首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The effect of water temperature on growth and food intake of juvenile peled Coregonus peled was tested with specimens of initial age 75 days and 230 days posthatching (dph). The 75‐day group (initial body weight 0.6 ± 0.04 g) were reared for 63 days and 230‐day group (initial body weight 13.75 ± 2.93 g) for 42 days at temperatures of 13, 16, 19, 22 and 25°C under 12:12 L:D photoperiod. The optimal temperature range for the 75 dph fish was found to be 19–22°C. The fish reached final mean weight of 9.7 ± 2.5 g at 19°C and 9.0 ± 2.7 g at 22°C. Final mean weight of 230 dph fish did not differ significantly among temperature groups. Mortality increased at higher temperatures, with the critical temperature of 25°C for both age groups. Maximum food intake (19.0 ± 4.7, 18.8 ± 5.2, 18.6 ± 4.6 g kg?1biomass) was observed in groups reared at temperatures of 19, 22 and 25°C with no significant differences among groups.  相似文献   

2.
To investigate the interactive effects of temperature and photoperiod on the growth performance, feeding parameters and muscle growth dynamics in juvenile Atlantic halibut (Hippoglossus hippoglossus L.), a total of 1212 juvenile halibut, including 383 tagged fish (mean initial weight of tagged individuals: 17.6 ± 0.3 g SE), were reared under a simulated natural light regime for Bergen (60°25′N) or continuous light at 9, 12 and 15 °C from 3 December 2007 until 11 March 2008. The mean weight and growth rate were significantly higher at 12 and 15 °C than at 9 °C. In addition, significantly higher mean weight and growth rate were observed in halibut reared under continuous light at a low temperature, indicating an interactive effect of temperature and photoperiod on growth performance. No effect of temperature or photoperiod was found with respect to feed conversion efficiency, whereas a higher feed consumption at increasing temperature and a higher overall daily feeding rate at continuous light at a low temperature were observed. Indications of continuous light having a stronger effect at low temperatures on muscle growth dynamics were found. A difference in the size class distribution of fibre diameter was found between photoperiod treatments at 9 °C, suggesting that continuous light resulted in elevated hypertrophic growth at low temperature. This may suggest that the increased growth rate found at continuous light at 9 °C may be a result of hypertrophic growth in juvenile halibut.  相似文献   

3.
Alevins of Arctic charr (Salvelinus alpinus) were raised at four temperatures (3°, 6°, 8° and 12°C) and at each temperature food was presented at three different points in development, viz. early in the yolk-sac period, at two-thirds yolk utilization and at yolk exhaustion. Growth and survival were studied. Initial feeding occurred at or shortly after swim-up at all temperatures, and temperature did not affect the developmental stage at which feeding began. Alevins to which food had been presented earliest grew more rapidly after feeding commenced at all temperatures except 3°C. Exogenous feeding enhanced growth, the alevins receiving food at yolk exhaustion having the lowest growth rate up to that point. Mortality was very low except at 12°C, which was a supra-optimal temperature for the rearing of charr alevins from the point of view of both growth and survival.  相似文献   

4.
Effects of different rearing temperatures (16, 21 and 26°C) on growth, metabolic performance and thermal tolerance of juvenile sea cucumber Apostichopus japonicus (initial body weight 7.72 ± 0.96 g, mean ±SD) were investigated in this study. During the 40‐day experiment, growth, metabolic performance, food intake and energy budget at different reared temperatures were determined. Sea cucumbers rearing at 16°C obtained better growth (final body weight 11.96 ± 0.35 g) than those reared at 21 (10.33 ± 0.41 g) and 26°C (8.31 ± 0.19 g) (< 0.05), and more energy was allocated for growth at 16°C (162.73 ±11.85 J g?1 d?1) than those at 21(79.61 ± 6.76 J g?1 d?1) and 26°C (27.07 ± 4.30 J g?1 d?1) (< 0.05). Critical thermal maxima (CTmax) values of juvenile sea cucumbers reared at 16, 21 and 26°C were 33.1, 34.1 and 36.6°C, respectively, and the upregulation of hsps in sea cucumbers reared at 26°C was higher than those acclimated at lower temperatures (16 and 21°C), indicating that temperature acclimation could change the thermal tolerance of the sea cucumber, and CTmax and hsps were sensitive indicators of the sea cucumber's thermal tolerance.  相似文献   

