首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
An oil/water separation cotton fabric with high separation efficiency has been successfully developed by combining mussel-inspired one-step copolymerization approach and Michael addition reaction. The cotton fabric was first coated with the adhesive polydopamine (PDA) film by simple immersion in an aqueous solution of dopamine at pH of 8.5. Then n-dodecyl mercaptan (NDM) was conjugated with PDA film through Michael addition reaction at ambient temperature. The chemical structure, surface topography, and surface wettability of the fabric were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, and contact angle experiments, respectively. The results showed that as-prepared cotton fabric had highly hydrophobicity with the water contact angle of 145° and superoleophilicity with the oil contact angle of 0°. It exhibited desirable property of oil/water separation, and it had excellent potential to be used in practical applications and has created a new field for oil/water separation.  相似文献   

2.
The cotton fabric was modified with dopamine methacrylamide (DMA) based on mussel-inspired reaction and polymerized with zwitterionic sulfobetaine methacrylate (SBMA) through free radical polymerization reaction. The poly(DMA-SBMA) contained not only key chemical constituents of dopamine hydrochloride, which strongly adsorbed to fabric substrates, but also hydrophilic groups, providing a hydrophilic surface for fabric due to its strong interaction with water via electrostatic interactions. The chemical structure, surface topography, and surface wettability of the fabric were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and contact angle experiments, respectively. The results showed that the water contact angle (WCA) of the treated fabric was ~0 °, whereas the underwater oil contact angle (OCA) was ~161 °, as compared to ~25 ° for the control one. It is expected that as-prepared fabrics could be applied in oil/water separation due to such special superhydrophilicity and superoleophobicity.  相似文献   

3.
Herein we report a simple and reproducible method for fabricating highly durable and robust superhydrophobic and superoleophilic cotton fabrics via simultaneous radiation-induced graft polymerization of glycidyl methacrylate and subsequent chemical modifications with aminopropyltriethoxysilane and hexamethyldisilazane. The chemical structure and the surface topography of the pristine and the modified cotton fabrics were investigated in detail by ATR-FTIR, XPS, and 29Si NMR, and a grafting layer was successfully immobilized onto the surface of the cotton fabric by forming covalent bonds. Multi-dimensional surface roughness was created by combining micro-sized fibers of the cotton fabric, nanoscaled protuberances of the grafting chain, and molecular level spherical projection points of silicon methyl. The superhydrophobic cotton fabric exhibited long-term stability, ultra-high durability and robustness, and maintained its properties even after 25 wash cycles. The fabric also showed excellent water repellency with a water contact angle of 153 ° and a high efficiency of oil/water separation (98 %). The superhydrophobic/superoleophilic cotton fabric developed in the present work exhibits important potential applications in superhydrophobic textiles and oil/water separation.  相似文献   

4.
Selective separation is an effective method for the removal of heavy metal ions and waste oil from wastewater. Polyvinylidene fluoride (PVDF) was functionalized with polyvinyl acetate (PVAc) by in-situ polymerization, and novel PVAc-g-PVDF coating on surface modified cotton fabric were prepared. The contact angle (CA), pure water flux (PWF) and self-cleaning ability of coated cotton fabric were investigated in detail. In addition, the separation performance of coated cotton fabric was reflected by the removal of heavy metal ions in simulated wastewater. The results revealed that the PVAc-g-PVDF-coated cotton fabric was free of waste oil adhesion and was self-cleaning from waste oil in aqueous environment. Meanwhile, this coated cotton fabric can effectively separate oil/water mixtures with a high flux and high oil rejection, and was easily recycled for long-term use. More importantly, the heavy metal ions rejection ratio and adsorption capacity of cotton fabric were also improved with the addition of PVAc-g-PVDF coating. PVAc-g-PVDF-coated cotton fabric exhibited excellent rejection stability and reuse performances after several times fouling and washing tests. It can be expected that the present work will provide insight into a scaled-up fabrication process of PVAc-g-PVDF coating for purifying wastewater.  相似文献   

5.
The stearyl methacrylate modified polysiloxane/nanocomposite was synthesized by graft copolymerization between stearyl methacrylate modified polysiloxane with pendent epoxy groups and amino-functionalized nano silica. Then it was utilized to fabricate the superhydrophobic cotton fabric by one-step method. The structures, chemical compositions, thermal properties, surface morphology and wettability were characterized by Fourier Transform Infrared Spectrum (FT-IR), X-ray photoelectron spectroscopy (XPS), Thermo-gravimetric analyzer (TGA), Scanning electron microscopy (SEM) and Static contact angle analyzer. Results showed that a hydrophobic polysiloxane film and many nano-scaled tubercles were coated on the surface of the treated cotton fabrics plus their inherent microscaled roughness, which were the reasons why cotton fabric changed from hydrophilicity to hydrophobicity. In addition, with increase of the amount of nanocomposite, hydrophobicity of the treated cotton fabric would be enhanced; water contact angle of this fabric could attain 157°, which was higher than 141.5° reached by the fabric treated with stearyl methacrylate modified polysiloxane. The superhydrophobic cotton fabric also possessed favorable washing durability. On the other hand, its air permeability, color and softness would not be influenced instead.  相似文献   

