首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Equine herpesvirus type 1 (EHV-1) is a major cause of respiratory and reproductive diseases in horses worldwide. The genome of EHV-1 strain 438/77 (isolated from an aborted equine fetus) was cloned as a bacterial artificial chromosome (BAC) in E. coli without any gene deletions. The mini-F plasmid sequence was inserted in the middle of ORF19 and 20 via homologous recombination following co-transfection of viral DNA and plasmid pE19_20/HA into RK13 cells. Circular viral DNA was extracted from RK13 cells infected with purified recombinant virus expressing green fluorescent protein (GFP) and electrophorated into E. coli DH10B cells. The clone harboring the BAC was screened and analyzed by PCR and RFLP. Reconstitution of the recombinant virus was achieved successfully by transfection of the BAC DNA into RK13 cells. The mini-F sequence in the reconstituted virus was subsequently removed by homologous recombination between virus DNA and plasmid pE1920XM, inducing a point mutation in the Xbal site in ORF19. Comparison of RFLP profiles of the rescued, recovered and the wild-type viral genome demonstrated that no unexpected changes occurred during mutagenesis. In vitro replication assays showed that BAC-reconstituted virus mutant growth kinetics and plaque formation morphology/size were indistinguishable to those measured for wild-type virus.  相似文献   

2.
The genome of equine herpesvirus type 1 (EHV-1) strain RacL11, a highly virulent isolate obtained from an aborted foal, and that of the modified live vaccine strain KyA, were cloned as bacterial artificial chromosomes (BAC) in Eseherichia coli. Mini F plasmid sequences were inserted into the viral genomes by homologous recombination instead of the gene 71 (EUS4) open reading frame after co-transfection of viral DNA and recombinant plasmid pdelta71-pHA2 into RK13 cells. After isolation of recombinant viruses by three rounds of plaque purification, viral DNA was isolated from RK13 cells infected with RacL11 or KyA virus mutants expressing the green fluorescent protein (GFP), and electroporated into Escherichia coli DH10B cells. Several bacterial colonies were shown to contain high-molecular weight BAC DNA with a restriction enzyme fragment pattern indicative of the presence of full-length RacL11 or KyA genomes. Two selected BAC clones were analysed by restriction enzyme analysis and Southern blotting, and were eventually termed pRacLI I and pKyA. respectively. Upon transfection of pRacL11 or pKyA DNA into RK13 cells, GFP-expressing fluorescing virus plaques could be identified from day 1 after transfection. Infectivity after transfection of pRacL11 or pKyA could be readily propagated on RK13 or equine cells, indicating that infectious full-length DNA clones of strains RacL11 and KyA were successfully cloned in Escherichia coli as BACs. The glycoprotein 2-negative progeny reconstituted from pRacL11 and pKyA (L11deltagp2 and KyAdeltagp2) exhibited different growth properties. Whereas both L11deltagp2 and KyAdeltagp2 extracellular titres were reduced by 15- to 32-fold, plaque diameters were only markedly (50%) reduced in the case of KyAdeltagp2.  相似文献   

3.
4.
5.
将病毒的全基因组分成3个重叠的区段分别扩增出来,把这3个片段连接到载体中。以这3个片段为模板,通过融合PCR方法,获得JEV的全长cDNA。以cDNA为体外转录的模板,体外转录获得病毒mRNA,转染BHK-21细胞,拯救JEV病毒。通过生物学特性、分子生物学、蛋白水平等几个方面对恢复病毒进行鉴定,并测定恢复病毒的生长曲线和LD50。结果显示,获得了全长cDNA,体外转录获得的病毒RNA转染BHK-21细胞后,二代恢复病毒可引起明显的细胞病变,间接免疫荧光试验和RT-PCR均为阳性。空斑试验表明,拯救病毒与原病毒空斑表型类似;恢复病毒与亲本毒相比在BHK-21细胞上生长更快;恢复病毒的LD50与亲本毒类似。  相似文献   

