首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 592 毫秒
1.
Lipid peroxidation, protein oxidation and antioxidant status of serum and muscle in juvenile Jian carp (Cyprinus carpio var. Jian) fed graded levels of methionine hydroxy analogue (MHA: 0, 5.1, 7.6, 10.2, 12.7, 15.3 g kg?1 diet) for 60 days were investigated. Both malondialdehyde and protein carbonyl content in serum and muscle decreased with increasing dietary MHA level up to 5.1–10.2 g kg?1 diet (P < 0.05). Anti‐hydroxyl radical and activities of catalase, glutathione peroxidase and glutathione reductase in muscle and serum, as well as anti‐superoxide anion, superoxide dismutase activity and glutathione content in serum, increased with optimal MHA supplement (P < 0.05). Meanwhile, glutathione‐S‐transferase activity in serum showed a downward trend with dietary MHA up to 7.6 g kg?1 diet (P < 0.05). These results indicated that MHA improved antioxidant status and depressed lipid and protein oxidation in serum and muscle.  相似文献   

2.
This study was conducted to investigate the effect of dietary phosphorus on the intestine and hepatopancreas antioxidant capacity of juvenile Jian carp (Cyprinus carpio var. Jian). Jian carp, with an average initial weight of 7.17 ± 0.01 g, were fed with diets containing graded concentrations of available phosphorus, namely 1.7 (control), 3.6, 5.5, 7.3, 9.2 and 11.0 g kg?1 diet for 9 weeks. Results showed that, in intestine and hepatopancreas, content of malondialdehyde (MDA), protein carbonyl (PC) and glutathione (GSH), capacity of anti‐superoxide anion (ASA) and anti‐hydroxyl radical (AHR), and glutathione reductase (GR), catalase (CAT), glutathione S‐transferase (GST), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were significantly affected by dietary phosphorus levels (P < 0.05). Regression analysis showed that significant quadratic responses occurred in MDA content and ASA, GST, GPx and AHR activities in intestine, GSH content and CAT and SOD activities in hepatopancreas (P < 0.05). These results indicate that optimal level of dietary phosphorus prevented oxidative damage and increased antioxidant enzyme activities in the intestine and hepatopancreas of juvenile Jian carp. The phosphorus requirement estimated from MDA using quadratic regression analysis was 5.7 g kg?1 diet.  相似文献   

3.
A total of 900 juvenile Jian carp (Cyprinus carpio var. Jian) (8.24 ± 0.03 g) were fed practical diets containing graded levels of methionine hydroxy analogue (MHA) (0, 5.1, 7.6, 10.2, 12.7 and 15.3 g kg?1 diet) for 60 days to investigate the effects of MHA on growth, protein deposition and intestinal enzymes activities. Per cent weight gain (PWG) significantly increased with increasing levels of MHA up to a point (P < 0.05), and thereafter declined. Feed efficiency was the highest when MHA level was at 5.1 g kg?1 diet. Feed intake (FI) significantly enhanced with dietary MHA level up to a point (P < 0.05), beyond which it plateaued. Patterns of differences in protein production value, lipid production value, intestosomatic index, folds height, lipase, chymotrypsin, γ‐glutamyl transpeptidase, Na+, K+‐ATPase, creatinekinase, glutamate‐oxaloacetate transaminase and glutamate‐pyruvate transaminase activities were the same as that in PWG, whereas the trend of plasma ammonia content was opposite. Hepatopancreas protein content, trypsin and amylase activities followed the same trend as that of FI. The optimal supplemental level of MHA for fish meal and miscellaneous meals–based diet (6.9 g methionine kg?1 diet) for PWG was 8.2 g kg?1 diet by the quadratic regression analysis.  相似文献   

