首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Identification of new parental lines is crucial for developing ecology‐specific hybrids with ideal agronomic performance. We screened a total of 570 different ecology‐specific Indian rice varieties for the presence of fertility restorer genes, Rf3 and Rf4 using tightly linked markers DRRM Rf3‐10 and RM6100, respectively. Among these varieties, 13% carried Rf3Rf3/Rf4Rf4, 31% carried rf3rf3/rf4rf4, 6% carried Rf3Rf3/rf4rf4 and remaining 50% carried Rf4Rf4/rf3rf3 allelic combinations. A mini set of 40 varieties with variable allelic combinations of fertility restorer genes were testcrossed with WA and Kalinga‐based CMS lines. All the 80 F1s were evaluated for spikelet fertility and fertility restoration ability. Rf3Rf3/rf4rf4 genotypes mostly behaved as partial maintainers or partial restorers. In contrast, rf3rf3/Rf4Rf4 genotypes were partial or effective restorers. However, double dominant genotypes showed better fertility restoration than the genotypes containing Rf3 or Rf4 individually. Some of the genotypes showed unexpected restoration pattern implying occurrence of other fertility restorer(s) apart from Rf3 and Rf4. The perfect restorers and maintainers identified in this study can be directly used in hybrid rice breeding.  相似文献   

2.
Hybrid rice based on wild‐abortive cytoplasmic male sterility (WA‐CMS) is important in boosting rice production, which requires diverse parents to harness heterosis. For this, exploiting the diversity of japonica through tropical japonica (TRJ) lines is an excellent route. In this study, 310 TRJ‐based new plant type (NPT) lines were developed and evaluated for Rf3 and Rf4 genes. Gene‐based (DRRM‐Rf3‐5 and DRRM‐Rf3‐10) and functional marker (RMS‐SF21‐5) targeted Rf3 locus, while gene‐linked (RM6100) and functional marker (RMS‐PPR9‐1) targeted the Rf4 locus. The frequency of the restorer allele of Rf3 gene was lower when compared to that of Rf4. Combined phenotypic and molecular screening using gene‐based and functional markers identified 42 lines that carried Rf3 and/or Rf4 genes. All the selected lines produced fertile F1s when crossed to a WA‐CMS line, “Pusa 6A”, but with varying levels of spikelet fertility. This is the first report of a marker‐cum‐phenotype‐based restorer selection using TRJ‐derived lines. Multilocation evaluation of these lines at three locations indicated better adaptation for grain yield in some of the lines.  相似文献   

3.
The use of the new cytoplasmic male sterility (CMS) source PEF1 in sunflower hybrid breeding requires markers closely linked to the restorer gene Rf_PEF1 necessary for fertility restoration of hybrids based on the PEF1 cytoplasm as well as diagnostic markers to distinguish the PEF1 cytoplasm from other cytoplasms. Bulked segregant analyses of 256 AFLP primer combinations identified 35 polymorphic primer combinations with 1–3 polymorphisms, resulting in 40 polymorphisms. Eighteen AFLP markers mapped together with the Rf_PEF1 gene covering 119.9 cM. The closest markers, E39M51_300R and E44M56_112A, mapped 3.9 and 6.0 cM to the Rf_PEF1 gene, respectively. Six SSR markers, which belong to the linkage group 13, were screened for polymorphisms between the parental lines. Only ORS630 was polymorphic, but did not map to the same linkage group as Rf_PEF1, indicating that Rf_PEF1 is not located on linkage group 13 where the restorer gene Rf1 for the PET1 cytoplasm is located. Diagnostic markers to distinguish the PEF1 cytoplasm from the PET1 and the fertile cytoplasm in sunflower were obtained using primer combinations for the atp9 gene and orfH522.  相似文献   

