首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Classical swine fever virus (CSFV) compromises the host immune system, causing indirect leucopoenia and disruption of in vitro T cell stimulation capacity. In order to explore the potential role of dendritic cells (DC) in such phenomena, the activation of conventional DC (cDC) and plasmacytoid DC (pDC) in blood and secondary lymphoid organs of infected pigs was investigated in the early time course post-inoculation (pi), together with viral components dissemination and cytokine production in serum. Whereas CD11R1+CD172a+ cDC frequencies were markedly reduced in blood and spleen, analysis of CD4+CD172a+ pDC numbers revealed a rapid turn-over of this DC subset in tissues pi. Both subsets matured and were activated after infection, as demonstrated by down-regulation of CD1a, up-regulation of the co-stimulation molecule CD80/86 and expression of cytokines. cDC essentially expressed tumor necrosis factor alpha (TNF-alpha) and interleukin (IL)-10, whereas pDC produced alpha interferon (IFN-alpha) and IL-12. IFN-alpha and TNF-alpha productions revealed an enhancement of innate anti-viral immune responses. Detection of antigen activated B lymphocytes in tonsil T-cell areas at 72 h pi, subsequently to the transient translocation of the viral E2 protein within germinal centres at 48 h pi, indicates the initiation of humoral response. This response was also evidenced by an important IL-10 production in serum one week pi. IL-12 expression in organs, as well as transient detection of IL-18 and IFN-gamma in serum, reflected the initiation of cellular immune responses. However, the uncommonly high levels of TNF-alpha and IFN-alpha produced by DC and measured in serum early post-infection, together with IL-10 expression in spleen, could play a role in the disruption of immune system cells, either inducing apoptosis or impairing DC functionalities themselves.  相似文献   

2.
Early interactions of innate immune cell populations, such as dendritic cells (DC) and natural killer (NK) cells, can affect the ability of the acquired immune response to control infection of intracellular microorganisms. In this study, we investigated the activation of bovine NK cells by CD13(+) splenic DC stimulated with either Mycobacterium bovis BCG or Babesia bovis merozoites. Splenic DC were used either immediately after selection (cytokine(-)) or after exposure to GM-CSF, IL-4 and Flt3L for 72 h (cytokine(+)). Phenotypic analyses showed up-regulation of MHCII, CD80 and CD86 on cytokine(+) DC when compared to cytokine(-) DC. Purified NK cells (CD335(+)CD3(-)CD2(+/-)CD8alpha(+/-)) were co-cultured with microbial-exposed cytokine(-) DC or cytokine(+) DC in either transwell or cell-to-cell format and NK cell IFN-gamma production and cytotoxicity were assessed. NK cell IFN-gamma production was dependent on cell-to-cell contact. Microbial-stimulated cytokine(+) DC induced significantly more IFN-gamma production from NK cells than cytokine(-) cells. In contrast, cytotoxicity and perforin up-regulation were more pronounced in NK cells cultured with cytokine(-) DC than cytokine(+) DC. Therefore, activation of bovine NK cells by microbial-stimulated CD13(+) splenic DC is influenced by the maturation state of the DC suggesting different roles for the splenic DC during disease-induced maturation.  相似文献   

3.
4.
Dendritic cells (DCs) are specialized antigen presenting cells specializing in antigen uptake and processing, and play an important role in the innate and adaptive immune response. A subset of bovine peripheral blood DCs was identified as CD172a+/CD11c+/MHC (major histocompatibility complex) class II+ cells. Although DCs are identified at 0.1%–0.7% of peripheral blood mononuclear cells (PBMC), the phenotype and function of DCs remain poorly understood with regard to maintaining tolerance during the pregnancy. All cattle used in this study were 1 month before parturition. We have established a novel method for the purification of DCs from PBMC using magnetic‐activated cell sorting, and purified the CD172a+/CD11c+ DCs, with high expression of MHC class II and CD40, at 84.8% purity. There were individual differences in the expressions of CD205 and co‐stimulatory molecules CD80 and CD86 on DCs. There were positive correlations between expression of cytokine and co‐stimulatory molecules in DCs, and the DCs maintained their immune tolerance, evidenced by their low expressions of the co‐stimulatory molecules and cytokine production. These results suggest that before parturition a half of DCs may be immature and tend to maintain tolerance based on the low cytokine production, and the other DCs with high co‐stimulatory molecules may already have the ability of modulating the T‐cell linage.  相似文献   