4.
A total of 1400 juvenile Jian carp (Cyprinus carpio var. Jian) (8.93 ± 0.03 g) were fed diets containing graded levels of vitamin K at 0.027 (basal diet), 1.52, 3.02, 4.51, 6.02 and 7.52 mg kg?1 diet for 60 days to investigate the effects of vitamin K on growth, enzyme activities and antioxidant capacity in the hepatopancreas and intestine. Percentage weight gain (PWG), feed intake and feed efficiency of fish were improved by vitamin K. Activities of trypsin, chymotrypsin, amylase and lipase in the intestine and hepatopancreas and Na+, K+‐ATPase, creatine kinase, alkaline phosphatase and gamma‐glutamyl transpeptidase in the intestine were increased by vitamin K. Malondialdehyde and protein carbonyl contents in the hepatopancreas and intestine were decreased with vitamin K supplements. Certain level of vitamin K increased antihydroxyl radical, antisuperoxide anion, superoxide dismutase, catalase, glutathione‐S‐transferase, glutathione peroxidase and glutathione reductase activities and glutathione contents in the hepatopancreas and intestine. Intestinal Lactobacillus, Ecoli and Aeromonas were changed with vitamin K supplements. Together, these results indicate that vitamin K improved fish growth, digestive and absorptive ability, and anti‐oxidant capacity. The dietary vitamin K requirement of juvenile Jian carp (8.93–73.7 g) based on PWG was 3.13 mg kg?1 diet.  相似文献   

5.
This study was conducted to study the effects of dietary zinc on lipid peroxidation, protein oxidation and antioxidant defence of juvenile Jian carp (Cyprinus carpio var. Jian) by feeding fish with increasing levels of zinc (15.3, 26.9, 40.8, 58.2, 68.9 and 92.5 mg Zn kg?1) for 6 weeks. Results indicated that malondialdehyde (MDA) content and protein carbonyls (PC) in serum were the highest in fish fed diet containing 15.3 mg zinc kg?1 diet (P < 0.05). Serum antisuperoxide anion (ASA), superoxide dismutase (SOD), glutathione peroxidase (GSH‐Px), glutathione reductase (GR) activities and glutathione (GSH) content were improved with increasing dietary zinc levels up to 40.8 mg zinc kg?1 diet (P < 0.05) and levelled off (P > 0.05). Serum antihydroxy radical (AHR), catalase (CAT) and glutathione‐S‐transferase (GST) activities followed the similar pattern to that observed in ASA. The MDA and PC levels, ASA, AHR, SOD, CAT, GPx, GR, GST activities and GSH content in intestine, hepatosomatic and muscle tissue followed the similar pattern to that observed in serum. The present results indicated that zinc decreased lipid peroxidation and protein oxidation and improved antioxidant defence in fish.  相似文献   

6.
To investigate the effects of dietary pyridoxine (PN) on antioxidant status of fish in serum, intestine and trunk kidney, 1050 juvenile Jian carp (11.7 ± 0.1 g) were used for the experiment. The carp were divided into seven groups and fed diets containing graded levels of PN (0.20, 1.71, 3.23, 4.96, 6.32, 8.58 and 12.39 mg kg?1 of diet) for 80 days. Results of the study showed that content of malondialdehyde in serum, intestine and kidney tissues was the highest when fed the diet containing 1.71 mg PN kg?1 diet (P < 0.05). Meanwhile, the protein carbonyl content of intestine and kidney tissue showed a downward trend to a point (P < 0.05). Conversely, activities of superoxide dismutase, catalase, glutathione peroxidase (GSH‐Px), glutathione S‐transferase, glutathione reductase and glutathione (GSH) content in serum, intestine and kidney tissue were generally higher in PN‐supplemented diets than unsupplemented diet (P < 0.05). The present results indicated that the PN decreased lipid peroxidation and protein oxidation in fish, and partly because of its improved antioxidant enzymes activities and levels of GSH.  相似文献   

