首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Three studies were undertaken on farmed red and red x wapiti deer to evaluate xylazine and a xylazine/fentanyl citrate/azaperone combination for velvet antler removal. In the first experiment, 30 1-2 year-old red and 25% red x wapiti deer whose velvet was to be removed were given either 5% xylazine alone at 0.5 mg/kg body weight intramuscularly or the same dose rate of a commercially available mixture of 5% xylazine with the addition of 0.4 mg of fentanyl citrate and 3.2 mg of azaperone per ml. Physiological, behavioural and analgesic responses and reversal times after yohimbine or yohimbine and naloxone were monitored. There were no differences in heart rate, respiration rate, sedative or analgesic properties detected between xylazine or the xylazine/fentanyl citrate/azaperone combination. All deer became recumbent, but those given the xylazine/fentanyl citrate/azaperone combination became recumbent more rapidly than those given xylazine alone (9.4 and 12.5 minutes, respectively, p<0.05). The arousal pattern and timing of reversal of xylazine and xylazine/fentanyl citrate/azaperone using yohimbine and yohimbine and naloxone, respectively, were similar. The second experiment evaluated the reversal of the xylazine/fentanyl citrate/azaperone combination with either yohimbine or yohimbine and naloxone in 43 3-year-old red deer stags after velvet antler removal. There were no differences in arousal pattern or time to standing between reversal treatments. Sixteen 1-year-old red and 25% red x wapiti stags were used in the third experiment to evaluate clinically the analgesic properties of xylazine and xylazine/fentanyl citrate/azaperone combination during velvet removal without the application of a local anaesthetic agent. Withdrawal responses were observed in most deer after the xylazine/fentanyl citrate/azaperone combination at dosages containing 0.5, 0.7 and 0.75 mg of xylazine/kg and after xylazine alone at 0.7 mg/kg, indicating that insufficient analgesia was provided by the systemic agent for the surgical procedure of velvet antler removal. These studies have shown that the knock-down effect of the xylazine/fentanyl citrate/azaperone combination was more rapid than that of xylazine alone, but that other physiological, behavioural and analgesic responses at doses used and evaluated by the methods used were similar. Reversal of both the xylazine and xylazine/fentanyl citrate/azaperone combination was similar when using either yohimbine alone for xylazine and the xylazine/fentanyl citrate/azaperone combination or yohimbine and naloxone for the xylazine/fentanyl citrate/azaperone combination. The evaluation of surgical analgesia for antler removal suggested that both xylazine alone and the xylazine/fentanyl citrate/azaperone combination provided insufficient analgesia and that local anaesthetic should be used in all cases.  相似文献   

2.
Thirteen wild-caught white-tailed deer (Odocoileus virginianus) from two different holding sites were chemically immobilized to facilitate capture, processing, and translocation to a new facility. The deer were divided into two treatment groups on the basis of age and received i.m. injections of the immobilizing agents via remote drug delivery systems. Group 1 (<1 yr old; n = 6) animals were immobilized with a combination of xylazine 1 mg/kg i.m. and azaperone 0.3 mg/kg i.m. At the end of the procedure the deer received zuclopenthixol acetate 1 mg/kg i.m. and (to antagonize the xylazine) tolazoline 2 mg/kg i.m. Group 2 (>1 yr old; n = 7) deer were administered xylazine 1 mg/kg i.m.. tiletamine-zolazepam 1 mg/kg i.m., and ketamine 1 mg/kg i.m. The deer in this group received a combination of azaperone 0.3 mg/kg i.m. and zuclopenthixol acetate 1 mg/kg i.m. before reversal with tolazoline 2 mg/kg i.m. All deer were recovered in a trailer before being moved in small groups to the new facility and released into the new enclosures. Azaperone and zuclopenthixol acetate provided short- and long-term relief from anxiety and allowed the animals to gradually become familiar with their new surroundings without excitement, injuries, or mortalities. Two deer exhibited mild signs of extrapyramidal side effects, which suggests that they may have received a relative overdose of the tranquilizers.  相似文献   