6.
A facile and inexpensive way to prepare self-crosslinkable poly(dimethylsiloxane) (PDMS) for superhydrophobic treatment of cotton fabrics is reported in the study. Through thiol-ene click reaction between mercaptopropyltrimethoxysilane (MPTMOS) and vinyl-containing poly(dimethylsiloxane) (VPDMS), PDMS-g-TMOS can be simply and quickly synthesized. The trimethoxysilane group of PDMS-g-TMOS can react with hydroxyl group on cotton fabric and other -Si(OCH3)3 groups. The synthesized polysiloxane (PDMS-g-TMOS) was identified by FT-IR and 1H-NMR. The morphology of the treated cotton fabric was observed by SEM and XPS was used to analyze the elemental composition on the surface of cotton fabric. The analysis results indicated that the surface was fully covered with PDMS. Due to the low surface energy of PDMS and the rough surfaces of cotton fabric, the optimized water contact angle (WCA) and sliding angle were respectively 154°±0.4° and 14°±0.5°, indicating superhydrophobicity. Moreover, water spray test (AATCC Test Method 22-2010) was also applied to evaluate the water repellency of treated cotton fabric and a score of 90 was assigned according to AATCC Test Method 22-2010. The durability of treated cotton fabric was tested by 50 laundering cycles. The resultant WCA barely decreased and the score of water spray test dropped from 90 to 80, showing the reasonable wash durability.  相似文献   

7.
Oxygen plasma pre-treatment was applied to cotton fabric with the aim of improving the water repellency performance of an inorganic-organic hybrid sol-gel perfluoroalkyl-functionalized polysilsesquioxane coating. Cotton fabric was pre-treated with low-pressure oxygen plasma for different treatment times and operating powers. Afterward, 1H,1H,2H,2H-perfluorooctyltriethoxysilane (SiF) was applied to the cotton fabric samples using the pad-dry-cure method. The surfaces of the untreated and modified cotton fibers were characterised using Fourier transform infrared spectroscopy, Xray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy. The water repellency of the SiF-coated fabric samples was evaluated using static and sliding contact angle measurements with water. The results show that the plasma treatment with the shortest treatment time (10 s) and the lowest operating current (0.3 A) increased the atomic oxygen/carbon ratio of the cotton fiber surface from 0.6 to 0.8 and induced the formation of a nano-sized grainy surface. Increasing the plasma treatment time and/or operating current did not intensify the surface changes of the cotton fibers. Such saturation effects were explained by the large influence of reactive oxygen atoms during the plasma treatment. The measured static water contact angles on the surface of the untreated and plasma pre-treated and SiF-coated cotton fabrics showed that the oxygen plasma pre-treatment enabled the increase of the water contact angle from 135° to ≈150°, regardless of the applied plasma treatment time and discharge power. This improvement in the hydrophobicity of the SiF coating was followed by a decrease in the sliding angle of water droplets by more than 10° compared to the plasma untreated and SiF-coated sample characterized by a water sliding angle of 45°. Additionally, measurements of the water sliding angle revealed that the increase of the static contact angle from 149° to 150° corresponded to a drop of the water sliding angle from 33 to 24°, which suggests that the plasma pre-treatment of 20 s at an operating current of 0.3 A produced the best water-repellent performance of the SiF-coated cotton fabric.  相似文献   

8.
Waterborne polyurethane modified by acrylate/nano-ZnO (PUA/ZnO) was synthesized and used to improve the wet rubbing fastness of reactive dyed cotton fabric. The reaction conditions were optimized and the products were characterized by FT-IR, TG, DSC, SEM, and particle size distribution. The dyed cotton fabrics were finished with PUA/ZnO emulsion and the rubbing fastness, ultraviolet resistant property, and wearability of treated fabrics were measured. The wet rubbing fastness of treated fabrics was increased by about 0.5–1 rate to achieve 3–4 rate, and the ultraviolet protection factor (UPF) achieved 50+ level. The whiteness, air permeability, and elongation at break of treated fabric were not decreased significantly. SEM showed that the smooth and reticular coating on the surface of treated fabric reduced the mechanical friction force between dyed fabric and rubbing cloth, and thus improved the rubbing fastness. The decomposition temperature of finished fabric was increased by 50–80 °C.  相似文献   