7.
A total of 1050 Jian carp, Cyprinus carpio var. Jian (23.39 ± 0.06 g) were randomly divided into seven groups of each three replicates, which were fed respectively with seven semi‐purified diets contained 1.25, 2.71, 4.22, 5.78, 7.23, 8.83 and 11.44 mg riboflavin kg?1 diet for 6 weeks. The results showed that riboflavin significantly improved percent weight gain, specific growth rate, feed efficiency and protein efficiency ratio at the level of 4.22 mg kg?1 diet. Gross protein retention efficiency and lipid production value improved with increasing dietary riboflavin levels from 1.25 to 5.78 mg kg?1. Activities of trypsin, lipase, α‐amylase, Na+,K+‐ATPase and alkaline phosphatase in the intestinal tract were significantly improved with increasing riboflavin levels. Weight and protein content of hepatopancreas, intestine protein and intestine length index were also significantly improved.  相似文献   

8.
This study was designed to determine the dietary lysine requirement of juvenile Jian carp (cyprinus carpio var. Jian). A total of 990 juvenile Jian carps (initial weight 7.89 ± 0.04 g) were randomly allocated six groups of each three replicates, feeding isonitrogenous (320 g kg?1 crude protein) and isolipidic (50 g kg?1 crude fat) diets containing graded levels of coated l ‐lysine, with dietary lysine content ranging from 22 to 69 g kg?1 of protein, respectively, for 80 days. Final weight, protein deposition and protein production value were significantly improved in response to the increasing levels of dietary lysine up to 59 g kg?1 of protein and remained nearly constant thereafter. Whole‐body protein content followed a similar pattern as growth parameters in relation to dietary lysine level. Hepatopancreas and intestine protein content, hepatopancreas index (HSI) and intestine index (ISI) were positively affected by dietary lysine level. The dietary lysine requirement of juvenile Jian carp estimated by broken line analysis based on weight gain was 59 g kg?1 of protein.  相似文献   

9.
A total of 1200 juvenile Jian carp (Cyprinus carpio var. Jian) (8.76 ± 0.02 g) were fed diets containing graded levels of histidine at 2.3 (unsupplemented control), 4.4, 6.3, 8.6, 10.8 and 12.7 g kg?1 diet for 60 days to investigate the effects of histidine levels on growth performance, body composition, intestinal enzymes activities and microflora. Specific growth rate (SGR), feed efficiency, protein efficiency ratio, protein productive value, body protein content and lipid content of fish were lowest in fish fed the basal diet (P < 0.05). Activities of glutamate‐pyruvate transaminase in muscle and hepatopancreas, trypsin, chymotrypsin, amylase, lipase activities in intestine and hepatopancreas, and Na+, K+‐ATPase, creatine kinase, alkaline phosphatase, γ‐glutamyl transpeptidase activities in three intestinal segments were improved by dietary histidine (P < 0.05), whereas glutamate‐oxaloacetate transaminase activities and plasma ammonia content followed an opposite trend. The amounts of Lactobacillus, Escherichia coli and Aeromonas were significantly affected by dietary histidine levels (P < 0.05). These results suggested that histidine could improve growth and enhance intestinal enzymes activities of juvenile Jian carp. The dietary histidine requirement of juvenile Jian carp (8.76–68.02 g) based on SGR was 7.8 g kg?1 diet or 2.38 g 100 g?1 protein by quadratic regression analysis.  相似文献   

10.
In the present study, we tested the hypothesis that dietary histidine could improve antioxidant capacity of juvenile Jian carp (Cyprinus carpio var. Jian). A total of 1,200 juvenile Jian carp were fed graded levels of histidine at 2.3 (unsupplemented control), 4.4, 6.3, 8.6, 10.8 and 12.7 g/kg diet for 60 days. Results showed that the content of malondialdehyde (MDA) and protein carbonyl (PC) in serum and all tissues apparently decreased with increasing histidine levels up to an optimal level and increased thereafter. Anti-superoxide anion (ASA) capacity, glutathione peroxidase (GPX) activities and glutathione (GSH) content in serum and all tissues, anti-hydroxyl radical (a-HR) capacity, catalase (CAT) and glutathione-S-transferase (GST) activities in serum, muscle and intestine, superoxide dismutase (SOD) activities in serum and intestine, as well as glutathione reductase (GR) activity in serum, muscle and hepatopancreas were improved by dietary histidine. Fish fed diet with 8.6 g/kg histidine had lower serum glutamate-pyruvate transaminase (GPT) activity than that fed with control diet, whereas pattern of glutamate–oxaloacetate transaminase (GOT) activity was opposite. The present results suggested that histidine could improve antioxidant capacity and inhibit lipid peroxidation and protein oxidation of juvenile Jian carp.  相似文献   