3.
OBJECTIVE: To evaluate the anesthetic and cardiorespiratory effects of two doses of intramuscular xylazine/ketamine in llamas, and to determine if an intramuscular injection of tolazoline would shorten the anesthesia recovery time. STUDY DESIGN: Prospective randomized study. ANIMALS: Six castrated male llamas. METHODS: Each llama received a low dose (LD) (0.4 mg kg(-1) xylazine and 4 mg kg(-1) ketamine) and high dose (HD) (0.8 mg kg(-1) xylazine and 8 mg kg(-1) ketamine). Time to sedation, duration of lateral recumbency and analgesia, pulse, respiratory rate, hemoglobin oxygen saturation, arterial blood pressure, blood gases, and the electrocardiogram were monitored and recorded during anesthesia. Three llamas in each treatment were randomized to receive intramuscular tolazoline (2 mg kg(-1)) after 30 minutes of lateral recumbency. RESULTS: Onset of sedation, lateral recumbency, and analgesia was rapid with both treatments. The HD was able to provide at least 30 minutes of anesthesia in all six llamas. The LD provided only 30 minutes of anesthesia in two out of six llamas. Respiratory depression and hypoxemia were seen in the HD treatment during the first 10 minutes of lateral recumbency. Two llamas were severely hypoxemic during this period and were given nasal oxygen for five minutes. Heart rate decreased, but there were no significant changes in blood pressure. Tolazoline significantly shortened the duration of recumbency in the HD treatment. CONCLUSIONS: The HD provided more consistent clinical effects in llamas than did the LD. Intramuscular tolazoline shortens the duration of lateral recumbency in llamas anesthetized with this combination. CLINICAL RELEVANCE: Both doses appear to be very effective in providing restraint in llamas. The LD may be used for procedures requiring a short period of anesthesia or restraint. The HD could be used when a longer duration of anesthesia is desired. Supplemental oxygen should be available if using the HD. Tolazoline (IM) shortened the recovery time with this combination in llamas.  相似文献   

4.
Trials were conducted to test the ability of yohimbine, 4-aminopyridine and doxapram given by intravenous injection to antagonise xylazine sedation in red deer (Cervus elaphus). Yohimbine produced the best and most consistent result. The mean time taken for 34 animals to stand spontaneously after receiving yohimbine (0.2 to 0.25 mg/kg) was 2 minutes 25 seconds and this occurred, on average, 33 minutes after the initial doze of xylazine. Control deer took 67 and 104 minutes on average to stand after receiving intravenous (0.64–0.96 mg/kg) and intramuscular (1.0–1.5 mg/kg) injections of xylazine respectively. Two deer which received an overdose of xylazine (4 mg/kg) recovered 3 and 9 minutes respectively after receiving yohimbine. Two deer given a high intravenous dose of yohimbine (1.0 mg/kg) became mildly nervous and anxious, but returned to normal within an hour. 4-aminopyridine (0.3 mg/kg) alone produced some arousal from xylazine sedation (0.6–1.0 mg/kg) but was inconsistent. In combination with yohimbine (0.125 mg/kg) it produced rapid recovery in two deer but caused convulsions in two other deer.

Doxapram (1 mg/kg) produced respiratory stimulation and some arousal from xylazine sedation (0.6–1.0 mg/kg) in the majority of deer but the effect was transitory. Animals relapsed into moderate sedation and recumbency within 10 minutes and required vigorous stimulation to arouse them again.

