的骨干网络中,以更好地提取不同苹果目标的特征;进而改进了原YOLOv5m架构中输入中等尺寸目标检测层的特征图的跨接融合方式,提升了果实的识别精度;最后,改进了网络的初始锚框尺寸,避免了对图像里较远种植行苹果的识别。结果表明,所提出的改进模型可实现对图像中可直接采摘、迂回采摘(苹果上、下、左、右侧采摘)和不可采摘果实的识别,识别召回率、准确率、mAP和F1值分别为85.9%、81.0%、80.7%和83.4%。单幅图像的平均识别时间为0.025s。对比了所提出的改进算法与原YOLOv5m、YOLOv3和EfficientDet-D0算法在测试集上对6类苹果采摘方式的识别效果,结果表明,所提出的算法比其他3种算法识别的mAP分别高出了5.4、22、20.6个百分点。改进模型的体积为原始YOLOv5m模型体积的89.59%。该方法可为机器人的采摘手主动避开枝干对果实的遮挡,以不同位姿采摘苹果提供技术支撑,可降低苹果的采摘损失。  相似文献   

20.
面向叶类蔬菜病害识别的温室监控视频采集系统   总被引:2,自引:0,他引:2  
为满足温室叶类蔬菜病害准确识别的视频数据需求,结合温室叶类蔬菜病害发生的特点,采用物联网技术,基于传感器感知的环境信息与摄像机监控视频信息,构建了一种面向叶类蔬菜病害识别的温室监控视频采集系统。该系统将案例检索与模糊推理方法相结合,设计温室监控视频获取方法,将传感器实时采集的数据与知识库中的病害产生环境条件相匹配,以匹配结果作为视频采集的依据,实现了监控视频的智能采集;并利用模糊推理方法,弥补案例检索结果不够全面的问题,确保了数据的准确获取。同时,该系统还提供了实时数据显示、实时视频监控等功能。系统应用结果表明,该系统能够满足温室叶类蔬菜病害识别的视频数据需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号