11.
This experiment was conducted to evaluate the effects of protein levels on the growth performance, digestive capacity and amino acid metabolism of juvenile Jian carp. Brown fish meal was used as the sole protein source in the present study. Six isoenergetic experimental diets containing 14.4 MJ kg?1 of digestible energy and 220–495 g crude protein kg?1 diets were fed to triplicate groups of 50 fish with a mean initial weight of 16.67 ± 0.01 g for 45 days. Per cent weight gain (PWG) and feed efficiency ratio (FER) improved with an increase in the dietary protein levels up to 330 g kg?1 diet. The condition factor, relative gut length, intestinal folds height, hepatopancreas and intestine protein content improved with an increase in the protein levels up to 330–385 g kg?1 diet. Trypsin, creatinkinase, Na+, K+‐ATPase and alkaline phosphatase activities generally followed the same tendency as that of growth parameters. Amylase and γ‐glutamyl transpeptidase (γ‐GT) activities were negatively correlated with increasing protein levels from 220 to 330 g kg?1 diet, and no differences were found thereafter. Lipase activity was unaffected by protein levels. Lactobacillus amount was increased with protein levels up to 275 g kg?1 diet, while Aeromonas amount followed the opposite pattern. Escherichia coli amount was not influenced by dietary protein levels. Glutamate–oxaloacetate transaminase (GOT) activities in the hepatopancreas and plasma ammonia concentration (PAC) were not influenced by protein levels between 220 and 275 g kg?1 diet, but significantly increased with increasing protein levels from 275 to 440 g kg?1 diet, and remained similar thereafter. Glutamate–pyruvate transaminase (GPT) activities significantly increased with protein levels >275 g kg?1 diet. Based on the broken‐line model, the dietary protein requirement for PWG of Jian carp (16.7–55.0 g) was estimated to be 341 g kg?1 diet with a digestible energy of 14.4 MJ kg?1 diet.  相似文献   

12.
This study investigated the effects of phenylalanine on growth, digestive and absorptive ability and antioxidant status of young grass carp (Ctenopharyngodon idella). Young grass carp were fed diets containing 3.4 (basal diet), 6.1, 9.1, 11.5, 14.0 and 16.8 g phenylalanine kg?1 diet with a fixed of 10.7 g tyrosine kg?1 diet for 8 weeks. Percent weight gain (PWG), feed efficiency and feed intake of fish were the lowest in fish fed the basal diet (< 0.05). Trypsin, lipase and amylase activities in the hepatopancreas, and antioxidants including glutathione contents and glutathione reducase activities in the hepatopancreas and intestine were all the highest in fish fed 11.5 g phenylalanine kg?1 diet (< 0.05). Trypsin, chymotrypsin and amylase activities in whole intestine, and creatine kinase, Na+, K+‐ATPase and alkaline phosphatase activities in the proximal intestine, and superoxide dismutase activities in the hepatopancreas and intestine were all the highest when phenylalanine at level of 9.1 g kg?1 diet (< 0.05). In conclusion, phenylalanine improved growth, digestive and absorptive ability, and antioxidant capacity of young grass carp. The phenylalanine requirement of young grass carp (256–629 g) based on PWG was 10.4 g kg?1 diet or 3.44 g 100 g?1 protein.  相似文献   