5.
The effects of three different temperatures on the growth and maturation of the offspring of cultured versus wild populations of juvenile arctic charr (Salvelinus alpinus L.) were investigated. The fish (start weight 17 g) were reared for 5 months at constant temperatures of 12, 14 and 16°C under a continuous light regime (LD24:0). Growth performance was significantly influenced by both temperature and source population. The offspring from the farmed fish displayed significantly higher mean weights at all temperatures compared with the offspring from the wild fish. The results indicate that the optimal temperature for growth (Topt) decreases with increasing fish size in the offspring of both cultivated and wild fish. Significant differences in length–weight relationship were found, with the offspring of wild fish displaying higher condition factor throughout the experiment. The results demonstrate that the offspring from multiple generation farmed population of arctic charr are better adapted to high temperatures compared with the offspring (F1 generation) from a wild population of arctic charr, and the former are also able to maintain growth at higher temperatures. There was a significant difference in maturation between the two populations, as the offspring from cultured fish displayed significantly lower level of maturation: 0%, 4% and 2% mature compared with 24%, 40% and 42% in the offspring from wild fish at temperatures of 12, 14 and 16°C respectively. The offspring from farmed strains of arctic charr thus appear to be the most suitable population for aquaculture.  相似文献   

6.
The effects of temperature and salinity on the reproductive success of Arctic charr, Salvelinus alpinus (L.), were examined by holding broodstock under the following conditions from mid‐May until the end of September: fresh water at ambient temperature (NFW; 8–16 °C); salt water (25–30‰) at ambient temperature (NSW; 4–10 °C); fresh water cooled to saltwater temperature (CFW; 4–10 °C); or salt water heated to freshwater temperature (HSW; 8–16 °C). The relative fecundity of females was similar among groups (P > 0.05; 2685 ± 706 eggs), but females reared in NSW produced significantly larger eggs than those raised in NFW. The highest spermatozoa concentrations were found in milt from males reared in SW and the highest milt glucose concentration was from males kept under coldwater conditions (CFW, NSW). Eggs from NSW and HSW females contained more proteins than eggs produced by NFW females. Eggs from NSW females also contained 40% more lipids than was observed in the other groups, and total energy content was 27% higher in eggs from NSW females than in eggs from NFW females. When FW was cooled (CFW), females produced eggs with protein contents similar to those in NSW, but the lipid contents remained 30% lower. Finally, the best survival at the eyed stage and at hatch was observed in families produced by NSW broodstock. Intermediate values were observed in families from NFW or CFW while the highest mortality occurred in families from the HSW group. All these results suggest that, under the experimental conditions used in the present study, coastal seawater conditions offered the most favourable summer rearing conditions with respect to the reproductive success of Arctic charr.  相似文献   

7.
Arctic charr (Salvelinus alpinus) are the northernmost distributed freshwater fish and can grow at water temperatures as low as 0.2 °C. Other teleost species have impaired immune function at temperatures that Arctic charr thrive in, and thus, charr may maintain immune function at these temperatures. In this study, a fibroblastic cell line, named ACBA, derived from the bulbus arteriosus (BA) of Arctic charr was developed for use in immune studies at various temperatures. ACBA has undergone more than forty passages at 18 °C over 3 years, while showing no signs of senescence‐associated β‐galactosidase activity and producing nitric oxide. Remarkably, ACBA cells survived and maintained some mitotic activity even at 1 °C for over 3 months. At these low temperatures, ACBA also continued to produce MH class I proteins. After challenge with poly I:C, only antiviral Mx proteins were induced while MH proteins remained constant. When exposed to live viruses, ACBA was shown to permit viral infection and replication of IPNV, VHSV IVa and CSV at 14 °C. Yet at the preferred temperature of 4 °C, only VHSV IVa was shown to replicate within ACBA. This study provides evidence that Arctic charr cells can maintain immune function while also resisting infection with intracellular pathogens at low temperatures.  相似文献   