4.
Wild abortive (WA)-type cytoplasmic male sterility (CMS) has been exclusively used for breeding three-line hybrid indica rice, but it has not been applied for generating japonica hybrids because of the difficulties related to breeding japonica restorer lines. Determining whether the major restorer-of-fertility (Rf) gene used for indica hybrids can efficiently restore the fertility of WA-type japonica CMS lines may be useful for breeding WA-type japonica restorer lines. In this study, japonica restorer lines for Chinsurah Boro II (BT)-type CMS exhibited varying abilities to restore the fertility of ‘WA-LiuqianxinA’, which is a WA-type japonica CMS line. Additionally, Rf genes for WA-type CMS were identified in the BT-type japonica restorers. Meanwhile, ‘C9083’, which is a BT-type japonica restorer, exhibited a limited ability to restore the fertility of WA-type japonica CMS lines, and a genetic analysis revealed that the fertility restoration was controlled by one locus. The Rf gene was mapped to an approximately 370-kb physical region and was identified as Rf4. Furthermore, Rf gene dosage effects and the temperature influenced the fertility restoration of WA-type japonica CMS lines. This study is the first to confirm that Rf4 has only minor effects on the fertility restoration of WA-type japonica CMS lines. These results may be relevant for the development of WA-type japonica hybrids.  相似文献   

5.
Over the past decade, M‐type cytoplasmic male sterility (CMS) line W931A and a variety of restorer lines have been exploited for the release of hybrid seeds in soybean (Glycine max). However, the identities of restorer genes in the nuclei of soybean restorer lines are still unclear. In this study, we analysed the inheritance pattern of restorer locus Rf‐m from restorer line WR016 and constructed a high‐resolution map of this locus. Results showed that Rf‐m in WR016 is a monogenic dominant gene located within a 162.4‐kb region on chromosome 16, which is flanked on each side by new developed simple sequence repeat (SSR) markers GmSSR1602 and GmSSR1610 at a distance of 0.11 and 0.25 cM, respectively. Nineteen open reading frames (ORFs) were predicted in this region. Of these, seven genes arranged in tandem on chromosome 16 encode pentatricopeptide repeat (PPR) proteins, which is similar to other reported restorer loci in plants. These results lay a solid foundation for map‐based cloning of the Rf‐m gene and will be helpful for marker‐assisted selection of elite CMS restorer lines.  相似文献   

6.
We have established marker-aided selection strategies for the two major Rf genes (Rf3 and Rf4) governing fertility restoration of␣cytoplasmic-genetic male sterility (CMS) in rice. Polymorphisms between restorer and non-restorer␣lines were observed using RG140/PvuII for Rf3 located on chromosome 1 and S10019/BstUI for Rf4 located on chromosome 10. DNA polymorphisms associated with these two loci in restorer lines of wild abortive (WA), Dissi, and Gambiaca cytoplasm are conserved, suggesting that similar biological processes control pollen fertility in this diverse cytoplasm. Because of their close linkage to Rf genes and distinct banding patterns, STS markers RG140/PvuII and S10019/BstUI are well suited for marker-aided selection, enhanced backcross procedures, and pyramiding of Rf genes in agronomically superior non-restorer lines. The combined use of markers associated with these two loci improved the efficiency of screening for putative restorer lines from a set of elite lines. Positional analyses of Rf4 and the inheritance pattern of the polymorphism in S10019/BstUI suggest that Rf4, governing fertility restoration in WA-CMS in rice, is likely to be the same gene governing fertility restoration in BT- and HL-CMS that has a gametophytic effect, which explains why 100% pollen fertility in hybrids is impossible to attain.  相似文献   

7.
Fertility restoration by dominant nuclear genes is essential for hybrid breeding based on cytoplasmic male sterility (CMS) to obtain heterotic effects and high seed yields. In sunflower, only the PET1 sterility inducing cytoplasm has been used in commercial hybrid breeding until now. This particular male sterility was derived from an interspecific hybrid Helianthus petiolaris × H. annuus. For the recent work we used the segregating population RHA325(CMS) × HA342, based on the PET1 cytoplasm. Molecular markers were mapped within 1.1 cM around the restoration locus Rf1. At the distal side, the marker OP-K13_454 mapped at a distance of 0.9 cM and E32M36-155R at 0.7 cM from Rf1. At the proximal side the markers E44M70-275A, E42M76-125A and E33M61-136R were mapped at 0.1, 0.2, and 0.3 cM from the restorer locus, respectively. These markers provide an excellent basis for a map based cloning approach and for marker-assisted sunflower breeding.  相似文献   