13.
A 60‐day feeding trial was carried out with juvenile Jian carp (Cyprinus carpio var. Jian) to study the effects of myo‐inositol (MI) on the growth, digestive enzyme and intestinal microbial population. Diets with seven levels of inositol (163.5, 232.7, 384.2, 535.8, 687.3, 838.8 and 990.3 mg MI kg?1 diet) were fed to Jian carp (initial weight 22.28±0.07 g). Per cent weight gain (PWG) was improved with increasing inositol levels up to 535.8 mg MI kg?1 diet (P<0.05), and plateaued (P>0.05). The protein production value, lipid production value and ash production value were increased with increasing dietary inositol levels up to 384.2, 838.8 and 838.8 mg MI kg?1 diet respectively (P<0.05). Although intestinal protein content and trypsin activity were not affected by inositol levels (P>0.05), chymotrypsin, lipase and amylase activities in intestine were the lowest for fish fed the MI‐unsupplemented diet (P<0.05). Alkaline phosphatase, Na+, K+‐ATPase, γ‐glutamyl transpeptidase and creatinkinase activities in the intestine were increased with an increase in the inositol levels up to 384.2–687.3 mg MI kg?1 diet (P<0.05). Intestinal Aeromonas hydrophila and Escherichia coli decreased with an increase in the levels of dietary inositol up to 232.7 and 687.3 mg MI kg?1 diet respectively (P<0.05), while Lactobacillus in the intestine increased with an increase in inositol levels up to 990.3 mg MI kg?1 diet (P<0.05). In conclusion, inositol improved growth, digestive capacity and intestinal microbial population of juvenile Jian carp, and the dietary inositol requirement for PWG of juvenile Jian carp is 518.0 mg MI kg?1 diet.  相似文献   

14.
A 6‐week trial was carried out with 900 juvenile Jian carp (Cyprinus carpio var. Jian) to investigate the effects of dietary zinc on growth, body composition and intestinal enzyme activities. Diets supplemented with increasing levels (15.3, 26.9, 40.8, 58.2, 68.9 and 92.5 mg Zn kg?1) of zinc lactate were fed to Jian carp (mean initial weight 15.7 ± 0.01 g). Results indicated that per cent weight gain (PWG), feed efficiency (FE), protein efficiency ratio (PER) and lipid productive value (LPV) enhanced with dietary zinc levels up to 40.8 mg kg?1 diet (P < 0.05), and plateaued thereafter (P > 0.05). Feed intake (FI) was similar to that observed for PWG. Intestosomatic index (ISI), relative gut length (RGL), hepatopancreas protein content (HPC), intestine protein content (IPC), trypsin, chymotrypsin, lipase, amylase, alkaline phosphatase (AKP), Na+, K+‐ATPase and γ‐glutamyl transpeptidase (γ‐GT) activities were all higher by dietary zinc supplementation than zinc un‐supplementation (P < 0.05). These results suggested that zinc could promote growth and increase nutrient deposition and intestinal enzyme activities. The dietary zinc requirements (use zinc lactate as zinc source) of juvenile Jian carp (15.7–42.2 g) based on PWG and serum zinc were 48.7 and 43.2 mg Zn kg?1 diet, respectively.  相似文献   

15.
A 60‐day experiment was carried out to study the effects of vitamin C [ascorbic acid (AA)] on the growth, digestive enzyme activities and intestinal microbial population. Diets with six levels (0.0, 21.4, 45.1, 69.5, 93.6 and 142.1 mg AA kg?1 diet) of supplemental ascorbyl polyphosphate were fed to juvenile Jian carp (Cyprinus carpio var. Jian) (12.63±0.02 g). The specific growth rate (SGR), feed efficiency and productive protein value were significantly improved with increasing AA levels up to 45.1 mg AA kg?1 diet (P<0.05). The hepatopancreas and muscle AA concentrations were increased with increasing dietary AA levels up to 69.5 and 45.1 mg kg?1 diet respectively (P<0.05). The activities of intestinal trypsin, chymotrypsin, lipase, α‐amylase, Na+, K+‐ATPase, alkaline phosphatase, gamma‐glutamyl transpeptidase and creatinkinase were all positively affected by the AA supplementation (P<0.05). Intestinal Lactobacillus and Bacillus were increased with increasing AA levels up to 45.1 mg AA kg?1 diet (P<0.05), while intestinal Escherichia coli decreased with increasing AA levels up to 45.1 mg AA kg?1 diet (P<0.05). In conclusion, AA improve the digestive capacity and intestinal microbial population of Jian carp, and the dietary AA requirement for SGR of juvenile Jian carp was 40.9 mg AA kg?1 diet.  相似文献   