8.
To determine the optimal temperature for juvenile (0 year old) marbled flounder Pseudopleuronectes yokohamae, juveniles of 40–54 mm standard length were reared at six temperature conditions in the range of 8–26 °C, using group- and individual-based methods. Growth of juveniles increased from 8 to 20 °C but decreased from 20 to 26 °C, irrespective of the rearing method used. Food intake was greatest at 20 and 24 °C compared with other temperatures, while feed conversion efficiency was greater at 20 °C than 24 °C in individual rearing. Individual rearing provided more information such as individual variations in growth and food consumption, suggesting the importance of individual-based experiments for exploring the optimal temperature for fish.  相似文献   

9.
To investigate the possible direct effect of a stepwise reduction in temperature with increasing size on growth, feeding parameters and muscle growth patterns of juvenile Atlantic halibut (Hippoglossus hippoglossus L.), 804 juvenile halibut (mean initial weight individuals: 14.2 g ± 0.2 SEM) were reared at constant 9, 12 and 15°C or shifted (T-step, i.e. 15–12°C after 36 days) for 99 days. Despite indications of lower optimal temperature for growth with increasing size, equal end weights were obtained between the constant 12°C, constant 15°C and T-step groups. Best overall growth was observed for the group kept at constant 12°C. The limited effect of the T-step group may relate to the size at movement (too big), the temperatures investigated (close to optimum) and the time and size interval investigated (too narrow). Differences in growth were reflected more by alterations in feed intake (C T and F%) than by differences in feed conversion efficiencies (FCE). Differences were found with respect to the density of muscle cells, whereas no differences were found between the average muscle cell diameters. The mean diameter of muscle cells tended to increase only slightly with increasing fish weight, while the mean density of muscle cells tended to decrease. Using an optimum temperature of 12°C, an indication of a possible increased rate of hyperplasia in relation to higher growth was seen.  相似文献   

10.
The short‐ and long‐term effects of altered photoperiods during winter on growth and final gonadosomatic index (GSI) were investigated in 178 individually tagged 2‐year‐old smolt Arctic charr from an anadromous strain. The fish were reared at ambient temperature (2.3–12.5°C) for 18 months and reared at five different photoperiods. One group was reared on constant LD16:8 (light–dark, N = 40) photoperiod and a second group on continuous light (LD24:0, N = 32) throughout the experimental period. Three groups of fish were moved from LD16:8 to LD24:0 for 44 days and subsequently back to LD16:8, that is early winter light group (Early WL: 17 November–5 January; N = 35), Mid WL group (5 January–23 February; N = 38) and Late WL group (23 February–6 April; N = 33). No differences in growth were found for females, whereas males reared at constant LD24:0 were larger (mean ± SEM, 1,780 g ± 180) compared with the Late (1,264 g ± 101) and Mid WL (1,413 g ± 120) groups towards the end the study. Exposure to continuous light during early winter significantly influenced the GSI in female Arctic charr, whereas no differences were found in the males. Female GSI (%) was lowest in the Mid WL group (1.7) and highest in the LD24:0 group (7.0). In conclusion, the present study demonstrated that application of brief continuous light treatments during January and February can possibly be used as a tool to lower subsequent female maturation in Arctic charr farming.  相似文献   