Yohimbine, administered by intravenous injection at a dose rate of 0.2 to 0.25 mg/kg, appears to be a safe and reliable drug for the reversal of xylazine sedation in deer.  相似文献   

5.
Trials were conducted to test the ability of yohimbine, 4-aminopyridine and doxapram given by intravenous injection to antagonise xylazine sedation in red deer (Cervus elaphus). Yohimbine produced the best and most consistent result. The mean time taken for 34 animals to stand spontaneously after receiving yohimbine (0.2 to 0.25 mg/kg) was 2 minutes 25 seconds and this occurred, on average, 33 minutes after the initial doze of xylazine. Control deer took 67 and 104 minutes on average to stand after receiving intravenous (0.64-0.96 mg/kg) and intramuscular (1.0-1.5 mg/kg) injections of xylazine respectively. Two deer which received an overdose of xylazine (4 mg/kg) recovered 3 and 9 minutes respectively after receiving yohimbine. Two deer given a high intravenous dose of yohimbine (1.0 mg/kg) became mildly nervous and anxious, but returned to normal within an hour. 4-aminopyridine (0.3 mg/kg) alone produced some arousal from xylazine sedation (0.6-1.0 mg/kg) but was inconsistent. In combination with yohimbine (0.125 mg/kg) it produced rapid recovery in two deer but caused convulsions in two other deer. Doxapram (1 mg/kg) produced respiratory stimulation and some arousal from xylazine sedation (0.6-1.0 mg/kg) in the majority of deer but the effect was transitory. Animals relapsed into moderate sedation and recumbency within 10 minutes and required vigorous stimulation to arouse them again. Yohimbine, administered by intravenous injection at a dose rate of 0.2 to 0.25 mg/kg, appears to be a safe and reliable drug for the reversal of xylazine sedation in deer.  相似文献   

6.
We compared the ability of tolazoline and yohimbine to antagonize xylazine-induced central nervous system depression, bradycardia, and tachypnea in 9 ewes and 5 rams. Once a week for 3 weeks, each sheep received one IV treatment of 0.4 mg xylazine/kg, 0.4 mg xylazine/kg followed in 10 minutes by 2 mg tolazoline/kg, or 0.4 mg xylazine/kg followed in 10 minutes by 0.2 mg yohimbine/kg. The order of the 3 treatments in each sheep was randomized. Xylazine alone caused recumbency for 41.0 +/- 3.7 minutes (mean +/- SEM). Tolazoline and yohimbine shortened the xylazine-induced recumbency to 12.1 +/- 0.9 minutes and 18.1 +/- 1.5 minutes, respectively. Sheep given xylazine alone had head droop for 34.0 +/- 5.4 minutes after rising. Head drooping of sheep given tolazoline or yohimbine was reduced to 10.1 +/- 1.7 minutes and 14.2 +/- 1.7 minutes, respectively. Both tolazoline and yohimbine reversed the bradycardia and tachypnea that followed xylazine administration. No statistical differences in the rate and magnitude of the reversal were observed between the 2 drugs.  相似文献   

7.
Effect of yohimbine on xylazine-induced immobilization in white-tailed deer   总被引:1,自引:0,他引:1  
Two groups of white-tailed deer were given IM injections of xylazine with a projectile syringe. Deer in one of the groups served as controls and did not receive any treatments other than xylazine. Deer in the other group were given yohimbine IV at various times (15 to 171 minutes) to evaluate its effect on xylazine-induced immobilization. In 5 control deer given 3.7 +/- 1.2 mg of xylazine/kg (mean +/- SD), onset of recumbency was 13 +/- 2 minutes and time to standing was 268 +/- 76 minutes. In 20 principal deer given 2.8 +/- 1.0 mg of xylazine/kg, onset of recumbency was 8 +/- 7 minutes, time to sitting after giving yohimbine was 3 +/- 4 minutes in 18 of the deer, and time to standing after giving yohimbine was 4 +/- 5 minutes in 19 of the deer. Most of these deer were still moderately sedated 30 minutes after injection of yohimbine, but none of them became reimmobilized or as deeply sedated as before the injection of yohimbine. Yohimbine also reversed the bradycardia and respiratory depression induced by xylazine.  相似文献   