16.
The present study explored the effects of thiamin on antioxidant capacity of juvenile Jian carp (Cyprinus carpio var. Jian). In a 60-day feeding trial, a total of 1,050 juvenile Jian carp (8.20 ± 0.02 g) were fed graded levels of thiamin at 0.25, 0.48, 0.79, 1.06, 1.37, 1.63 and 2.65 mg thiamin kg?1 diets. The results showed that malondialdehyde and protein carbonyl contents in serum, hepatopancreas, intestine and muscle were significantly decreased with increasing dietary thiamin levels (P < 0.05). Conversely, the anti-superoxide anion capacity and anti-hydroxyl radical capacity in serum, hepatopancreas, intestine and muscle were the lowest in fish fed the thiamin-unsupplemented diet. Meanwhile, the activities of catalase (CAT), glutathione peroxidase, glutathione S-transferase and glutathione reductase, and the contents of glutathione in serum, hepatopancreas, intestine and muscle were enhanced with increasing dietary thiamin levels (P < 0.05). Superoxide dismutase (SOD) activity in serum, hepatopancreas and intestine followed a similar trend as CAT (P < 0.05). However, SOD activity in muscle was not affected by dietary thiamin level (P > 0.05). The results indicated that thiamin could improve antioxidant defence and inhibit lipid peroxidation and protein oxidation of juvenile Jian carp.  相似文献   

17.
A 9‐week feeding trial was carried out with juvenile Jian carp (Cyprinus carpio var. Jian) to study the effects of dietary phosphorus on growth, body composition, intestinal enzyme activities and microflora. Quadruple groups of juvenile Jian carp (7.17 ± 0.01 g) were fed practical diets containing available phosphorus 1.7 (unsupplemented control), 3.6, 5.5, 7.3, 9.2 and 11.0 g kg?1 diet to satiation. Feed intake, specific growth ratio and feed efficiency were the lowest in fish fed the basal diet (P < 0.05). Body moisture, protein, lipid content and ash were all significantly affected by dietary available phosphorus levels (P < 0.05). Activities of trypsin, amylase, Na+, K+‐ATPase, alkaline phosphatase and gamma‐glutamyl transpeptidase were improved with increasing dietary phosphorus levels. Intestinal Aeromonas and Escherichia coli decreased with increasing dietary phosphorus up to 3.6 and 5.5 g kg?1 diet respectively (P < 0.05), while Lactobacillus increased with the increasing dietary phosphorus up to 9.2 g kg?1 diet (P < 0.05). These results suggested that phosphorus could enhance intestinal enzyme activities of juvenile Jian carp and the minimum dietary available phosphorus requirement for SGR of juvenile Jian carp (7.2–63.8 g) was 5.2 g kg?1 diet.  相似文献   

