首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of a Model of Lodging for Barley   总被引:1,自引:0,他引:1  
Lodging in barley (Hordeum vulgare L.) can result either from buckling of any part of the stem (stem lodging) or failure of the root–soil anchorage system (root lodging). A framework for calculating the risk of stem lodging is developed which takes account of the shoot's height, ear area, natural frequency, weight, the flexural rigidity of the stem and changes in stem strength along its length. The model predicted that stem lodging in barley cultivars would occur half way up the stem, and stem lodging in wheat would occur close to the soil surface. These predictions are consistent with general observations of stem lodging in barley and wheat. The higher position of stem lodging in barley, compared with wheat, was caused by the greater flexibility of the barley stems and a more rapid reduction in stem strength up the stem. A sensitivity analysis showed that the stem diameter of the middle internodes had the greatest effect on the risk of stem lodging. Changes to ear area, drag coefficient, crop height, shoot natural frequency and the strength of the stem wall had a moderate influence. Measurements of anchorage strength in barley and wheat plants indicated that the mechanism of anchorage failure was the same for both species and that a model of root lodging developed for wheat could be successfully adapted for barley.  相似文献   

2.
Root lodging and poor soil fertility are major constraints to maize production in the Guinea savannah of West Africa. Vertical root‐pulling resistance is an indicator of the rooting characteristics of maize cultivars and could be used to select cultivars which have higher resistance to root lodging, take up nitrogen efficiently and have high yield. Twenty maize breeding lines were evaluated in the southern Guinea savannah of Nigeria for vertical root‐pulling resistance, yield and root lodging in the 2000 and 2001 cropping seasons. There were significant differences amongst the breeding lines for all the characteristics measured. Vertical root‐pulling resistance correlated positively with grain yield (r = 0.71, P < 0.01). There was a moderate negative correlation between vertical root‐pulling resistance and root lodging (r = ?0.46, P < 0.05). This suggested that selecting for high root‐pulling resistance will improve grain yield and reduce root lodging. There was no significant association between root lodging and grain yield (r = ?0.14, P < 0.22). This was attributed to two factors; weak root systems and high cob weight, both of which caused significant lodging.  相似文献   

3.
为追踪小麦抗倒伏研究领域内的发展动态,基于科学引文数据库(Web of Science)和中国知网数据库(CNKI),对1990—2020年相关文献进行计量学分析,可视化呈现了该领域的研究态势。结果显示,近30年小麦抗倒伏研究逐渐成为作物学科研究的热点,研究机构主要集中于英国和中国。抗倒伏研究的代表性刊物为Field Crops Research、《麦类作物学报》等。研究方向主要为小麦倒伏遗传效应及基因定位、茎秆表型及组成物质与抗倒伏性能的关系、倒伏发生的评价与监测、倒伏防控的农艺措施等。随着学科间交叉融合,对小麦生长的全过程动态监控及智能调控,将成为小麦抗倒伏研究的重点。该分析结果有利于相关研究者深入了解小麦抗倒伏研究的发展趋势,为小麦抗倒伏理论与技术研究提供依据。  相似文献   

4.
种植密度对苦荞麦抗倒伏特性及产量的影响   总被引:5,自引:2,他引:3  
为了明确苦荞麦抗倒伏特性和适宜的种植密度,提高产量,以‘西荞1号’苦荞麦为材料,研究了不同种植密度对苦荞麦抗倒伏特性及产量的影响。结果表明:种植密度大小显著影响茎秆和根系形态,随着种植密度的增大,田间透光率降低,株高和节间长度增加,主根长、一级侧根数和根体积减少,倒伏率增加,产量呈先升高后降低的变化趋势。相关分析发现,苦荞麦茎秆和根系的特征与植株的抗倒伏特性密切相关。株高和节间长度与茎秆强度呈显著的负相关关系,与倒伏率则呈显著的正相关关系。适宜的种植密度(9×105~12×105株/hm2)能够减少荞麦倒伏的发生,提高抗倒能力,增加群体产量,值得推广应用。  相似文献   

5.
有效分蘖终止期控制措施对小麦群体质量影响的研究   总被引:16,自引:0,他引:16  
张维城  王志和 《作物学报》1998,24(6):903-907
研究表明,在总头数与预期穗数相等的有效分蘖终止期,采取深中耕与镇压相结合的控制措施,可使有效分蘖与无效蘖间形成一个“断档”阶段,拉大有效生育与无效生育的距离,减少无效生产,提高有效蘖整齐度,促进根系发育,协调群体与个体的矛盾及地上部生长与地下部生长的矛盾,明显改善群体质量。这项措施提高了分蘖成穗率,增强了植株抗倒伏能力,降低了群体对个体的制约,干物质生产和源库关系更趋合理,产量和经济系数显著提高,  相似文献   