8.
A combination of ketamine and xylazine (88.9 mg of ketamine/ml and 11.1 mg of xylazine/ml) given IM (85.5 +/- 3.4 mg of ketamine/kg of body weight and 10.6 +/- 0.5 mg of xylazine/kg) or subcutaneously (85.6 +/- 4.0 mg of ketamine/kg and 10.7 +/- 0.7 mg of xylazine/kg) induced effective surgical anesthesia for 20 to 30 minutes in Richardson's ground squirrels. Use of ketamine alone (86 +/- 7 mg/kg, IM), a droperidol and fentanyl combination (2.6 +/- 0.4 mg of droperidol/kg and 52 +/- 8 micrograms of fentanyl/kg, IM), or sodium pentobarbital (50 +/- 2 mg/kg, intraperitoneally) did not induce surgical anesthesia, but did induce depressed respiratory rates in the squirrels.  相似文献   

9.
OBJECTIVE: To determine the anesthetic dose and cardiopulmonary effects of xylazine hydrochloride when used alone or in combination with ketamine hydrochloride and evaluate the efficacy of yohimbine hydrochloride to reverse anesthetic effects in captive Axis deer. ANIMALS: 35 adult (10 males and 25 females) Axis deer (Axis axis). PROCEDURES: All deer were anesthetized by IM administration of xylazine (3.5 mg/kg; experiment 1), a combination of ketamine and xylazine (1.25 and 1.5 mg/kg, respectively; experiment 2), or another combination of ketamine and xylazine (2.5 and 0.5 mg/kg, respectively; experiment 3). In addition, female deer were also anesthetized by IM administration of a third combination of ketamine and xylazine (1.5 and 1 mg/kg, respectively; experiment 4). Ten to 40 minutes after induction, anesthesia was reversed by IV administration of yohimbine (5, 8, or 10 mg). RESULTS: In male deer, experiment 3 yielded the most rapid induction of anesthesia. In females, experiment 4 yielded the best induction of anesthesia without adverse effects. All doses of yohimbine reversed anesthesia. Duration of anesthesia before administration of yohimbine had no effect on recovery time. CONCLUSIONS AND CLINICAL RELEVANCE: A combination of ketamine and xylazine can be used to induce anesthesia in Axis deer. Furthermore, anesthetic effects can be reversed by administration of yohimbine.  相似文献   

10.
Groups of atropinized dogs (6 dogs/group) were sedated with xylazine (2.2 mg/kg of body weight, IM). At recumbency, the dogs were given IV saline solution (control groups), yohimbine (0.05, 0.1, and 0.2 mg/kg), 4-aminopyridine (4-AP; 0.3, 0.6, and 0.9 mg/kg), doxapram (0.5, 1.0, 2.0, and 4.0 mg/kg), or the smallest dose of these antagonists in dual combinations or in triple combination. Two additional groups were sedated with an overdose of xylazine (11 mg/kg, IM). At recumbency, 1 of these groups was given saline solution IV and the other group was given yohimbine IV (0.4 mg/kg) as the antagonist. With the 2.2 mg/kg dose of xylazine, control mean arousal time (MAT) and mean walk time (MWT) were 15.5 minutes and 24.8 minutes, respectively. These values were decreased by the individual antagonists to 0.5 to 2.5 minutes and 0.9 to 7.4 minutes, respectively. Approximate equipotent doses of antagonists (mg/kg) were: yohimbine, 0.2; 4-AP, 0.6; and doxapram, 0.5. Relapses did not occur after yohimbine or 4-AP. With doxapram, muscle tremors and spasms, abnormal postures, or aggressive behavior occurred in several dogs and several dogs had partial or complete relapses. The small doses of individual antagonists were synergistic with regard to MAT, MWT, and duration of residual sedation, but the various combinations of antagonists were not more effective in these regards than were larger doses of the single antagonists. With the overdose of xylazine, control MAT and MWT were 41.5 minutes and 144.5 minutes, respectively. Yohimbine decreased these values to 2.2 minutes and 2.5 minutes, respectively. Relapses did not occur.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
OBJECTIVE: To evaluate the effects of intranasal administration of midazolam and xylazine (with or without ketamine) and detomidine and their specific antagonists in parakeets. DESIGN: Prospective study. ANIMALS: 17 healthy adult Ring-necked Parakeets (Psittacula krameri) of both sexes (mean weight, 128.83+/-10.46 g [0.28+/-0.02 lb]). PROCEDURE: The dose of each drug or ketamine-drug combination administered intranasally that resulted in adequate sedation (ie, unrestrained dorsal recumbency maintained for >or=5 minutes) was determined; the onset of action, duration of dorsal recumbency, and duration of sedation associated with these treatments were evaluated. The efficacy of the reversal agents flumazenil, yohimbine, and atipamezole was also evaluated. RESULTS: In parakeets, intranasal administration of midazolam (7.3 mg/kg [3.32 mg/lb]) or detomidine (12 mg/kg [5.45 mg/lb]) caused adequate sedation within 2.7 and 3.5 minutes, respectively. Combinations of midazolam (3.65 mg/kg [1.66 mg/lb]) and xylazine (10 mg/kg [4.55 mg/lb]) with ketamine (40 to 50 mg/kg [18.2 to 22.7 mg/lb]) also achieved adequate sedation. Compared with detomidine, duration of dorsal recumbency was significantly longer with midazolam. Intranasal administration of flumazenil (0.13 mg/kg [0.06 mg/lb]) significantly decreased midazolam-associated recumbency time. Compared with the xylazineketamine combination, duration of dorsal recumbency was longer after midazolam-ketamine administration. Intranasal administration of flumazenil, yohimbine, or atipamezole significantly decreased the duration of sedation induced by midazolam, xylazine, or detomidine, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Intranasal administration of sedative drugs appears to be an acceptable method of drug delivery in Ring-necked Parakeets. Reversal agents are also effective when administered via this route.  相似文献   