5.
Despite accumulating knowledge of porcine macrophages and dendritic cells (DCs) from in vitro studies, information regarding monocytes/macrophages and DCs in lymphoid tissues of enteric pathogen-infected neonatal animals in vivo is limited. In this study we evaluated the influence of commensal bacterial [two strains of lactic acid bacteria (LAB), Lactobacillus acidophilus and L. reuteri] colonization and rotavirus infection on distribution and frequencies of monocytes/macrophages and conventional DCs (cDCs) in ileum, spleen and blood. Gnotobiotic pigs were inoculated with LAB and virulent Wa strain human rotavirus (HRV) (LAB+HRV+), HRV only (LAB-HRV+), LAB only (LAB+HRV-) or mock (LAB-HRV-). The cDCs were characterized as SWC3(+)CD11R1(+), whereas monocytes/macrophages were identified as SWC3(+)CD11R1(-) by flow cytometry in the gnotobiotic pigs at 10 days of age. Infection with HRV alone activated/recruited significantly more monocytes/macrophages to the intestine than LAB colonization and 56% versus 28% of these cells expressed CD14. Colonization with LAB alone also significantly increased the frequencies of monocytes/macrophages and cDCs and the CD14 expression on monocytes/macrophages in ileum and spleen compared to the controls. LAB colonization plus HRV infection significantly reduced macrophage and cDC frequencies in spleen compared to LAB colonization or HRV infection alone, suggesting that LAB colonization down-regulated HRV- infection-induced monocyte/macrophage activation/recruitment at the systemic lymphoid tissue. These results illustrated the distribution of porcine monocytes/macrophages and cDCs and the frequencies of CD14 expression on these cells in intestinal and systemic lymphoid tissues in the early stage of immune responses to intestinal colonization by LAB versus infection by an enteric pathogen HRV and will facilitate further in vivo studies on functional characterization of these immune cells in neonates.  相似文献   

6.
Dendritic cells (DCs) are antigen presenting cells that potently modulate immune responses with varying outcomes depending on the DC sub-population involved. To understand how DC sub-types arise, it is necessary to determine which factors influence their differentiation. At least three major sub-populations of DCs have been described in mice: CD4+/CD8- "myeloid" DCs, CD4-/CD8+ "lymphoid" DCs and Langerhans cell-derived DCs. Whilst somewhat comparable populations have been described in man, in most other species very little is known. The identification of cytokines which stimulate proliferation of DC precursors, and the observation that the cytokine environment influences the phenotype and the function of the DCs that subsequently develop, has provided a useful tool for evaluating these rare cells. We describe the influence of cytokines on the phenotype of DCs generated in the rat. Using bone marrow cells as the source of precursors we generated "myeloid-type" DCs from the adherent population using granulocyte-macrophage colony stimulating factor (GM-CSF), IL-4 and Flt-3L or "lymphoid-type" DCs from the non-adherent population using cytokines which included IL-7, IL-3, SCF and TNFalpha. In order to facilitate similar approaches to the study of equine DCs we have identified the nucleotide sequence encoding GM-CSF from the m-RNA of equine PBMC stimulated with Concanavalin A, amplified the cDNA by PCR and cloned it in eukaryotic and prokaryotic expression vectors. We report on the structure and function of this molecule.  相似文献   