8.
Non‐pungent bell pepper (Capsicum annuum L.) lacks the cytoplasmic male sterility (CMS) nuclear restorer allele, Rf, and CMS cannot be employed in its F1 hybrid seed production. To demonstrate that the genic male sterility (GMS) system in non‐pungent bell pepper can be converted to the CMS male sterility system, the conversion of GMS to CMS for non‐pungent bell pepper line GC3 was conducted by introgression of S‐type cytoplasm and the Rf allele from tropical pungent donors. After morphological traits were evaluated, two lines from BC1F1 containing S‐type cytoplasm and four lines from BC2F2 containing Rf allele, phenotypically similar to GC3, were obtained and could be employed as CMS male sterile lines and restorer lines for non‐pungent bell pepper. Four molecular markers potentially linked to traits of interest were also evaluated in BC1F1 and BC1F2 populations. This is the first time that GMS has been successfully converted to CMS in bell pepper, a significant contribution for bell pepper hybrid seed production.  相似文献   

9.
A Brassica juncea line carrying an introgression from Moricandia arvensis restored male fertility to two cytoplasmic male‐sterile (CMS) B. juncea lines carrying either M. arvensis or Diplotaxis catholica cytoplasm. Genetics of fertility restoration was studied in the F1, F2, F3 and backcross generations of the cross between CMS and fertility‐restorer lines. No male‐sterile plants were found in F1‐F3 generations of the cross between CMS [M. arvensis] B. juncea and the restorer. However, a 1: 1 segregation for male sterility and fertility was observed when the F1 was pollinated with non‐restorer pollen from a euplasmic line. These results clearly show that restoration is mono‐genic and gametophytic. In CMS lines carrying D. catholica cytoplasm, the restorer conferred male fertility to the F1 and showed 3: 1 and 1: 1 segregations for male fertility and sterility in F2 and BC1 generations, respectively, indicating a monogenic, sporophytic mode of fertility restoration. The results were also supported by pollen stainability in the F1 which was about 65% in M. arvensis‐based CMS and >90% in D. catholica‐based CMS. The above results are discussed in the light of previous molecular studies which showed association between CMS and atpA in both systems.  相似文献   

10.
The genetic relationship among three cytoplasmic male sterility (CMS) systems, consisting of WA, Dissi, and Gambiaca, was studied. The results showed that the maintainers of one CMS system can also maintain sterility in other cytoplasmic backgrounds. The F1 plants derived from crosses involving A and R lines of the respective cytoplasm and their cross-combination with other CMS systems showed similar pollen and spikelet fertility values, indicating that similar biological processes govern fertility restoration in these three CMS systems. The results from an inheritance study showed that the pollen fertility restoration in all three CMS systems was governed by two independent and dominant genes with classical duplicate gene action. Three F2 populations, generated from the crosses between the parents of good-performing rice hybrids, that possess WA, Dissi, and Gambiaca CMS cytoplasm, were used to map the Rf genes. For the WA-CMS system, Rf3 was located at a distance of 2.8 cM from RM490 on chromosome 1 and Rf4 was located at 1.6 cM from RM1108 on chromosome 10. For the Dissi-CMS system, Rf3 was located on chromosome 1 at 1.9 cM from RM7466 and Rf4 on chromosome 10 was located at 2.3 cM from RM6100. The effect of Rf3 on pollen fertility appeared to be stronger than the effect of Rf4. In the Gambiaca-CMS system, only one major locus was mapped on chromosome 1 at 2.1 cM from RM576. These studies have led to the development of marker-assisted selection (MAS) for selecting putative restorer lines, new approaches to alloplasmic line breeding, and the transfer of Rf genes into adapted cultivars through a backcrossing program in an active hybrid rice breeding program.  相似文献   