11.
Interest in the cultivation of Arctic charr arose during the 1970s, and research into charr farming was instigated in the Nordic countries and in Canada. Most work has been conducted on fish from anadromous populations, although land-locked freshwater populations of Arctic charr have also received attention. Research has also been carried out in the British Isles and in the alpine regions of central Europe, where land-locked populations of charr. Small-scale commercial farming is now carried out in several countries of northern Europe and North America, and charr are reared for restocking purposes in a number of countries.Growth of charr is rapid during the early freshwater rearing stages, and quite good rates of growth can be achieved at low water temperatures. Growth may be submaximal if charr are reared in systems designed for other salmonids, and problems may arise when charr are held at low stocking densities. Growth and food conversion can be improved by exposing the fish to water currents, forcing them to swim at moderate speeds. Growth in seawater has been reported as being highly variable, probably as a result of the use of inappropriate rearing techniques and owing to the seasonal changes in the hypo-osmoregulatory ability of the charr.Prospects for aquaculture development and areas requiring further research effort are briefly discussed.  相似文献   

12.
This study was carried out to investigate the influences of feeding frequency of extruded pellet and moist pellet on growth and body composition of juvenile flounder (initial mean weight 6.3 g) in sub optimal water temperatures. A 2 (diets: extruded pellet and moist pellet)×2 (feeding frequencies: two and three times daily)×2 (water temperatures: 12 and 17°C) factorial design with three replications was used. After 60 days of feeding, the feeding frequency did not significantly affect growth performance of fish. Weight gain, daily feed intake, feed efficiency and protein efficiency ratio were significantly (P<0.05) higher for fish reared at the higher water temperature. At the same water temperature, weight gain, feed efficiency, and protein efficiency ratio were significantly (P<0.05) higher for fish fed the extruded pellet than moist pellet. The results of this study indicate that feeding frequency of two times daily is sufficient for optimal growth of juvenile flounder when reared in suboptimal water temperatures, and an increase in water temperature from 12 to 17°C improved growth and feed efficiency.  相似文献   

13.
To characterize thermal-responsive genes in fish, firstly, juvenile rainbow trout were reared in four different temperature conditions (average temperatures were 10, 14, 18, and 22 °C, respectively) and differentially expressed genes were identified. Gene expression in the liver was analyzed by the differential display method, followed by validation using real-time PCR. Subsequently, to examine whether the identified genes show heritable differences, the gene expression levels were compared among juveniles of three genetically distinct lines of rainbow trout (a strain and two closed colonies) by rearing at two different temperature conditions (average 14 and 22 °C). By rearing at 22 °C, growth retardation was observed compared with fish reared at 14 and 18 °C, and six genes were identified as differentially expressed genes in response to the rearing temperature in the gene expression analyses. With the increase in rearing temperature, gene expressions of a complement C1q and two ribosomal proteins were significantly up-regulated. On the other hand, three metabolic genes (betaine homocysteine methyltransferase, triosephosphate isomerase, and glucose-6-phosphatase) were down-regulated, indicating a metabolic depression due to high temperature. In the subsequent analyses, in response to the rearing temperature (14 and 22 °C), there was a trend that the complement C1q and glucose-6-phosphatase genes showed different expression patterns among the three rainbow trout lines, suggesting heritable differences in these genes. Our study provides information on thermal-responsive genes in fish, and we anticipate it will facilitate further investigation in the thermal biology of fish.  相似文献   

14.
This study aimed to investigate the effects of a superoptimal temperature on growth, body composition, body size heterogeneity, and relationships among these factors in juvenile yellowtail. Fish (mean body weight?=?24 g) were tagged individually and reared for 70 days under two different water temperature regimes [optimal (25 °C) and superoptimal (30 °C)]. After rearing, fish reared at 30 °C showed lower survival, less food, feed and protein utilization, significantly lower growth performance, and a lower hepatosomatic index than fish raised at 25 °C. Variations in body indices among individuals were larger for fish reared at 30 °C than for fish reared at 25 °C. Mean whole body protein content was significantly lower in fish reared at 30 °C than fish reared at 25 °C. In addition, several glucogenic and/or aromatic amino acids were lower in fish reared at 30 °C than in fish reared at 25 °C. Whole body lipid levels tended to be lower in fish with lower body weight reared at 30 °C. These results suggest that fish raised at 30 °C will have lower growth performance, and lower concentrations of specific amino acids. Moreover, heterogeneity in body size and body lipid content is expanded by a superoptimal temperature.  相似文献   