6.
Lodging results in serious yield and quality reductions in foxtail millet (Setaria italica). Among summer crops, foxtail millet is a high density and soft stalked crop that is prone to lodging. Field selection for lodging resistance is difficult because the occurrence of lodging depends on the environmental conditions. A practical method for the evaluation of lodging is not available for foxtail millet, so an understanding of lodging-associated traits and identifying a suitable method to assess lodging are essential to select for lodging resistance and to predict the risk of lodging in a cultivar. In the present study, six stem and root traits associated with lodging was measured in the field and lodging coefficients were determined to evaluate lodging resistance in landrace and improved cultivars. Based on the results of correlation analysis, lodging coefficient is a suitable indicator for field selection for lodging resistance in both classes of cultivars tested for breeding purpose. Statistical analyses demonstrated that lodging was associated with stem quality rather than plant height and internode length at the stem base. The most important trait that directly impacted on lodging coefficient was mechanical strength of the stem and plant height in the landraces, while the weights of the above- and under-ground tissues, in combination with mechanical strength of the stem, were the most important contributors to lodging coefficient in the improved cultivars.  相似文献   

7.
江淮平原小麦主栽品种茎秆抗倒性能分析   总被引:6,自引:1,他引:6  
以江淮平原8个小麦主栽品种为材料,分析不同品种的茎秆抗倒性能及其产量。结果表明,烟农19,郑麦004,平安6号和周麦22在全生育期内未发生倒伏,偃展4110,新麦18和皖麦50在乳熟期发生1度(茎秆与地面夹角为75°~45°)轻微倒伏,而皖麦19在乳熟期发生2度(茎秆与地面夹角为45°~20°)倒伏,倒伏率为17.62%。皖麦19的株高、重心高度、基部节间长度及其干物质输出率均高于未倒伏品种和轻微倒伏品种,不利于其抗倒伏。烟农19的株高和重心高度适中,基部节间机械强度较大,干物质在乳熟前输出较慢,乳熟后迅速分解输出,有利于茎秆抗倒和产量提高。因此,江淮平原兼顾高产和抗倒的小麦品种为烟农19和周麦22。  相似文献   

8.
旨在为小麦育种和生产上预防倒伏、提高稳产能力提供参考.以来源于野生二粒小麦远缘杂交组合的82个高代系为试材,在西北农林科技大学试验站测定并分析抗倒性影响因子和产量性状的相关性.结果表明,(1)株高与抗倒性呈负相关关系,成熟期茎壁厚与抗倒性呈正相关关系,各个性状的抗倒性排序为株高>成熟期茎壁厚度>单穗重>单株重;(2)粒...  相似文献   

9.
Selection for lodging resistant cultivars in cereal breeding programs is difficult due to the challenge of screening for this trait under natural field conditions. The identification of easily measurable culm traits related to lodging resistance would simplify the selection process. The present study was conducted to determine if differences in culm anatomy exist among modern wheat genotypes differing in lodging susceptibility, and to determine the association between culm characters and lodging. From a 2-year field study conducted in Edmonton, Alberta, 13 spring wheat cultivars were chosen based on predetermined susceptibility to artificially induced lodging. Morphological and anatomical culm measurements were made visually and with an environmental scanning electron microscope. Genotypes differed (P < 0.05) for plant height, number of internodes per culm, basal internode length and diameter, culm wall thickness and the number of vascular bundles, but not for adventitious root frequency, lumen diameter or sclerenchyma ring thickness. Mean genotype field scores for artificially induced lodging were correlated (P < 0.05) with plant height (r= 0.51) and the length of the fourth basal internode (r= 0.51). Short, wide basal internodes and thick culm walls were characteristic of three lodging tolerant genotypes: Kohika, Sapphire and Olso. Nevertheless, despite such apparent genotype specific association between culm anatomy and field lodging, general applicable associations were not observed for most traits. The most practical and easily selectable trait for lodging resistance within a wheat breeding program remains plant height. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
试验选用不同穗型的3个粳稻品种为材料,分析其抗倒机理及与倒伏密切相关的各性状,并初步探讨穗型与倒伏之间的关系。结果表明:株高与倒伏指数呈极显著正相关;节间长、茎粗、穗部性状等均与倒伏指数存在显著相关;直立、半直立穗型品种较弯曲穗型品种倒伏指数小,株高偏矮,基部茎杆节间短且粗壮坚韧,穗短而穂颈角小,表现出较好的抗倒性能。  相似文献   

11.
大麦根倒伏抗性评价方法及其倒伏系数的通径分析   总被引:24,自引:1,他引:23  
王莹  杜建林 《作物学报》2001,27(6):941-945
本研究对倒伏性不同的20个大麦材料进行力学分析和根量、茎秆机械强度等8项指标的测定与计算,综合考察了植物高度、单茎鲜重、茎秆机械强度和根量等各种因素的影响.通径分析结果显示:根量和株高与大麦倒伏系数的关系最密切.相关分析表明:倒伏系数与倒伏程度的相关性达极显著水平.以"倒伏系数”为衡量标准,能客观、准确地评价  相似文献   