12.
Xylazine and tiletamine-zolazepam anesthesia in horses   总被引:4,自引:0,他引:4  
The cardiopulmonary and anesthetic effects of xylazine in combination with a 1:1 mixture of tiletamine and zolazepam were determined in 6 horses. Each horse was given xylazine IV or IM, as well as tiletamine-zolazepam IV on 4 randomized occasions. Anesthetics were administered at the rate of 1.1 mg of xylazine/kg of body weight, IV, 1.1 mg of tiletamine-zolazepam/kg, IV (treatment 1); 1.1 mg of xylazine/kg, IV, 1.65 mg of tiletamine-zolazepam/kg, IV (treatment 2); 1.1 mg of xylazine/kg, IV, 2.2 mg of tiletamine-zolazepam/kg, IV (treatment 3); and 2.2 mg of xylazine/kg, IM, 1.65 mg of tiletamine-zolazepam/kg, IV (treatment 4). Tiletamine-zolazepam doses were the sum of tiletamine plus zolazepam. Xylazine, when given IV, was given 5 minutes before tiletamine-zolazepam. Xylazine, when given IM, was given 10 minutes before tiletamine-zolazepam. Tiletamine-zolazepam induced recumbency in all horses. Duration of recumbency in group 1 was 31.9 +/- 7.2 (mean +/- 1 SD) minutes. Increasing the dosage of tiletamine-zolazepam (treatments 2 and 3) significantly (P less than 0.05) increased the duration of recumbency. Xylazine caused significant (P less than 0.05) decreases in heart rate and cardiac output and significant (P less than 0.05) increases in central venous pressure and mean pulmonary artery pressure 5 minutes after administration. Respiratory rate was decreased. Arterial blood pressures increased significantly (P less than 0.05) after xylazine was administered IV in treatments 1 and 3, but the increases were not significant in treatment 2. Xylazine administered IM caused significant (P less than 0.05) increases in central venous pressure and significant (P less than 0.05) decreases in cardiac output.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Three doses of an alpha 2-adrenoreceptor antagonist, atipamezole, were administered to reverse xylazine-induced sedation, bradycardia, and ruminal atony in calves. Once a week for 4 weeks, each of 6 calves was administered IV 1 treatment of: 0.3 mg of xylazine/kg of body weight, followed in 10 minutes by 1 ml of 0.9% NaCl; 0.3 mg of xylazine/kg, followed in 10 minutes by 3 micrograms of atipamezole/kg; 0.3 mg of xylazine/kg, followed in 10 minutes by 10 micrograms of atipamezole/kg; or 0.3 mg of xylazine/kg, followed in 10 minutes by 30 micrograms of atipamezole/kg. The order of the 4 treatments in each calf was selected at random. Xylazine alone caused lateral recumbency for 33.6 +/- 7.1 minutes (mean +/- SEM). Atipamezole administered at dosages of 3, 10, and 30 micrograms/kg shortened xylazine-induced lateral recumbency to 20.5 +/- 3.0, 10.2 +/- 0.2, and 9.3 +/- 0.5 minutes, respectively. Calves given xylazine alone stood at greater than 60 minutes after the onset of recumbency. Atipamezole given at 3, 10, and 30 micrograms/kg shortened the time from onset of lateral recumbency to standing to 40.2 +/- 6.9, 12.8 +/- 1.1, and 10.0 +/- 0.7 minutes, respectively. Drowsiness was found in calves given the lowest dosage of atipamezole (3 micrograms/kg) after the calves stood. Atipamezole given at dosages of 10 and 30 micrograms/kg reversed xylazine-induced ruminal atony in a dose-dependent manner. In addition, 30 micrograms of atipamezole/kg reversed xylazine-induced bradycardia, but the lower dosages of this antagonist did not. Results indicated that 30 micrograms of atipamezole/kg should be a useful antidote for xylazine overdose in cattle.  相似文献   