15.
Experiments were designed to determine the effects of temperature and salinity on the virulence of Edwardsiella tarda to Japanese flounder, Paralichthys olivaceus. In the temperature experiment, a two‐factor design was conducted to evaluate the effects of both pathogen incubation temperature and fish cultivation temperature on pathogen virulence. E. tarda was incubated at 15, 20, 25 and 30±1°C, and the fish (mean weight: 10 g) were reared at 15, 20 and 25±1°C respectively. The fish reared at different temperatures were infected with the E. tarda incubated at different temperatures. The results of a 4‐day LD50 test showed that temperature significantly affected the virulence of E. tarda (P<0.01) and the interaction between the two factors was also significant (P<0.01). For fish reared at 15°C the virulence of E. tarda was the highest at 25°C of pathogen incubation, followed by 20, 15 and 30°C. When the fish rearing temperature was raised to 20 and 25°C, the virulence of E. tarda incubated at all temperatures increased. Isolation testing demonstrated results similar to those of LD50. The higher rearing temperature increased the proliferation rate of the pathogen in fish. In the salinity experiment, the incubation salinity of E. tarda was at 0, 10, 20 and 30 g L?1, respectively, and the fish with mean weight of 50 g were cultured in natural seawater of 30 g L?1. The results of one‐way anova in 4‐day LD50 test showed that incubation salinity significantly affected virulence. Virulence was lower when the salinity of the incubation medium was at 0 and 30 g L?1, higher at 10 and 20 g L?1. The results of isolation test were in accordance with those of LD50. At 20 g L?1E. tarda had a faster proliferation rate than that at 10 g L?1.  相似文献   

16.
The effects of three different rearing temperatures (12, 15 and 18°C) on growth and survival of sablefish larvae (Anoplopoma fimbria) were examined from 5 days poststocking to weaned subjuveniles. First‐feeding larvae were stocked into 960‐L circular tanks at a density of 15 larvae/L (n = 3 per temperature treatment). Feeding, increases in light and water flow and other changes during the experiment were based on a degree‐day (°Cday) schedule to adjust for time and temperature. The larvae were weaned on calendar day 41, 34 and 30 in the 12, 15 and 18°C treatments respectively. Survival to weaning was greater at 15 than 12 or 18°C. Calendar day and degree‐day length and dry weight were greater in the 18°C treatment. The larvae were weaned 7 days earlier at 15°C and 11 days earlier at 18°C compared to larvae at 12°C. Sablefish larvae can be reared at 15°C with faster growth and good survival compared to 12°C and at an approximately 17% reduction in cost and labour. Sablefish grew even faster but had higher mortality rates at 18°C compared to 15°C. Results from genotyping strongly suggest that there is a genetic basis for performing differentially at varying rearing temperatures and would also suggest that selection for faster growth and higher survival could be accomplished in a broodstock programme.  相似文献   

17.
This study was conducted to investigate the influence of dietary lipid level and supplemental soy lecithin on growth, feed utilization and body composition of juvenile flounder reared at two suboptimal water temperatures, 12 and 17 °C. Three isonitrogenous (CP 50%) diets containing 1% squid liver oil (S7), 7% squid liver oil (S14), and a mixture of 2% soy lecithin and 5% squid liver oil (SL14) were formulated to obtain 7% and 14% of crude lipid. Triplicate groups of fish (6.3 ± 0.2 g) were fed to apparent satiation twice a day for 60 days. Weight gain, daily feed intake, feed efficiency and protein efficiency ratio were significantly higher for fish reared at 17 °C than at 12 °C. Daily feed intake was significantly decreased with the increase of dietary lipid level at the same water temperature, but weight gain was not affected by dietary lipid composition. At 12 °C, feed efficiency and protein efficiency ratio were significantly higher for fish fed the S14 and SL14 diets than those of fish fed the S7 diet, while at 17 °C feed efficiency and protein efficiency ratio of fish fed the S14 diet, which were not significantly different from those of fish fed the SL14 diet, were significantly higher than those of fish fed the S7 diet. There were no significant effects of dietary lipid composition or temperature range on the whole body contents of moisture, crude protein, lipid or ash. Dietary lipid composition and temperature affected the fatty acid content of the polar lipid from the liver; and the n-3HUFA contents such as 20:5n-3 and 20:6n-3 were higher at 12 °C than at 17 °C. The results of this study indicate that an increase of dietary lipid level from 7% to 14% has beneficial effects on feed utilization of flounder when reared in suboptimal water temperatures. The increase of water temperature from 12 to 17 °C improved growth and feed utilization, but 2% soy lecithin had no substantial effect on growth and feed efficiency of juvenile flounder.  相似文献   