6.
将本实验室保存的一株LaSota病毒用有限稀释法接种鸡胚进行纯化,连续传代5次后筛选到1株高血凝效价的纯培养克隆株,命名为LaSotaC5,并对其进行全基因组测序,克隆株与亲本株在生物学特性与基因序列上都存在一定的差异。参照LaSotaC5株全基因序列单酶切位点,用RT-PCR的方法将基因组分8段扩增,按照病毒基因组的结构顺序,将克隆片段定向插入到TVT转录载体中,成功构建含有病毒全长eDNA的转录载体TVT.LaSotaC5。将TVT-LaSotaC5与辅助质粒pCI-NP、pCI-P和pCI—L共转染BSR—T7/5细胞,成功拯救出了具有感染性的LaSota株新城疫病毒。病毒的成功拯救为后续基因功能和疫苗载体开发等方面的研究提供了平台。  相似文献   

7.
The genome of equine herpesvirus type 1 (EHV‐1) strain RacL11, a highly virulent isolate obtained from an aborted foal, and that of the modified live vaccine strain KyA, were cloned as bacterial artificial chromosomes (BAC) in Escherichia coli. Mini F plasmid sequences were inserted into the viral genomes by homologous recombination instead of the gene 71 (EUS4) open reading frame after co‐transfection of viral DNA and recombinant plasmid pΔ71‐pHA2 into RK13 cells. After isolation of recombinant viruses by three rounds of plaque purification, viral DNA was isolated from RK13 cells infected with RacL11 or KyA virus mutants expressing the green fluorescent protein (GFP), and electroporated into Escherichia coli DH10B cells. Several bacterial colonies were shown to contain high‐molecular weight BAC DNA with a restriction enzyme fragment pattern indicative of the presence of full‐length RacL11 or KyA genomes. Two selected BAC clones were analysed by restriction enzyme analysis and Southern blotting, and were eventually termed pRacL11 and pKyA, respectively. Upon transfection of pRacL11 or pKyA DNA into RK13 cells, GFP‐expressing fluorescing virus plaques could be identified from day 1 after transfection. Infectivity after transfection of pRacL11 or pKyA could be readily propagated on RK13 or equine cells, indicating that infectious full‐length DNA clones of strains RacL11 and KyA were successfully cloned in Escherichia coli as BACs. The glycoprotein 2‐negative progeny reconstituted from pRacL11 and pKyA (L11Δgp2 and KyAΔgp2) exhibited different growth properties. Whereas both L11Δgp2 and KyAΔgp2 extracellular titres were reduced by 15‐ to 32‐fold, plaque diameters were only markedly (50%) reduced in the case of KyAΔgp2.  相似文献   

8.
Duck is susceptible to many pathogens, such as duck hepatitis virus, duck enteritis virus (DEV), duck tembusu virus, H5N1 highly pathogenic avian influenza virus (HPAIV) in particular. With the significant role of duck in the evolution of H5N1 HPAIV, control and eradication of H5N1 HPAIV in duck through vaccine immunization is considered an effective method in minimizing the threat of a pandemic outbreak. Consequently, a practical strategy to construct a vaccine against these pathogens should be determined. In this study, the DEV was examined as a candidate vaccine vector to deliver the hemagglutinin (HA) gene of H5N1, and its potential as a polyvalent vaccine was evaluated. A modified mini-F vector was inserted into the gB and UL26 gene junction of the attenuated DEV vaccine strain C-KCE genome to generate an infectious bacterial artificial chromosome (BAC) of C-KCE (vBAC-C-KCE). The HA gene of A/duck/Hubei/xn/2007 (H5N1) was inserted into the C-KCE genome via the mating-assisted genetically integrated cloning (MAGIC) to generate the recombinant vector pBAC-C-KCE-HA. A bivalent vaccine C-KCE-HA was developed by eliminating the BAC backbone. Ducks immunized with C-KCE-HA induced both the cross-reactive antibodies and T cell response against H5. Moreover, C-KCE-HA-immunized ducks provided rapid and long-lasting protection against homologous and heterologous HPAIV H5N1 and DEV clinical signs, death, and primary viral replication. In conclusion, our BAC-C-KCE is a promising platform for developing a polyvalent live attenuated vaccine.