14.
Three mule deer and 4 mule deer/white-tailed deer hybrids were immobilized in a crossover study with carfentanil (10 microg/kg) + xylazine (0.3 mg/kg) (CX), and medetomidine (100 microg/kg) + ketamine (2.5 mg/kg) (MK). The deer were maintained in left lateral recumbency for 1 h with each combination. Deer were immobilized with MK in 230+/-68 s (mean +/- SD) and with CX in 282+/-83 seconds. Systolic, mean and diastolic arterial pressure were significantly higher with MK. Heart rate, PaO2, PaCO2, pH, and base excess were not significantly different between treatments. Base excess and pH increased significantly over time with both treatments. Both treatments produced hypoventilation (PaCO2 > 50 mm Hg) and hypoxemia (PaO2 < 60 mm Hg). PaO2 increased significantly over time with CX. Body temperature was significantly (P<0.05) higher with CX compared to MK. Ventricular premature contractions, atrial premature contractions, and a junctional escape rhythm were noted during CX immobilization. No arrhythmias were noted during MK immobilization. Quality of immobilization was superior with MK, with no observed movement present for the 60 min of immobilization. Movement of the head and limbs occurred in 4 animals immobilized with CX. The major complication observed with both of these treatments was hypoxemia, and supplemental inspired oxygen is recommended during immobilization. Hyperthermia can further complicate immobilization with CX, reinforcing the need for supplemental oxygen.  相似文献   

15.
The study was conducted in 9 healthy adult goats of either sex, weighing 15–20 kg, to evaluate and compare the clinicophysiological effects of spinally administered ketamine alone and in combination with xylazine and medetomidine. Nine trials each of the three treatments were conducted randomly by injecting ketamine (2.5 mg/kg) (n = 9), ketamine and xylazine (2.5 mg/kg and 0.05 mg/kg) (n = 9) and ketamine and medetomidine (2.5 mg/kg and 10 μg/kg) (n = 9). The drugs were administered at the lumbosacral subarachnoid space under strict aseptic conditions. The treatments were evaluated on the basis of clinicophysiological, haematological, biochemical and haemodynamic observations. Ketamine produced mild to moderate analgesia of the hindquarters. Its combination with either xylazine or medetomidine produced complete analgesia of the hindquarters for 45–60 min. Ataxia was moderate in the ketamine group, whereas animals attained sternal recumbency in the combination groups. A moderate degree of sedation was recorded in the combination groups. Heart rate and respiratory rate depression in the combination groups and heart rate and respiratory rate stimulation in ketamine group were recorded. Haematological parameters decreased in all the groups. Increase in serum glucose, creatinine and urea nitrogen was recorded in all the groups. Serum electrolytes did not show any significant change. The results showed that the combination of ketamine with xylazine or medetomidine at these dose rates produced a comparable degrees of analgesia of hindquarters with transient and minimal cardiopulmonary side effects.  相似文献   