7.
Previously, we reported that ovarian hormones affect the immune response against E. coli isolated from the dogs affected with pyometra. In order to investigate mechanisms underlying the immune modulation, we examined the effects of ovarian hormones on the generation of dendritic cells (DCs), the most potent antigen presenting cell. DCs were differentiated from peripheral blood monocytes (PBMOs) using a cytokine cocktail. Both estrogen receptor and progesterone receptors were expressed by the PBMOs and immature DCs. When various ovarian hormones were added to the culture for the DC differentiation, progesterone significantly decreased the expression of DC maturation markers, such as CD1a, CD80 and CD86, on mature DCs. Conversely, the addition of estrogen to the cultures increased the expression of CD86, but not other maturation makers. Furthermore, DCs differentiated in the presence of progesterone did not stimulate allogeneic mononuclear cells in PB. Taken together, these results indicate that progesterone diminishes the maturation of DCs, leading to decreased immune responses against invading pathogens.  相似文献   

8.
The aim of this work was to develop mAbs against porcine CD205 and to conduct a comparative analysis of the CD205 protein expression on lymphoid tissues, monocyte-derived dendritic cells (DCs) and DCs isolated from the porcine skin. To conduct this study, we generated a monoclonal antibody, designated 1.F6F6, against the C-type lectin-like domain-5 of the porcine CD205 and showed that it recognizes a protein band of ~200 kDa by Western Blot analysis in mesenteric lymph nodes cells. Flow cytometric analysis showed that the mAb 1.F6F6 recognized 28.5%, 28.1% and 34.1% of cells from tonsil, inguinal and mesenteric lymph nodes, respectively, and 6% of cells from thymus. Analysis of monocyte-derived DCs showed that approximately 20% were positive and activation of the cells with LPS increased the positive population to 36%. Analysis of DCs isolated from the porcine skin showed that approximately 70% of the cell population expressed the CD205 receptor. The development of a monoclonal antibody capable of recognizing the CD205 receptor in swine opens up possibilities of applying new strategies for enhancing vaccine efficacy by using the anti-CD205 antibody for DC antigen-targeting to enhance priming of immune responses.  相似文献   

9.
为分析囊型包虫原头蚴(PSC)分泌的外泌体(Exosome)对树突状细胞(DCs)活化和分泌细胞因子的影响,本研究采用高速离心法结合外泌体提取试剂盒分离原头蚴分泌的外泌体(PE),收集的PE沉淀中加入去离子水低渗裂解离心,提取超滤后的蛋白浓缩液即为原头蚴外泌体超滤裂解物(PEL)。利用免疫磁珠从健康ICR小鼠脾脏中分选DCs,分别加入PE、LPS、PEL、PBS进行刺激培养,24 h后收集培养细胞及培养上清,利用流式细胞术检测DCs表面活化分子的表达水平及细胞因子分泌情况。结果显示:4组DCs表面表达CD40、CD80、CD86、MHCⅡ的比例相比,PEL组结果明显高于PE组,这两组较PBS组均显著升高(p<0.05),但3组均低于LPS组。PE、PEL组DCs培养上清中IL-6、IL-10、IL-12、TNF-α均显著高于PBS组,且PEL组IL-12、TNF-α高于PE组,IL-6、IL-10水平低于PE组。以上结果初步证实PE能刺激DCs活化和释放细胞因子,低渗裂解超滤提纯外泌体蛋白并去除miRNA成分的PEL能够更有效激活DCs活化和促进细胞因子释放,表明外泌体蛋白可诱导抗感染免疫应答,exosomal miRNA成分可能参与虫体免疫逃逸。本研究为后续进一步探索包虫感染及抗感染免疫应答机理提供实验依据。  相似文献   

10.
树突状细胞(DC)是目前发现功能最强的一类抗原递呈细胞(APC),因其在机体免疫应答及免疫功能发挥中担当重要角色,成为免疫学研究热点。多糖是中药黄芪的重要有效成分,由己糖醛酸、果糖、阿拉伯糖、半乳糖醛酸等组成,具有免疫调节、抗肿瘤、抗应激和抗氧化等作用。黄芪多糖的免疫调节一直是人们研究的重点,研究发现其可通过促进DC成熟而发挥免疫调节作用。论文从DC的形态和功能变化、DC的成熟和DC表面标志CD80、CD86、CD83和相关细胞因子表达等方面,综合分析了黄芪多糖对DC抗原递呈能力的影响。  相似文献   