11.
Several upland Japonica breeding lines, WAB450-11-1-3-P40-HB (Abbreviated as WAB450-11), WAB450-11-1-2-P61-HB (WAB450-13), WAB450-l-B-P-91-HB (WAB450-14), IRAT216, IRAT359, and IRAT104, possessing restoring ability for the Dian 1 type cms (cms-D) line Dianyu 1A were recently identified at Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, P. R. China. In this study, the inheritance of restoring ability in these lines was characterized through the production of backcross populations to the male-sterile and maintainer Dianyu 1 lines. Each of the restorer lines was used to pollinate Dianyu 1A to form a F1 hybrid which was then backcrossed (1) with Dianyu 1B producing a BC1F1 population and (2) to the female parent Dianyu 1A producing a BC5F2 population. The lines were also crossed with the japonica restorer line C57, carrying the restorer gene Rf1 that was introgressed from indica, to form F1 hybrids, these hybrids were then testcrossed with Dianyu 1A to study the allelic relationship of their restorer genes to Rf1. The inheritance in these testcross populations indicated that the complete restoring ability of WAB450-11, WAB450-13, WAB450-14, IRAT216, IRAT359, and the partial restoring ability of IRAT104 were controlled by dominant genes, and the gene in WAB450-13, WAB450-14, and IRAT216 was allelic or identical to Rf1. When 136 SSR markers were used to score 143 BC1F1 individuals from Dianyu 1A/WAB450-13//Dianyu 1B, the japonica Rf1 allele was found to be located between RM171 and RM6100 on the long arm of chromosome 10, an interval corresponding to that known for the indica Rf1 allele. The distance between RM171 and Rf1 is 2.8 cM, and that between Rf1 and RM6100 is 4.9 cM. Similar linkage results were obtained from mapping 89 individuals of the corresponding BC5F2 population (Dianyu 1A/6/Dianyu 1A/WAB450-13).  相似文献   

12.
X. L. Tan    Y. L. Tan    Y. H. Zhao    X. M. Zhang    R. K. Hong    S. L. Jin    X. R. Liu  D. J. Huang 《Plant Breeding》2004,123(4):338-341
Cytoplasmic male sterility of Dian‐type 1 (CMS‐D1) was developed 30 years ago in Yunnan. A major gene conferring fertility restoration for the CMS‐D1 system was detected by microsatellite markers in advanced inbred lines consisting of 196 maintainers and 62 restorers developed in breeding programmes of hybrid rice involving the CMS‐D1 system. The gene was mapped between two simple sequence repeat markers, OSR33 and RM228, on chromosome 10, and was temporarily designated as Rf‐D1(t). The genetic distances of the gene to the two microsatellite markers were 3.4 and 5.0 cM, respectively. This linkage was confirmed by using an F2 population derived from a cross between a CMS‐D1 line and a restorer. This study also demonstrated that using OSR33 was reliable and efficient for identification of restoring lines in hybrid rice breeding with the CMS‐D1 system.  相似文献   

13.
Cytoplasmic male sterility (CMS)/restorer-of-fertility (Rf) is an economical and efficient system to produce F1 hybrid seeds. Although the CMS/Rf system has been used to produce hybrid seeds of hot peppers, this system has never been used for sweet pepper seed production, presumably due to the inability to select stable restorer lines during the breeding process. To test the feasibility of the CMS/Rf system in sweet pepper breeding, we investigated the distribution of haplotypes of previously developed, CMS-associated markers (orf456, ψ atp6-2, CRF-SCAR, OPP13-CAPS, PR-CAPS, and PR-SNP) in 27 commercial sweet pepper F1 hybrids and 12 breeding lines. When CMS-associated cytoplasmic markers orf456 and ψ atp6-2 were applied, male sterile cytoplasm was not detected in commercial sweet pepper cultivars. When nuclear haplotype markers linked to Rf were applied, all sweet pepper cultivars showed haplotype 3, haplotype 1, and the rf genotype for OPP13-CAPS, PR-CAPS, and CRF-SCAR, respectively. In contrast, we were able to detect male sterile cytoplasm in some breeding lines, and we were also able to detect polymorphisms for PR-CAPS between stable and unstable maintainer lines. The 17T7-SNP also showed polymorphisms between unstable and stable maintainer (or restorer) lines. In conclusion, we expect that it will be possible to develop stable A, B, and C sweet pepper lines using CMS-associated markers and that this will eventually lead to successful implementation of the CMS/Rf system to produce F1 hybrid sweet pepper seeds.  相似文献   