16.
Chemical immobilization of wildlife often includes opioids or cyclohexamines. These substances are problematic as a result of their required storage, handling, and record-keeping protocols. A potentially useful alternative sedation protocol includes a combination of butorphanol, azaperone, and medetomidine (BAM: 0.43 mg/kg butorphanol, 0.36 mg/kg azaperone, 0.14 mg/kg medetomidine). One risk of wildlife immobilization with any drug combination is hypoxemia. This may be of particular importance when using an alpha 2 agonist such as medetomidine because of its powerful vasoconstrictive effect. In this prospective study, the BAM combination was evaluated for chemical immobilization of white-tailed deer. Additionally, selected physiologic parameters associated with BAM immobilization, including oxygen saturation via pulse oximetry and arterial blood gas measurement, with and without nasal insufflation of oxygen at a relatively low flow of 3 L/min, were evaluated. The BAM combination resulted in a predictable onset of sedation, with a mean induction time to lateral recumbency of 9.8 +/- 3.6 min. All deer recovered smoothly within a range of 5-20 min after reversal with intramuscular administration of naltrexone, atipamazole, and tolazoline (NAT). Clinically relevant decreases in arterial partial pressure of oxygen (PaO2) and oxygen saturation (SpO2) were observed in animals not receiving supplemental oxygen, while both parameters significantly improved for oxygen-supplemented deer. Pulse oximetry with this protocol was an unreliable indicator of oxygen saturation. In this study, altitude, recumbency, hypoventilation, butorphanol- and medetomidine-specific effects, as well as the potential for alpha 2 agonist-induced pulmonary changes all may have contributed to the development of hypoxemia. Overall, capture of white-tailed deer with the BAM/NAT protocol resulted in excellent chemical immobilization and reversal. Because the BAM combination caused significant hypoxemia that is unreliably detected by pulse oximetry but that may be resolved with nasal oxygen insufflation, routine use of oxygen supplementation is recommended.  相似文献   

17.
Two doses of an alpha 2-adrenoreceptor antagonist, idazoxan, were administered to reverse the CNS depressant and bradycardia effects of xylazine in calves. Once a week for 3 weeks, each of 6 calves were administered IV one treatment of: (1) 0.2 mg of xylazine/kg of body weight followed in 10 minutes by 1 ml of 0.9% NaCl, (2) 0.2 mg of xylazine/kg followed in 10 minutes by 10 micrograms of idazoxan/kg, or (3) 0.2 mg of xylazine/kg followed in 10 minutes by 30 micrograms of idazoxan/kg. The order of the 3 treatments in each calf was selected at random. Xylazine alone caused lateral recumbency for 27.2 +/- 3.0 minutes (mean +/- SEM). Idazoxan administered at dosages of 10 and 30 micrograms/kg shortened xylazine-induced lateral recumbency to 11.5 +/- 0.8 and 10.3 +/- 0.2 minutes, respectively. Calves given xylazine alone stood at greater than 60 minutes after the onset of recumbency. Idazoxan given at dosages of 10 and 30 micrograms/kg shortened the time to standing to 16.8 +/- 1.7 and 11.3 +/- 0.2 minutes, respectively. Idazoxan given at a dosage of 30 micrograms/kg also reversed xylazine-induced bradycardia. Results indicated that idazoxan should be a useful antidote for xylazine overdose in cattle.  相似文献   