Electronic supplementary material

The online version of this article (doi:10.1186/s13567-015-0174-3) contains supplementary material, which is available to authorized users.  相似文献   

9.
10.
11.
12.
猪流行性腹泻病毒(PEDV)是高度接触性肠道传染病猪流行性腹泻(PED)的病原,是有囊膜的单股正链RNA病毒,基因组全长约28 kb。2010年以来,PEDV G2型高致病性毒株不断发生变异,给全国乃至全球的养猪业造成巨大的经济损失。反向遗传学系统,即构建RNA病毒的全长感染性克隆。近年来,PEDV主要基于靶向RNA重组、BAC系统和体外连接3种方法来建立全长感染性cDNA克隆。文章简述了反向遗传学的原理和方法。靶向RNA重组利用冠状病毒RNA的高同源重组的特点来实现病毒的拯救;BAC系统利用pBeloBAC11载体克服PEDV基因组中含有的毒性序列所导致的cDNA在高拷贝质粒中不稳定的困难;体外连接技术主要利用PEDV基因组本身存在的限制性内切酶的酶切位点或通过改造的酶切位点在体外将病毒分片段地连接成全长的cDNA克隆。另外,文章还总结了近年来基于反向遗传学技术的PEDV相关的研究进展。PEDV反向遗传学是研究PEDV病毒基因组结构功能及设计减毒活疫苗的有效工具,利用反向遗传学技术探究S基因等毒力相关基因,探究其突变或缺失对病毒致病机制的影响,揭示PEDV毒力衰减的分子机制,有望设计出具有良好免疫原性且避免毒株返毒和重组减毒活疫苗。总之,PEDV反向遗传学是研究PEDV基因组结构及功能、病毒宿主相互作用及致病机制的一种重要方法,同时也是设计PEDV减毒活疫苗一种合理有效的途径。  相似文献   

13.
为了克隆禽腺联病毒(Avian adeno-associated virus,AAAV)全基因组用于构建基因转移载体研究,以鸡胚致死孤儿病毒(CELO)作为辅助病毒与AAAV共接种SPF鸡胚进行AAAV的增殖,将AAAV约4.7kb双链基因组DNA与pCR2.1载体连接,构建了含AAAV全基因组的重组质粒pAAAV并进行了测序。序列分析表明,AAAV YZ-1株的基因组为4684bp,两端具有141bp的末端倒置重复序列和Rep蛋白结合位点特征序列,与GenBank中收录的AAAV DA-1株和VR-865株的核苷酸序列同源性分别为95.0%和92.2%。将pAAAV质粒转染CELO病毒感染的鸡胚肝细胞系,获得了感染性AAAV病毒粒子,结果证明克隆的AAAV基因组中存在与病毒复制和包装相关的正确关键序列,可用于重组AAAV载体的构建。  相似文献   

14.
本试验旨在对缺失meq基因的马立克氏病病毒(MDV)感染性克隆基因组中细菌人工染色体(BAC)序列的自我敲除进行分子鉴定。将含有表达cre重组酶真核表达盒的SC9-1重组质粒通过转染鸡胚成纤维细胞(CEF)拯救SC9-1重组病毒。将SC9-1重组病毒在CEF细胞上进行连续传代培养,利用病毒表达的cre重组酶在传代过程中逐步敲除病毒的BAC序列。分别提取1~10代不同代次SC9-1重组病毒的DNA作为模板,利用BAC序列特异性引物对病毒基因组中的BAC进行PCR检测。利用针对BAC序列gpt基因的特异性检测引物,以MDV保守基因pp38作为内参,对不同代次病毒基因组中BAC序列进行荧光定量PCR的检测。利用PCR扩增SC9-1病毒敲除BAC序列后基因组中残留loxp位点两端序列,通过测序分析进一步验证BAC序列的敲除。利用BAC序列特异性引物对不同代次病毒基因组中BAC序列的检测结果显示,1~5代病毒DNA均能扩增出600 bp的特异性目的条带,证实病毒的基因组中含有BAC序列。6~10代病毒DNA均不能扩增出特异性目的条带,证实病毒基因组中没有BAC序列。荧光定量PCR结果显示,病毒基因组中的BAC序列随着病毒的传代逐渐减少,直至第6代已经完全检测不到BAC序列。在病毒BAC序列敲除的过程中,对每代病毒BAC序列敲除后残留loxp位点序列进行PCR测序鉴定,结果显示BAC序列敲除后基因组中仅留下一个loxp位点,序列同源性均在99.7%以上。结果表明,利用cre/loxp系统将病毒在CEF细胞上连续6代传代培养可将MDV meq基因缺失株SC9-1的BAC序列完全敲除掉,且同源重组酶敲除BAC序列具有高度一致性。  相似文献   

