首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   2篇
  国内免费   3篇
基础科学   5篇
  3篇
综合类   2篇
园艺   2篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2015年   1篇
排序方式: 共有12条查询结果,搜索用时 531 毫秒
1.
为确定田块尺度下探地雷达对不同深度及相邻反射层间土壤含水量的反演精度、有效反演深度、最佳反演深度及最优反演模型,本研究采用1000 MHz中心频率探地雷达设备,分别在无降雨偏干旱土壤和降雨后湿润土壤两种条件下,在选定农田区域基于共中心点法采集雷达波数据,提取有效地表波与反射波数据,通过双曲线拟合法分别获取不同深度反射层...  相似文献   
2.
为提高温室环境最优控制中生菜信息在线反馈精度,通过群体图像识别研究生菜鲜重估算方法;通过生菜群体图像和单株图像,研究群体估算时误差正负相消对整体误差的改善作用,评估生菜遮挡问题对估算精度的影响,并研究能否通过改进深度学习的损失函数以实现对估算精度的进一步提高。结果表明:1)与不存在遮挡问题的单株图像生菜鲜重估算结果相比,基于群体图像裁剪的生菜鲜重估算决定系数(R2)低0.010 8,归一化均方根误差(NRMSE)高2.69%,平均绝对百分误差(MAPE)低2.36%,虽然估算精度略低,但是生菜群体的遮挡问题更能反映生产实际。2)群体估算虽然存在遮挡问题导致裁剪不完整,但根据误差正负相消原理,相比没有遮挡的单株估算结果MAPE仍然低3.49%,因此更适用于生菜产量信息反馈。3)基于更优化MAPE的损失函数平均平方百分误差(MSPE),可以进一步降低群体估算的MAPE至8.46%,满足“软测量”对估算精度的需求。考虑到温室生菜的实际生产情况,群体估算更适合用于温室环境最优控制中生菜产量信息的在线反馈,通过深度学习等方法的优化,可以将生菜产量的估算误差降低至10%以内。  相似文献   
3.
正区块链为农业插上了腾飞的翅膀,"区块链+农业"未来可期。随着智慧农业的发展,以及近期国家连续提出新基建这样大的战略布局,区块链再度被列为重要内容,农业应用将会迎来新的重要机遇。但要明确的是区块链仍在不断发展过程中,其理论和技术仍需要不断完善和应用检验。应理性看待区块链,在整个农业发展中,区块链不能包打天下,只做赋能者,而不是主导者。如此,路子才会越走越宽!园艺生产作为我国农业的一个重要组成部分,也要跟上时代步伐,拥抱区块  相似文献   
4.
面向叶类蔬菜病害识别的温室监控视频采集系统   总被引:2,自引:0,他引:2  
为满足温室叶类蔬菜病害准确识别的视频数据需求,结合温室叶类蔬菜病害发生的特点,采用物联网技术,基于传感器感知的环境信息与摄像机监控视频信息,构建了一种面向叶类蔬菜病害识别的温室监控视频采集系统。该系统将案例检索与模糊推理方法相结合,设计温室监控视频获取方法,将传感器实时采集的数据与知识库中的病害产生环境条件相匹配,以匹配结果作为视频采集的依据,实现了监控视频的智能采集;并利用模糊推理方法,弥补案例检索结果不够全面的问题,确保了数据的准确获取。同时,该系统还提供了实时数据显示、实时视频监控等功能。系统应用结果表明,该系统能够满足温室叶类蔬菜病害识别的视频数据需求。  相似文献   
5.
基于RGB图像与深度学习的冬小麦田间长势参数估算系统   总被引:4,自引:4,他引:0  
为准确、快速获取冬小麦田间长势信息,该研究设计并实现了一种基于深度学习的冬小麦田间长势参数估算系统。该系统主要包含长势参数估算模块和麦穗计数模块。长势参数估算模块基于残差网络ResNet18构建长势参数估算模型,实现了冬小麦苗期叶面积指数(Leaf Area Index,LAI)和地上生物量(Above Ground Biomass,AGB)的估算,并基于迁移学习进行泛化能力测试;麦穗计数模块基于Faster R-CNN并结合非极大值抑制(Non Maximum Suppression,NMS)构建麦穗计数模型,实现了开花期麦穗准确计数。结果表明,针对2017-2018和2018-2019两个生长季数据,基于ResNet18的长势参数估算模型对LAI估算的决定系数分别为0.83和0.80,对AGB估算的决定系数均为0.84,优于基于传统卷积神经网络(Convolutional Neural Networks,CNN)、VGG16和GoogLeNet构建的估算模型,并且泛化能力测试表明该模型对数据的季节性差异鲁棒。基于Faster R-CNN的麦穗计数模型,在利用NMS优化后决定系数从0.66增至0.83,提升了25.8%,NRMSE从0.19降至0.05,下降了73.7%。相较于基于CNN构建的分类计数模型,基于Faster R-CNN+NMS的麦穗计数模型表现更优,决定系数为0.83,提升了33.87%,单个麦穗识别时间为1.009 s,效率提升了20.55%。综上所述,该系统能够满足冬小麦田间长势参数估算需求,为冬小麦田间精细化管理提供支撑。  相似文献   
6.