11.
The in vitro generation of dendritic cells (DCs) from either blood or bone marrow has been accomplished for humans and a number of other species. This ability has facilitated the opportunity to test the efficacy of DC vaccines in various tumor models. The cottontail rabbit papillomavirus (CRPV) model is the most clinically relevant animal model for human papillomavirus (HPV)-associated carcinogenesis. The CRPV model has been used to test various preventative and therapeutic vaccination strategies, and the availability of rabbit DCs would further expand its utility. However, to date, rabbit DCs have not been phenotypically and/or functionally characterized. Here we show that DCs can be generated in vitro from rabbit bone marrow mononuclear cells (BMMCs) cultured in the presence of the human cytokines GM-CSF and IL-4 and matured with lipopolysaccharide (LPS). These cells show upregulation of MHC class II and CD86, as well as downregulation of CD14, do not have non-specific esterase activity, are able to perform receptor-mediated endocytosis, and are potent stimulators of allogeneic T cell proliferation in mixed lymphocyte reactions. The ability to generate rabbit DCs makes it possible to test the efficacy of DC vaccination in the prevention and treatment of CRPV-induced lesions, which may provide useful preclinical data regarding the use of DC vaccines for HPV-associated lesions, including cervical cancer.  相似文献   

12.
Porcine circovirus associated disease (PCVAD) is currently one of the most economically important diseases in the global swine industry. Porcine circovirus type 2 (PCV2) is the primary causative agent, however co-infection with other swine pathogens such as porcine reproductive and respiratory syndrome virus (PRRSV) is often required to induce the full spectrum of clinical PCVAD. While the specific mechanisms of viral co-infection that lead to clinical disease are not fully understood, immune modulation by the co-infecting viruses likely plays a critical role. We evaluated the ability of dendritic cells (DC) infected with PRRSV, PCV2, or both to induce regulatory T cells (T(regs)) in vitro. DCs infected with PCV2 significantly increased CD4(+)CD25(+)FoxP3(+) T(regs) (p<0.05) and DCs co-infected with PRRSV and PCV2 induced significantly higher numbers of T(regs) than with PCV2 alone (p<0.05). Cytokine analysis indicated that the induction of T(regs) by co-infected DCs may be dependent on TGF-β and not IL-10. Our data support the immunomodulatory role of PCV2/PRRSV co-infection in the pathogenesis of PCVAD, specifically via T(reg)-mediated immunosuppression.  相似文献   

13.
ABSTRACT: Streptococcus suis is a major swine pathogen and important zoonotic agent causing mainly septicemia and meningitis. However, the mechanisms involved in host innate and adaptive immune responses toward S. suis as well as the mechanisms used by S. suis to subvert these responses are unknown. Here, and for the first time, the ability of S. suis to interact with bone marrow-derived swine dendritic cells (DCs) was evaluated. In addition, the role of S. suis capsular polysaccharide in modulation of DC functions was also assessed. Well encapsulated S. suis was relatively resistant to phagocytosis, but it increased the relative expression of Toll-like receptors 2 and 6 and triggered the release of several cytokines by DCs, including IL-1β, IL-6, IL-8, IL-12p40 and TNF-α. The capsular polysaccharide was shown to interfere with DC phagocytosis; however, once internalized, S. suis was readily destroyed by DCs independently of the presence of the capsular polysaccharide. Cell wall components were mainly responsible for DC activation, since the capsular polysaccharide-negative mutant induced higher cytokine levels than the wild-type strain. The capsular polysaccharide also interfered with the expression of the co-stimulatory molecules CD80/86 and MHC-II on DCs. To conclude, our results show for the first time that S. suis interacts with swine origin DCs and suggest that these cells might play a role in the development of host innate and adaptive immunity during an infection with S. suis serotype 2.  相似文献   