9.
α,ω-di[(4-butoxy-piperazin-1-yl)-phosphinic acid methyl ether]-terminated linear polysiloxane (PNPDMS) was synthesized and utilized as the flame retardant and hydrophobing agent. The flame retardance and thermal decomposition behaviors of cotton fabrics were systematically estimated by limiting oxygen index (LOI), thermogravimetric analysis and vertical burning test, respectively. It was found that the LOI of cotton fabric treated with PNPDMS enhanced to 29.82 % compared with cotton fabric without treatment, whose LOI was only 18.00 %. The treated cotton fabric showed a shorter char length, a shorter After-flame time, and no After-glow time as revealed in vertical burning test. The mechanical property in treated cotton fabric was slightly decrease. Furthermore, the grade of water repellency of treated cotton fabric reached to 90 and water contact angle (WCA) increased to 141.90° compared with cotton fabric without treatment whose WCA was 62.80°. The result showed that the cotton fabric treated with PNPDMS exhibited excellent flame retardance and hydrophobic properties.  相似文献   

10.
Cotton fabrics exhibiting superhydrophobic and antibacterial properties were prepared through a non-solvent induced phase separation method using hydrophobic poly(vinylidene fluoride) (PVDF) and its hybrids with photocatalytic zinc oxide nanoparticles (nano-ZnO) as surface modifying agents for cotton fabric. The effects of coagulating medium and temperature on microstructural morphology and surface hydrophobictity of the cotton fabrics were investigated by FE-SEM observation and contact angle measurement. Superhydrophobic cotton fabrics exhibiting water contact angle higher than 150 ° could be obtained by coating the fabrics with solutions of PVDF and nano-ZnO followed by coagulation in ethanol as non-solvent. This phenomenon is considered to be originated from both chemically hydrophobic PVDF layer and physical micro- and nano-bumps formed on the surface of cotton fabric, which are essential requirements for Lotus effect. Moreover, antibacterial properties could be synergistically obtained by utilizing photocatalytic effect of nano-ZnO.  相似文献   

11.
A novel dodecylphenylsiloxane oligomer resin/nanocomposite (PHDESR-SiO2) was prepared by graft copolymerization between dodecyl modified phenylsiloxane resin with pendent epoxy groups (PHDESR) and amino-functionalized silica nanoparticles (BTEPA-SiO2). PHDESR-SiO2 was then used to prepare a super hydrophobic surface on cotton fabric by a facile solution-immersion process method. Chemical structures, chemical compositions, wettability, surface morphology, and thermal properties were investigated by Fourier Transform Infrared Spectrum (FT-IR), 1H-NMR spectrum, X-ray photoelectron spectroscopy (XPS), static contact angle analyzer, scanning electron microscopy (SEM), Particle size distribution (PSD) and thermo-gravimetric analysis (TGA). The results showed that the target product PHDESR-SiO2 has an anticipative structure with many micro/nanostructure tubercles, a cross-linked network hydrophobic organosilicon resin film and many clusters of cylindrical dodecyl molecular brushes. This created super hydrophobic structure on the surface of the treated cotton fabrics. XPS analysis indicated that the long carbon chain groups had a slight tendency to enrich the film-air interface. In addition, PHDESR-SiO2 can provide good hydrophobicity for the treated fabric. As the dose of PHDESR-SiO2 increased, the hydrophobicity of the treated fabric enhanced and consequently the water static contact angle reached 152.5 °. This had little influence on the softness, color, and gas permeability of the fabrics. This makes it slightly stiff at high doses, and the super-hydrophobic cotton fabric also had good launderability.  相似文献   