14.
One of the reasons of poor nutritive value of sorghum grain is resistance of its seed storage proteins (kafirins) to protease digestion. To reveal sorghum entries with increased kafirin digestibility, the sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS‐PAGE) of endosperm proteins of 10 lines [cytoplasmic male sterility (CMS)‐lines and fertility restorers] and five F1 hybrids before and after pepsin digestion was carried out. For quantitative estimation of kafirin digestibility the SDS‐PAGE banding patterns were scanned by laser densitometer. Significant variability for both individual fractions and total kafirin digestibility was found. The line KVV‐45, fertility restorer for the Indian ‘M35‐1A’ type of CMS, had the highest level of kafirin digestibility (30% and 25% of undigested γ‐ and α1‐kafirins, respectively), while in some entries 80–90% of kafirins remained undigested. Increased α1‐kafirin digestibility coincided with relatively high γ‐kafirin digestibility. High‐molecular weight kafirins (HMWK) (45 kDa and 66 kDa) resistant to pepsin digestion were found in some lines, the F1 hybrids had the same HMWK as parental lines. These data demonstrate possibility for isolation of sorghum genotypes with increased nutritive value by screening their flour for in vitro protein digestibility.  相似文献   

15.
The cytoplasmic male sterility (CMS) system is ideal for exploiting heterosis in crops such as cotton. However, CMS-D2, which is based on Gossypium harknessii cytoplasm, is still not widely used for cotton production. In this study, we developed an efficient marker-assisted selection method based on insertion/deletion (InDel) markers that can identify restorer lines carrying Rf1. Whole-genome resequencing was first completed for restorer [N(Rf1Rf1)] and maintainer [N(rf1rf1)] lines with normal fertile cytoplasm (N). Comparisons with the TM-1 reference genome sequence resulted in the identification of 292,065 and 183,657 InDels for the restorer and maintainer lines, respectively. Most of the InDels in the restorer line were distributed on Chromosome_D05, which carries Rf1. Of the 12 InDel markers near the Rf1 target region that were further validated, four co-dominant markers (i.e., InDel-1891, InDel-3434, InDel-7525, and InDel-9356) co-segregated with Rf1, as verified by a segregation analysis in an F2 population. We subsequently used InDel-1891 to determine the allele status at the Rf1 locus in a backcross scheme for transferring Rf1. In this study, we developed new markers to increase the marker density in the Rf1 target region, which will be useful for the fine mapping of Rf1. The development of convenient and inexpensive co-segregating InDel markers will facilitate the marker-assisted selection of restorer lines carrying Rf1.  相似文献   

16.
Cytoplasmic male‐sterile (CMS) lines are being used to produce hybrid seeds. Thus far, four CMS sources in soybean [Glycine max (L.) Merr.] have been reported in China. However, they are not sufficient or efficient in meeting the requirements of commercial soybean hybrid seed production. In this study, 33 varieties were tested for CMS using 45 crosses among 37 landraces and 17 annual wild soybean accessions (Glycine soja Sieb. et Zucc.). The cross of N23661 × N23658 showed partial to complete male sterility in backcross generations, while the corresponding reciprocal cross showed normal male fertility. Thus, the cytoplasm of N23661 is male‐sterile, the continuously backcrossed line is a male‐sterile line (designated NJCMS4A), and N23658 is its maintainer (designated NJCM4B). The male fertility of NJCMS4A was restored by another accession, Nansheng9403. Accordingly, NJCMS4A along with its maintainer and restorer composes a complete set of three lines for producing hybrid soybean. Using mitochondrial markers and sequence analyses, NJCMS4A is a CMS line with its cytoplasm not identical to the four previously reported CMS sources in soybean.  相似文献   

17.
With the objective of identifying SSR markers that can distinguish parental lines of rice hybrids, we characterized 10 each of cytoplasmic male sterile (CMS) and restorer (R) lines along with 10 popular Indian rice varieties using a set of 48 hyperpolymorphic SSRs distributed uniformly across the rice genome. All the SSR markers were polymorphic, amplifying a total of 163 alleles, with an average of 3.36 ± 1.3 allelic variants per locus. Twenty-seven SSR markers showed amplification of an allele, which was very specific and unique to a particular parental line and not amplified in any other rice genotype tested. Through multiplex PCR, SSR marker combinations that were unique to a particular parental line or hybrid were also identified. With a set of 10 SSR markers, all the public bred Indian rice hybrids along with their parental lines could be clearly distinguished. To utilize these SSR markers effectively for detection of impurities in parental lines, a two dimensional bulked DNA sampling strategy involving a 20 × 20 grow-out matrix has been designed and used for detection of contaminants in a seed-lot of the popular CMS line IR58025A. We have also designed a multiplex PCR strategy involving single tube analysis using 2–3 markers for hybrid seed purity assessments and demonstrate its superiority over single marker analysis in accurate detection of impurities in hybrids. Implications of parental and hybrid specific SSR markers and strategies to utilize the informative SSR markers for detection of contaminants in a cost effective manner are discussed.  相似文献   