18.
This study determined impacts of dietary methionine concentrations at two temperatures on growth, feeding efficiency and N‐metabolites in juvenile cobia. Methionine concentrations of the experimental diets were deficient (M9; 9 g/kg), sufficient (M12; 12 g/kg) and surplus (M16, 16 g/kg). Water temperature was normal (30°C) or elevated (34°C). Twenty cobia in triplicate tanks were fed the experimental diets for 6 weeks. Both methionine and temperature affected cobia's growth and feeding efficiency. Cobia fed M9 performed lower than the fish fed M12 and M16 diets. Additionally, cobia reared at 34°C performed poorer than at 30°C, probably due to lower voluntary feed intake in the fish reared at 34°C. Protein efficiency ratio and protein productive value in cobia fed M9 diet were less than M12 or M16 diets. This was confirmed with the improved retentions of indispensable amino acids (AAs). No interactions between methionine and temperature were observed in growth and protein accretion. At 30°C, CF improved, while HSI and VSI declined upon methionine supplementation levels. Of which an interaction between temperature and methionine was present. Plasma, muscle and liver free AA and N‐metabolites were affected by methionine and temperature. Furthermore, temperature affected cobia's lipid class composition, resulting in increased phospholipids and cholesterol at 34°C.  相似文献   

19.
The effect of three different temperatures on growth in a first progeny generation, hatchery reared, subarctic population of European whitefish (Coregonus lavaretus L.) were investigated. The whitefish (start weight 444 g, ±SD 125 g) were reared for 60 days at three constant temperatures; 15, 18 and 21°C and under ambient light regimes for 70°N latitude. The results showed that temperature had a significant influence on the growth of the fish with the highest increase in weight increment occurring at 18°C (mean final weight 656 g ± SD 151 g) compared with the growth of fish held at 15°C (mean final weight 591 g ± SD 143 g) and 21°C (mean final weight 505 g ± SD 121 g). The cumulative per cent mortality of the fish during the experimental period increased with increasing temperature, from 10% at 15°C to 30% at 21°C. The present study indicates that the optimal temperature for farming of European whitefish is somewhere between 15 and 18°C rather than between 18 and 21°C.  相似文献   

20.
Juvenile European sea bass from the same fish stock were selected by successive size grading processes using 2, 3 and 4 mm bar graders at 79, 96 and 99 days post hatching, thus forming three groups (n=300) consisting of similar‐sized fish that differed by time of each group formation. The growth patterns of fish groups were studied at three temperatures during 5 weeks of rearing. Three‐way anova followed by the Tukey multiple comparison test (P<0.05) showed a high dependence of growth on the temperature applied. The smallest size and weight of fish were detected in all groups reared at 19 °C compared with fish held at 21 and 23 °C respectively. Differences in coefficients of variation of lengths were small and insignificant between groups and temperatures. Growth in the length of sea bass juveniles during the test period was a linear function of time and no differences were observed in growth rate among groups at a particular temperature. Growth rates of fish were 0.71 ± 0.02, 0.62 ± 0.01 and 0.52 ± 0.02 mm day?1 at 23, 21 and 19 °C respectively. These results indicated that the variations in body size of juveniles in the test period were not the result of differences in the growth potential of individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号