12.
Fluorinated polyacrylate latexes are preferably potential materials for use in the textile finishing due to their special surface property and especially economical, low-toxic characteristics compared to fluorinated polyacrylate solutions. A novel cationic fluorine-containing polyacrylate soap-free latex (CFMBD) with core-shell structure was accordingly developed by co-polymerizing dodecafluoroheptyl methacrylate (DFMA), methyl methacrylate (MMA), butyl acrylate (BA), and dimethylaminoethyl methacrylate (DM) using a cationic reactive emulsifier, maleic acid double ester-octadecyl poly(ethyleneoxy)20 ether-ethylene trimethyl ammonium chloride (R303). Then CFMBD was utilized to treat the cotton fabric. Results showed that the as-prepared latex had due structure and its particles had uniform spherical core-shell structure with an average diameter of 125 nm. The core-shell CFMBD latex film thus had two T g and its thermal property was improved due to the introduction of DFMA. CFMBD could form a smooth resin film on the treated fabric/fiber surface under FESEM observation. XPS analysis indicated the fluoroalkyl groups had the tendency to enrich at the film-air interface. Hydrophobicity of the CFMBD treated fabric was slightly superior to that of the fabric treated by general emulsion but their oleophobicity was identical. Contact angles of water and diiodomethane on the CFMBD treated fabric surface could attain 133.5 ° and 105.5 °, respectively. However, washing durability of the treated fabric by CFMBD showed improvement compared to the general emulsion. In addition, CFMBD didn’t influence whiteness of the treated fabric but would make it slightly stiff at high doses.  相似文献   

13.
The performance of the fluorocarbon based acrylate polymer, Genguard, was evaluated on cotton fabric. Genguard treated fabric exhibited good oil and water repellency rating before washing. However, rating was lost immediately after washing. In order to enhance the washing durability of the Genguard finish, citric acid was incorporated into the recipe as a formaldehyde free cross-linker. The combination of citric acid with fluorocarbon exhibited good improvement in the durability of the oil and water repellency rating after multiple washings. In addition, fabric treated with this novel combination demonstrated excellent increase in the easy care performance. Scanning electron microscope (SEM) was used to examine the surface of the fabric treated with Genguard and citric acid as a cross-linker.  相似文献   

14.
In this study, chitosan and pentasodium tripolyphosphate (TPP)-based bilayers were fabricated on the cationized woven cotton fabrics via layer-by-layer (LBL) self-assembly technique. The initial cationic charges on cotton fabric were produced through the aminization procedure involving the covalent attachment of reactive dye to cotton fabric and subsequent reductive cleavage of the dye to free amine. Different numbers of bilayers (1, 5, and 10) consisting of chitosan/TPP have been deposited on the fabrics. The surface morphology, cationic group content, chemical surface modification, whiteness index, surface tension and antibacterial properties of the modified cotton samples were investigated using scanning electron microscopy (SEM), methylene blue test, FTIR, reflectance spectroscopy, water contact angle measurements and antibacterial test, respectively. The bacterial inhibition experiments demonstrated that the modified cotton fabric with the addition of chitosan/TPP bilayers can increase the degree of inhibition on E. coli and S. aureus bacteria. The utilized LBL method was an easy and cost-effective procedure for developing of novel antibacterial textiles with the highly attractive feature in the medical and hygienic products.  相似文献   

15.
A simple and facile method for fabricating the cotton fabric with superhydrophobicity, self-cleaning and flame retardancy was described in the present work. Three types of antimony pentoxide sol (Sb2O5), aluminum hydroxide sol (Al(OH)3) and 1H,1H,2H,2H-perfluorodecyltriethoxysilane (fluoroalkyl silanes) were used as coating for the cotton fabric. It was found that Sb2O5 and Al(OH)3 exhibited significant synergistic effects on the flame retardancy. When the weight ratio of Sb2O5/Al(OH)3(content 30 wt%) was 1:3, the results showed that the limiting oxygen index (LOI) value was 45.1 %, smoke density (SDR) value was 35 %, and it still passed UL94 V-0 rating. The cotton fabrics coated with fluoroalkyl silanes/Sb2O5/ Al(OH)3 showed a superhydrophobicity, anti-contamination and self-cleaning properties. In addition, the results exhibited the outstanding superhydrophobicity, oil/water separation, excellent waterproofing durability and flame retardancy of cotton fabric after 1000 cycles of washing by water, the LOI value was 40.1 %, SDR value was 39 % and WCA was 152° after 1000 cycles of washing. We believe that this simple, environmentally friendly and versatile fabrication of the cotton fabric had excellent real-life applications.  相似文献   

16.
A durable superhydrophobic fabric with oil/water separation property has been successfully prepared by introducing the modified silica nanoparticles and polysiloxane. The as-prepared fabric shows liquid repellency not only to water but also to coffee, milk and tea droplets, which are normal in daily life. Furthermore, the treated fabric shows simultaneous superhydrophobicity and superoleophilicity, which could be utilized as materials to separate oil/water mixture with high efficiency. It is important to note that the obtained fabric kept stable superhydrophobicity even after it suffered severe friction damage. The surface morphologies of untreated/treated fabrics were characterized by the scanning electron microscopy. The chemical compositions were characterized by X-ray photoelectric energy spectroscopy and Fourier transform infrared spectrum. This functionalized fabric will be helpful for developing superhydrophobic and selective oil adsorption materials.  相似文献   