18.
Y. Wang    L. Zhao    X. Wang    H. Sun 《Plant Breeding》2010,129(1):9-12
In this study, we report the mapping of the Rf locus in soybean by microsatellite simple sequence repeat (SSR) genetic markers. A cross was made between cytoplasmic male sterility (CMS) line JLCMS82A and restorer line JIHUI 1 based on the DNA polymorphisms revealed by 109 SSR markers. A F2 population derived from a single F1 plant containing 103 individuals was used for mapping the Rf locus. The Rf gene of JIHUI 1 gametophytically restores male fertility to JLCMS82A. Fertile and semi-fertile DNA bulks and parental DNAs were screened with 219 SSR markers, and Satt215 which was previously mapped to soybean LG J, was found linked to the Rf gene. Five additional polymorphic SSR markers from LG J were used for analysis and a regional linkage map around the Rf locus was established. SSR markers, Sctt011 and Satt547, flanked the Rf locus at 3.6 cM and 5.4 cM, respectively. The availability of these SSR markers will facilitate the selection of restorer lines in hybrid soybean breeding.  相似文献   

19.
Summary Possible unfavourable influence of sterility inducing cytoplasm on physico-chemical grain quality traits in rice hybrids is one of the important concerns hindering the large-scale adoption of hybrid rice technology. Produce from 23 pairs of CMS line × restorer (AF1) and maintainer line × restorer (BF1) cross combinations carrying different cyto-sterile sources (WA, ARC, Mutagenized IR 62829B and Kalinga I) was compared for various grain and cooking quality traits. The milling recovery in rice hybrids was not influenced by the sterile cytoplasm. For kernel dimensions before and after cooking there were both favourable and unfavourable cytoplasmic effects, which varied in magnitude depending upon the sterile cytoplasm and parental combinations. Similar results were obtained for kernel elongation and gelatinization temperature. The most widely used WA cytoplasm had minimum instances of unfavourable influence. In general, the cytoplasmic influence was found to be highly cross-specific and depended on the nuclear background of CMS line and fertility restorer. Availability of alloplasmic CMS lines carrying different cyto-sterile sources in the same nuclear background would help in ascertaining the cytoplasmic influence in a more comprehensive manner.  相似文献   

20.
The Wild Abortive (WA) system is the major cytoplasmic male sterility (CMS) source for hybrid rice production in indica rice and its fertility restoration is reported to be controlled by two major loci viz. Rf3 on chromosome 1 and Rf4 on chromosome 10. With the availability of the rice genome sequence, an attempt was made to fine map, develop candidate gene based markers for Rf3 and Rf4 and validate the developed marker system in a set of known restorer lines. Using polymorphic markers developed from microsatellite markers and candidate gene based markers from Rf3 and Rf4 loci, local linkage maps were constructed in two mapping populations of ~1,500 F2 progeny from KRH2 (IR58025A/KMR3R) and DRRH2 (IR68897A/DR714-1-2R) hybrids. QTLs and their interactions for fertility restoration in Rf3 and Rf4 loci were identified. The identified QTL in both mapping populations together explained 66–72 % of the phenotypic variance of the trait suggesting their utility in developing a marker system for identification of fertility restorers for WA-CMS. Sequence comparison of the two candidate genes from the Rf3 and Rf4 regions in male sterile (A) and restorer (R) lines showed 2–3 bp indels and a few substitutions in the Rf3 region and indels of 327 and 106 bp in the Rf4 region respectively. The marker system identified in the present study was validated in 212 restorers and 34 maintainers along with earlier reported markers for fertility restoration of WA-CMS. Together DRCG-RF4-14 and DRCG-RF4-8 for the Rf4 locus and DRRM-RF3-5/DRRM-RF3-10 for the Rf3 locus showed a maximum efficiency of 92 % for identification of restorers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号