15.
以临床分离的鸭圆环病毒(duck circovirus)(GenBank登录号:GU168779)阳性病料为材料,根据GenBank中所登录的鸭圆环病毒基困序列设计引物并对设计的引物5′末端进行磷酸化处理,通过引物设计替换碱基,以突变形成EcoRⅠ酶切位点。利用PCR方法扩增鸭圆环病毒的基因,经胶回收后,用T4 DNA连接酶进行环化,以获得鸭圆环病毒具有感染性的核酸。在含有分子标记的两端设计引物,进行PCR扩增,对PCR产物进行胶回收,连接T载体后测序,对胶回收产物进行EcoRⅠ酶切鉴定,均证明在第587位成功插入EcoRⅠ酶切位点。结果表明,本试验已成功构建带有分子标记的鸭圆环病毒的感染性核酸,为进一步开展该病毒的分子调控机制、致病性和开发基因工程疫苗研究奠定基础。  相似文献   

16.
17.
简要介绍了细菌人工染色体(Bacterial artificial chromosome,BAC)载体及其修饰技术,重点综述了BAC在马立克氏病病毒基因功能、疫苗研究中的应用。细菌人工染色体是近十几年发展起来的一种新型DNA克隆载体系统,具有操作简单、遗传稳定、容量大等明显的优势,主要用于构建基因组文库、转基因动物模型、分子克隆化病毒等。  相似文献   

18.
The genome of JS/7/05/Ch isolate shared more than 99% nucleotide identity with that of Mukteswar strain. However, the pathogenicity of JS/7/05/Ch was much stronger than that of Mukteswar strain. In order to provide a good foundation for the further related research, we built the rescue system of JS/7/05/Ch in this study. Based on the genomic sequence of JS/7/05/Ch strain, eight pairs of primers were designed to amplify the genomic fragments by RT-PCR and cloned into pCR2.1 vector, to construct the plasmid pJS/7/05/Ch which contained the full-length cDNA of NDV. Then the full-length cDNA was transferred to TVT7R(0.0) vector to construct full-length NDV infectious clone, pTVT/JS705, using specific enzymes. The infectious clone together with three helper plasmids (pCI-NP, pCI-P and pCI-L) were cotransfected into BSR-T7/5 cell, and the transfection supernatant was inoculated into SPF embryonated eggs to rescue the virus. The results of HA and RT-PCR indicated that JS/7/05/Ch strain of NDV was successfully rescued.  相似文献   

19.
参考1型鸭肝炎病毒基因组序列,设计7条引物,用RT—PCR方法扩增出覆盖整个病毒基因组三个忠实性片段,并按顺序组装进载体pBR322中,获得全长cDNA克隆。测序结果表明,该克隆与母本毒序列同源性达99.6%,并且5’端的T7启动子和3’端的Mlu I线性化位点均成功引入。  相似文献   

20.
A widely used vaccine against Marek’s disease (MD) in poultry is the virus SB-1, which is antigenically-related to the causative agent, Marek’s disease herpesvirus. We recently cloned the SB-1 genome as an infectious bacterial artificial chromosome, BAC, (pSB-1). The protective efficacies and replication kinetics of pSB-1 and the parent strain (SB-1) were compared in an experimental model of MD induced by a virulent strain, RB-1B. Although vaccine virus replication and shedding was lower for pSB-1 than for SB-1, both vaccines reduced replication and shedding of RB-1B, and were equally effective in protecting chickens against MD. With the cloning of pSB-1, we have now generated full length genomic clones of MD vaccine virus strains belonging to each of the three serotypes. Vaccine viruses derived from each of these clones demonstrated protective efficacies at levels similar to those produced by the respective parent viruses, demonstrating their suitability to be used as vaccine candidates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号