17.
A flexible and stretchable three-dimensional nanocomposite membrane based on traditional cotton fabric is a promising alternative for proton exchange membrane because it has the capability of transferring protons, is inexpensive, and also have higher current density compared to Nafion membranes in microbial fuel cells. The obtained results showed that the highest power and current of PVAc-g-PVDF-coated cotton fabric were 400±10 mW/m2 and 92 mA/m2, respectively. However, maximum generated power and current for Nafion-117 were 300±10 mW/m2 and 60 mA/m2, respectively. The highest proton conductivity of PVAc-g-PVDF-coated cotton fabric was (1.5±0.2)×10-2 S/cm at 25 °C and lowest glucose permeability was (12±1)×10-6 cm2/s after Mg2+ ions adsorption. Furthermore, the highest COD removal (85±3 %) and CE (11.2 %) were obtained from PVAc-g-PVDF-coated cotton fabric. The coated cotton fabric can provide a novel route for low-cost production of high-performance flexible proton exchange materials from the natural fabrics.  相似文献   

18.
The dyeing and color fastness properties of three reactive-disperse dyes containing a sulphatoethylsulphone group on Nylon, cotton and N/C mixture fabrics were examined. Reduction-clearing was more effective in removing the unfixed dyes than soaping since the reactive-disperse dye became hydrophobic during dyeing process. Nylon was dyed well with three reactive-disperse dyes at pH 5∼8 and difference in chemical structure between dyes did not affect the final color strength of the dyed Nylon fiber, but their build-up properties on Nylon were not so good. The color strength of the dyed cotton was not as high as that of Nylon. The color strength of cotton increased by lowering dyeing temperature when the reactive-disperse dyes having hydroxy group were used. Nylon absorbed more dye molecules than cotton in simultaneous dyeing, the color difference between Nylon and cotton could be reduced as the dyeing temperature decreased. N/C mixture fabric was dyed well at 60 °C with the reactive-disperse dyes having hydroxyl group when applied at pH 7 and 60 °C, and their build-up properties were good. It was also found that washing fastness and rubbing fastness of dyed Nylon, cotton and N/C fabrics with the reactive-disperse dyes were excellent, while light fastness was moderate.  相似文献   

19.
This study evaluated the potential application of an atmospheric plasma (AP) treatment as a pre-treatment for digital textile printing (DTP) of polyester (PET) fabrics and cotton, in order to determine its viability as an alternative to the usual chemical treatment. The surface properties of the AP-treated fabrics were examined through scanning electron microscopy (SEM) and contact angle, and the physical properties, such as electrostatic voltage and water absorbance, were tested. The properties of cotton and PET with the AP treatment were found to be dependent on number of repetitions and electric voltage. Although no remarkable surface differences were observed by SEM in the fabrics before and after treatment, the static contact angle of the PET after AP treatment was decreased from 85 ° to 24 ° at wave. In addition, the charge decay time decreased as the voltage and number of treatments increased. The absorption height of PET changed after exposure to 7 mm with increasing measurement time. The K/S with and without the AP pre-treated and DTP finished cotton was better than that with the usual chemical modification. In PET, the 0.5 kW and 1 time AP-treated specimen showed the highest K/S values.  相似文献   

20.
Composite woven fabric satisfies what people require. Bamboo charcoal (BC) has been identified as a multifunctional material that has far-infrared ray, anions, deodorization and etc. BC fibers and yarns were made of bamboo charcoal powders and have further become a pervasive materials used in textile industry. In this study, cotton yarns, stainless steel/cotton (SS/C) complex yarn, bamboo charcoal/cotton (BC/C) complex yarns were woven into the plain, twill and Dobby composite woven fabrics. The warp yarn was composed of cotton yarns, and the weft yarn was made up of BC/C and SS/C complex yarns with a picking ratio of 1:1 and 3:1. Thermoplastic polyurethanes (TPU) film was then attached to the composite woven fabrics, forming the BC/SS/TPU composite woven fabrics. Tests of electromagnetic shielding effectiveness (EMSE), far-infrared emissivity, anions, water resistance, and water vapor permeability measured the single-layer, two-layer and four-layer composite woven fabrics, obtaining a far-infrared emissivity of 0.95 by 39.8 counts per minute, an anion count of 149 amount/cc, an EMSE of −11.87 dB under frequency of 900 MHz, a surface resistivity of 8×10−6 Ω/square, a water resistance of −8219 mmH2O, and water vapor permeability of 989 g/m2·h and 319 g/m2·24 h in accordance with JIS L 1099 A1 and ASTM E96 BW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号