基于卷积神经网络的温室黄瓜病害识别系统   总被引:25,自引:14,他引:11  
基于图像处理和深度学习技术,该研究构建了一个基于卷积神经网络的温室黄瓜病害识别系统。针对温室现场采集的黄瓜病害图像中含有较多光照不均匀和复杂背景等噪声的情况,采用了一种复合颜色特征(combinations of color features,CCF)及其检测方法,通过将该颜色特征与传统区域生长算法结合,实现了温室黄瓜病斑图像的准确分割。基于温室黄瓜病斑图像,构建了温室黄瓜病害识别分类器的输入数据集,并采用数据增强方法将输入数据集的数据量扩充了12倍。基于扩充后的数据集,构建了基于卷积神经网络的病害识别分类器并利用梯度下降算法进行模型训练、验证与测试。系统试验结果表明,针对含有光照不均匀和复杂背景等噪声的黄瓜病害图像,该系统能够快速、准确的实现温室黄瓜病斑图像分割,分割准确率为97.29%;基于分割后的温室黄瓜病斑图像,该系统能够实现准确的病害识别,识别准确率为95.7%,其中,霜霉病识别准确率为93.1%,白粉病识别准确率为98.4%。  相似文献   
7.
智慧农业技术助推农业创新发展,引领农业新未来   总被引:2,自引:0,他引:2  
<正>板块一:智慧技术智慧农业技术是现代信息技术与农业深度融合的产物,已逐步成为现代农业发展的最重要趋势和显著特征。物联网、大数据、云计算是智慧农业技术的三大法宝,近年来已经成为农业领域关注的焦点,各界学者纷纷研究其在各自领域的用武之地,而当其遇上蔬菜产业,会产生怎样神奇的组合  相似文献   
8.
基于卷积神经网络的冬小麦麦穗检测计数系统   总被引:7,自引:0,他引:7  
为进一步提高大田环境下麦穗识别与检测计数的准确性,基于图像处理和深度学习技术,设计并实现了基于卷积神经网络的冬小麦麦穗检测计数系统。根据大田环境下采集的开花期冬小麦图像特点,提取麦穗、叶片、阴影3类标签图像构建数据集,研究适用于冬小麦麦穗识别的卷积神经网络结构,构建了冬小麦麦穗识别模型,并采用梯度下降法对模型进行训练;将构建的冬小麦麦穗识别模型与非极大值抑制结合,进行冬小麦麦穗计数。试验结果表明,该系统构建的冬小麦麦穗识别模型能够有效地克服大田环境下的噪声,实现麦穗的快速、准确识别,总体识别正确率达到99. 6%,其中麦穗识别正确率为99. 9%,阴影识别正确率为99. 7%,叶片识别正确率为99. 3%。对100幅冬小麦图像进行麦穗计数测试,采用决定系数和归一化均方根误差(NRMSE)进行正确率定量评价,结果表明,该系统计数结果与人工计数结果线性拟合的R~2为0. 62,NRMSE为11. 73%,能够满足冬小麦麦穗检测计数的实际要求。  相似文献   
9.
自动和准确地估计病害的严重度对病害管理和产量损失预测至关重要。针对传统病害严重度估算步骤复杂且低效,难以实现在田间场景下精准估算问题,提出了一种基于混合扩张卷积和注意力机制改进UNet(Mixed dilated convolution and attention mechanism optimized UNet,MA-UNet)的病害严重度估算方法。首先,针对病斑尺寸不一、形状不规则问题,提出混合扩张卷积块(Mixed dilation convolution block, MDCB)增加感受野并保持病斑信息的连续性,提升病斑分割精度。其次,为了克服复杂背景的影响,利用注意力机制(Attention mechanism)对空间维度和通道维度进行相关性建模,获得每个像素类内响应和通道间的依赖关系,缓解背景对网络学习带来的影响。最后,计算病害分割图中病斑像素与叶片像素的比率来获得严重度。基于田间条件下收集的黄瓜霜霉病和白粉病图像进行了验证,并与全卷积网络(Fully convolutional network,FCN)、SegNet、UNet、PSPNet、FPN、DeepLabV3+进行比较。结果表明,MA-UNet优于比较方法,能够满足复杂环境下健康叶片和病斑的分割需求,平均交并比为84.97%,频权交并比为93.95%。基于MA-UNet分割结果估计黄瓜叶部病害严重度的决定系数为0.9654,均方根误差为1.0837%。该研究可为人工智能在农业中快速估计和控制病害严重度提供参考。  相似文献   
10.
针对目前基于计算机视觉估算冬小麦苗期长势参数存在易受噪声干扰且对人工特征依赖性较强的问题,该文综合运用图像处理和深度学习技术,提出一种基于卷积神经网络(convolutional neural network, CNN)的冬小麦苗期长势参数估算方法。以冬小麦苗期冠层可见光图像作为输入,构建了适用于冬小麦苗期长势参数估算卷积神经网络模型,通过学习的方式建立冬小麦冠层可见光图像与长势参数的关系,实现了农田尺度冬小麦苗期冠层叶面积指数(leaf area index,LAI)和地上生物量(above ground biomass, AGB)的准确估算。为验证方法的有效性,该研究采用以冠层覆盖率(canopy cover, CC)作为自变量的线性回归模型和以图像特征为输入的随机森林(random forest, RF)、支持向量机回归(support vectormachinesregression,SVM)进行对比分析,采用决定系数(coefficientofdetermination,R2)和归一化均方根误差(normalized root mean square error, NRMSE)定量评价估算方法的准确率。结果表明:该方法估算准确率均优于对比方法,其中AGB估算结果的R2为0.7917,NRMSE为24.37%,LAI估算结果的R2为0.8256,NRMSE为23.33%。研究可为冬小麦苗期长势监测与田间精细管理提供参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号