14.
15.
We examined whether bovine monocyte-derived and bone marrow (BM) dendritic cells (DCs) regulate antibody production in activated peripheral blood B cells. DCs were generated from monocytes and BM progenitors in the presence of bovine recombinant granulocyte/macrophage colony-stimulating factor (GM-CSF) and interleukin 4 (IL-4). Monocyte-derived DCs promoted B cells activated by the anti-CD3 triggered CD4(+) T cells or through immunoglobulin M (IgM) receptor to increase the level of IgG secretion. Furthermore, the addition of DCs triggered B cells activated through IgM receptors to produce IgG2 and IgA, thus inducing an isotype switch. BM-derived DCs increased the production of IgG in B cells activated by the anti-CD3 triggered CD4(+) T cells, but unlike monocyte-derived DCs did not have any effect on B cells activated through surface IgM. These data suggest that the regulation of humoral immune responses in cattle depends on the origin of DCs and the mode of B cell activation.  相似文献   

16.
In chickens, thymic CD4(+)CD25(+) cells are characterized as regulatory T cells. The objectives of this experiment were to study the effects of an in vivo lipopolysaccharide (LPS) injection on the percentage of CD4(+)CD25(+) cells in peripheral organs and the suppressive properties of splenic CD4(+)CD25(+) cells in chickens. Chickens were injected with LPS and CD4(+)CD25(+) cells were analyzed at 1, 2, 3, 5, and 10 d post LPS injection. The LPS injection increased CD4(+)CD25(+) cell percentage approximately 5-fold in the blood at 1 d post LPS injection (P < 0.001), 3-fold in the thymus at 3 d post LPS injection (P = 0.001), and 2.5-fold in the spleen at 2 d post LPS injection (P = 0.001) compared with the no-LPS-injected group. The LPS injection did not alter the CD4(+)CD25(+) cell percentage in the cecal tonsil (P = 0.162), lung (P = 0.098), or bone marrow (P = 0.071) at any time point measured. At 2 d post LPS injection, splenic CD4(+)CD25(+) cells lost their suppressive ability (P < 0.001). At 5 d post LPS injection, splenic CD4(+)CD25(+) cells not only regained their suppressive ability, but also became supersuppressive (P < 0.001). Splenic CD4(+)CD25(+) cells at 5 d post LPS injection produced 5.5-fold more (P = 0.005) IL-10 mRNA than splenic CD4(+)CD25(+) cells at 0 and 2 d post LPS injection. In conclusion, chicken regulatory T cells are differentially activated to facilitate immune response during the early stage of inflammation and to facilitate immune suppression at a later stage of inflammation.  相似文献   

17.
Classical swine fever virus (CSFV) compromises the host immune system, causing the severe disease of pigs. Dendritic cells (DCs) are the most potent inducers of immune responses. In the present study, we investigated the functional properties of porcine monocyte-derived DCs (Mo-DCs) affected by CSFV. Results showed that the expression of surface markers of DCs such as major histocompatibility complex class II (MHC-II), CD80, CD83 and CD86 were unimpaired, but an obviously increased expression of CD172a in DCs was noticed 48 h after CSFV infection. The expression profiles of cytokines were detected in cultured Mo-DCs after various treatments for 48 h by Q-RT-PCR. The findings suggested that CSFV infection significantly increased the mRNA expression of IL-10 and TNF-α, and inhibited IL-12 expression, with little effect on IFN-α and IFN-γ expression. We further demonstrated that CSFV was incapable of activating the nuclear factor kappa B (NF-κB) in infected DCs, which was characterized by an unvaried DNA binding activity of NF-κB, the lack of translocation of p65/RelA from the cytoplasm to the nucleus and the stabilization of p65/RelA expression. Furthermore, Western blot analysis indicated that the inactivation of NF-κB was due to the failure of IκBα degradation. The data demonstrated that CSFV could be replicated in DCs and CSFV infection could modulate the secretion of crucial co-stimulatory molecules and cytokines which down-regulated maturation of DCs, without activating NF-κB in DCs. Thus, the results suggested a possible mechanism for CSFV evasion of innate host defenses, providing the basis for understanding molecular pathways in CSFV pathogenesis.  相似文献   