18.
Fallow deer were immobilised using a combination of xylazine and ketamine. Adult males (n = 10) and adult females (n = 10) received 4 mg/kg of each drug intramuscularly. Juveniles (n = 11) received 2 mg/kg of each drug, intravenously. Times to recumbency were as follows: adult males 4.9 +/- 2.9 min, adult females 4.1 +/- 1.9 min, juveniles 2.3 +/- 1.1 min. After 30 min each deer received 0.2 mg/kg of yohimbine, or an equal volume of sterile diluent intravenously. Yohimbine substantially reduced the recovery times of treated deer. Adults males were releasable 7.2 +/- 4.3 min after yohimbine administration, whereas control males were not releasable until 165 +/- 18 min. Treated adult females were releasable after 6.6 +/- 4.3 min, while control females were not releasable until 84 +/- 29 min. Juveniles were releasable 2.1 +/- 0.8 min after administration of yohimbine but control juveniles were not releasable until 62 +/- 16 min. Xylazine/ketamine administration produced statistically significant changes in packed cell volume, total plasma protein, albumin, sodium, glucose, creatine phosphokinase and inorganic phosphate values after 30 min. Yohimbine administration had no effect on these changes.  相似文献   

19.
Eighteen mule deer (Odocoileus hemionus) and six Columbia black-tailed deer (Odocoileus hemionus columbianus) were held in pens and repeatedly anesthetized from April 2004 through June 2005 as part of an external parasite study. Deer were anesthetized using a combination of Telazol and xylazine hydrochloride (HCL) administered intramuscularly. Tolazoline HCL was slowly administered at 4 mg/kg intravenously to reverse the effects of xylazine with good results. For 17 of the 19 mule deer anesthesias in the fall of 2004, a mean dose of 7.3 mg/kg of intravenous tolazoline (range 6.1-8.4 mg/kg) was given by mistake. This paper describes clinical signs of apnea, muscle tensing, and fasciculations immediately following intravenous administration of tolazoline HCL in mule deer (O. hemionus) at 1.5-3 times the recommended dose. Mean dose for black-tailed deer during this time was 8.1 mg/kg (range 5.5-12.4 mg/kg) with no clinical signs as seen in the mule deer. Based on these findings, intravenous tolazoline use in mule deer is recommended at < or = 4 mg/kg.  相似文献   

20.
ObjectiveTo evaluate the anesthetic and cardiorespiratory effects of two doses of intramuscular (IM) xylazine/ketamine in alpacas, and to determine if tolazoline would reduce the anesthetic recovery time.Study designProspective randomized crossover study.AnimalsSix castrated male alpacas.MethodsEach alpaca received a low dose (LD) (0.8 mg kg−1 xylazine and 8 mg kg−1 ketamine IM) and high dose (HD) (1.2 mg kg−1 xylazine and 12 mg kg−1 ketamine IM) with a minimum of one week between trials. Time to sedation, duration of lateral recumbency and analgesia, pulse rate, respiratory rate, hemoglobin oxygen saturation, arterial blood pressure, blood-gases, and the electrocardiogram were monitored and recorded during anesthesia. With each treatment three alpacas were randomly selected to receive tolazoline (2 mg kg−1 IM) after 30 minutes of lateral recumbency.ResultsOnset of sedation, lateral recumbency and analgesia was rapid with both treatments. The HD was able to provide ≥30 minutes of anesthesia in five of six alpacas. The LD provided ≥30 minutes of anesthesia in three of six alpacas. Respiratory depression and hypoxemia occurred with the HD treatment during the first 10 minutes of lateral recumbency: two animals were severely hypoxemic and received nasal oxygen for 5 minutes. Heart rate decreased, but there were no significant changes in arterial blood pressure. Tolazoline significantly shortened the duration of recumbency with the HD.ConclusionsThe HD provided more consistent clinical effects in alpacas than the LD. Intramuscular tolazoline shortened the duration of lateral recumbency in alpacas anesthetized with the HD combination.Clinical relevanceBoth doses of the combination were effective in providing restraint in alpacas and the duration of restraint was dose dependent. Supplemental oxygen should be available if using the HD and IM administration of tolazoline will shorten the recovery time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号