18.
A total of 900 juvenile Jian carp (Cyprinus carpio var. Jian) (7.99 ± 0.02 g) were fed diets containing graded levels of xylanase at 220 (unsupplemented control), 650, 1070, 1480, 1810 and 2470 U kg?1 diet for 10 weeks to investigate the effects of xylanase levels on growth performance, intestinal enzyme activities and microflora. The per cent weight gain, feed efficiency, protein efficiency ratio, protein production value, lipid production value, ash production value, calcium production value and phosphorus retention ratio were significantly improved with increasing levels of xylanase up to a point, and thereafter declined (< 0.05). The activities of trypsin, chymotrypsin, lipase and amylase in the hepatopancreas and intestine, activities of alkaline phosphatase, Na+, K+‐ATPase, creatine kinase and γ‐glutamyl transpeptidase in three intestinal segments were improved by dietary xylanase (< 0.05). The amounts of Lactobacillus, Escherichia coli and Aeromonas were significantly affected by dietary xylanase levels (< 0.05). In conclusion, xylanase supplementation improved growth performance, enhanced intestinal enzyme activities and influenced the balance of intestinal microflora of juvenile Jian carp. The optimal level of xylanase in juvenile Jian carp (7.99–99.16 g) based on PWG was 1259 U kg?1 diet by the quadratic regression analysis.  相似文献   

19.
To study the effects of manganese on growth performance, digestive and absorptive abilities, as well as the antioxidative capacity in the hepatopancreas and intestine, young grass carp (Ctenopharyngodon idellus Val.) (264 ± 1 g) were fed diets containing graded levels of manganese at 3.65 (control), 8.62, 13.48, 18.24, 22.97 and 27.86 mg kg?1 diet for 8 weeks. Per cent weight gain (PWG) and feed intake were the poorest in fish fed the basal diet (< 0.05). The activities of trypsin, lipase and alkaline phosphatase in the intestine were significantly enhanced with dietary manganese level at 13.48 mg kg?1 diet (P < 0.05). Additionally, in the hepatopancreas and intestine, the protein carbonyl and malondialdehyde contents were the lowest in fish fed the diet with dietary manganese level at 13.48 mg kg?1 diet (< 0.05), while the anti‐hydroxyl radical capacities, manganese superoxide dismutase (MnSOD), glutathione peroxidase and glutathione‐S‐transferase activities were significantly enhanced with dietary manganese level at 13.48 mg kg?1 diet (< 0.05). Moreover, the catalase activity and glutathione content in the intestine were the highest in fish fed the diet with dietary manganese level at 18.24 mg kg?1 diet (< 0.05). These results indicated that optimum dietary manganese promoted growth, enhanced the digestive and absorptive abilities, and improved the antioxidative capacity in young grass carp. Based on the quadratic regression analysis for PWG and intestinal MnSOD activity, the manganese requirements for young grass carp with the initial body weight of 264 g were 16.91 and 18.21 mg kg?1 diet respectively.  相似文献   

20.
Lipid peroxidation, protein oxidation and antioxidant activities of muscle, intestine, hepatopancreas and serum in juvenile Jian carp (Cyprinus carpio var. Jian) were investigated after feeding graded levels of biotin (0.010, 0.028, 0.054, 0.151, 0.330, 1.540 and 2.680 mg kg?1 diet) for 63 days. Both malondialdehyde and protein carbonyl content in all studied tissues and serum were the lowest in fish fed diets containing 0.151–0.330 mg biotin kg?1 diet and then increased in fish fed the diet with 2.680 mg biotin kg?1 diet (P < 0.05). Similarly, glutamate–oxaloacetate transaminase and glutamate–pyruvate transaminase activities in serum significantly decreased with biotin levels up to 0.151 mg kg?1 diet (P < 0.05). Conversely, capacities of anti-hydroxyl radical (AHR) and anti-superoxide anion (ASA) in the detected tissues and serum significantly improved with biotin levels up to 0.054–1.540 mg kg?1 diet and then decreased in 2.680 mg biotin kg?1 diet group for muscle and intestinal AHR as well as hepatopancreas ASA (P < 0.05). Activities of superoxide dismutase in all studied tissues and serum significantly elevated with biotin levels up to 0.330 mg kg?1 diet and then decreased when fish fed the diet with 2.680 mg biotin kg?1 diet, except intestine (P < 0.05). Meanwhile, activities of catalase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase and total thiol content in all studied tissues and serum showed the upward trend with biotin supplementations (P < 0.05). These results indicated that biotin improved antioxidant status and depressed lipid peroxidation and protein oxidation in all studied tissues and serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号