18.
Antigen presenting cells (APCs), especially dendritic cells (DCs), play a crucial role in immune responses against infections by sensing microbial invasion through Toll-like receptors (TLRs). In this regard, TLR ligands are attractive candidates for use in humans and animal models as vaccine adjuvants. So far, no studies have been performed on TLR expression in non-human primates such as rhesus macaques. Therefore, we studied the TLR expression patterns in different subsets of APC in rhesus macaques and compared them to similar APC subsets in human. Also, expression was compared with corresponding DC subsets from different organs from mice. Here we show by semi-quantitative RT-PCR, that blood DC subsets of rhesus macaque expressed the same sets of TLRs as those of human but substantially differed from mouse DC subsets. Macaque myeloid DCs (MDCs) expressed TLR3, 4, 7 and 8 whereas macaque plasmacytoid DCs (PDCs) expressed only TLR7 and 9. Additionally, TLR expression patterns in macaque monocyte-derived dendritic cells (mo-DCs) (i.e., TLR3, 4, 8 and 9), monocytes (i.e., TLR4, 7, and 8) and B cells (i.e., TLR4, 7, 8, and 9) were also similar to their human counterparts. However, the responsiveness of macaque APCs to certain TLR ligands partially differed from that of human in terms of phenotype differentiation and cytokine production. Strikingly, in contrast to human mo-DCs, no IL-12p70 production was observed when macaque mo-DCs were stimulated with TLR ligands. In addition, CD40 and CD86 phenotypic responses to TLR8 ligand (poly U) in mo-DCs of macaque were higher than that of human. Despite these functional differences, our results provide important information for a rational design of animal models in evaluating TLR ligands as adjuvant in vivo.  相似文献   

19.
Dendritic cells (DCs) are professional antigen presenting cells, which initiate primary immune responses and also play an important role in the generation of peripheral tolerance. There is no reliable method established for the isolation of bovine peripheral blood DCs, and furthermore, the phenotypes and the functions of bovine DCs are still not fully clear. In the present study, we have attempted to identify bovine peripheral blood DCs by negative-selection. In bovine peripheral blood mononuclear cells (PBMC), we have newly characterized the phenotype of DCs, which is CD11c+/CD172a+. These cells display features of myeloid type DCs. In the thymic medulla, CD11c+/CD172a+ cells were also present and CD1+/CD172a+ cells were additionally detected as a population of DCs. The data suggest that one of the bovine DCs phenotypes from PBMC is derived from myeloid lineages lacking a CD1 molecule, which then drift to several tissues, and that they then may express a CD1 molecule upon their functional differentiation.  相似文献   

20.
The nasal mucosa surface is continuously confronted with a broad variety of environmental antigens, ranging from harmless agents to potentially harmful pathogens. This area is under rigorous control of professional antigen presenting cells (APCs), such as dendritic cells (DCs) and macrophages. Mucosal APCs play a crucial role in inducing primary immune responses and the establishment of an immunological memory. In the present study, a detailed characterization of CD172a+ cells, containing the APCs residing in the equine nasal mucosa was performed for the first time. CD172a+ cells were isolated from collagenase-treated equine nasal mucosa fragments by MACS. Expression of surface markers was determined by flow cytometry and functional analysis was done by measuring the uptake of FITC conjugated ovalbumin (FITC-OVA). Cell surface phenotype of the isolated cells was as follows: 90% CD172a+, 30% CD1c+, 46% CD83+, 42% CD206+ and 28% MHC II+. This clearly differs from the phenotype of blood-derived monocytes: 96% CD172a+, 4% CD1c+, 11% CD83+, 9% CD206+, 72% MHC II+ and blood monocyte derived DCs: 99% CD172a+, 13% CD1c+, 30% CD83+, 51% CD206+ and 93% MHC II+. The CD172a+ nasal mucosal cells were functionally able to endocytose FITC-OVA but to a lesser degree than monocyte-derived DCs. Together, these results demonstrate that the isolated CD172a+ nasal mucosal cells resemble immature DCs in the nasal area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号