12.
Throughout the world, lodging in cereals causes great losses in yield each year. A two year field study was conducted to determine the relationship of morphological traits to lodging resistance in spring wheat ( Triticum aestivum L.) breeding lines and to find easily measurable traits related to lodging resistance. A set of 15 breeding lines, representing a wide range of combinations of plant height and lodging resistance, was evaluated.
During the first year, 29 morphological traits were measured at two growth stages and correlated with the lodging score. Higher correlations were found for traits measured at anthesis (DC 65) than for traits measured at maturity (DC 92); most of the fresh weight traits correlated better to lodging resistance than did the corresponding dry matter parameters. During the second year the six traits of plant height, stem length, stem diameter, ear weight, stem weight and stem weight per cm were measured at anthesis and correlated with the lodging score.
From the pooled data of four experiments, significant correlations between the lodging score and single morphological traits were found for stem diameter and stem weight per cm. Thicker stems and heavier stems (mg per cm) were indicative for better lodging resistance. Stem diameter and stem weight cm−1 explained 48.5 % and 49.7 %, respectively, of the phenotypic variation in lodging resistance. Multiple linear regression equations indicated that 77.2 % of the variation in lodging resistance was based on stem weight cm−1 and on the weight of the ear.  相似文献   

13.
Selection for lodging resistance in Canadian hard red spring wheat under natural conditions is difficult due to the sporadic and often random nature of lodging events. We conducted field trials in Edmonton AB Canada (2000–2002) to determine if either a high seeding rate, or artificially inducing lodging (by dragging a weighted apparatus across plots at the early milk stage), would be an effective screen for determining genetic lodging resistance in wheat breeding programmes. For the 25 genotypes tested, applying artificial lodging at the experimental mean early milk stage was a suitable method to screen and identify lodging tolerant and susceptible genotypes. Tolerance to artificially induced lodging was mainly found within semi‐dwarf genotypes, and susceptibility was mainly found within Canadian bread wheat genotypes. Severe lodging resulted in yield losses as high as 40%. Lodging tolerant genotypes identified in this study are now being crossed into elite western Canadian bread wheat in an effort to increase genetic lodging resistance within Canadian breeding lines.  相似文献   

14.
旨在为荞麦抗倒性研究领域的科研人员提供评价方法和理论依据。本研究归纳了荞麦茎秆和根系形态、茎秆化学成分和生理生化特征等方面与倒伏的关系,总结了荞麦茎秆抗倒性的遗传规律和荞麦抗倒性的评价方法,提出了评价荞麦抗倒性的主要指标和防治荞麦倒伏的生产措施。最后,对荞麦抗倒性QTL定位、肥料运筹和耕作方式等有待拓宽和深入研究的内容做出了展望。  相似文献   

15.
Stem rust of wheat (caused by Puccinia graminis f.sp. tritici) gained high international attention in the last two decades, but does not occur regularly in Germany. Motivated by a regional epidemic in 2013, we analysed 15 spring and 82 winter wheat cultivars registered in Germany for their resistance to stem rust at the seedling stage and tested 79 of these winter wheat cultivars at the adult‐plant stage. A total of five seedling stem rust resistance genes were postulated: Sr38 occurred most frequently (n = 29), followed by Sr31 (n = 11) and Sr24 (n = 8). Sr7a and Sr8a occurred only in two spring wheat genotypes each. Four cultivars had effective seedling resistance to all races evaluated that could only be explained by postulating additional resistance genes (‘Hyland’, ‘Pilgrim PZO’, ‘Tybalt’) or unidentified gene(s) (‘Memory’). The three winter wheat cultivars (‘Hyland’ ‘Memory’ and ‘Pilgrim PZO’) were also highly resistant at the adult‐plant stage; ‘Tybalt’ was not tested. Resistance genes Sr24 and Sr31 highly protected winter wheat cultivars from stem rust at the adult‐plant stage in the field. Disease responses of cultivars carrying Sr38 varied. Mean field stem rust severity of cultivars without postulated seedling resistance genes ranged from 2.71% to 41.51%, nine of which were significantly less diseased than the most susceptible cultivar. This suggests adult‐plant resistance to stem rust may be present in German wheat cultivars.  相似文献   

16.
为了优化油用亚麻抗倒伏的肥料运筹措施,以‘陇亚11号’和‘定亚23号’为试验材料,通过裂区设计,研究了钾肥(不施钾、52.5 kg K2O/hm2和105 kg K2O /hm2 3个水平)和硅肥(不施硅和90 kg SiO2/hm2 2个水平)用量对油用亚麻茎秆形态学、力学抗倒伏特性及产量的影响。结果表明:‘陇亚11号’的株高、重心高度及茎粗、壁厚、抗折力均显著大于‘定亚23号’,茎秆形态学及力学抗倒伏特性的综合影响下,‘陇亚11号’较‘定亚23号’倒伏率提高21.24%而产量降低9.43%。钾肥显著改善了抗倒的茎秆表观形态学特性,施钾后茎粗、壁厚、茎秆抗折力、抗倒伏指数提高而株高和重心高度降低,千粒重和籽粒产量分别提高7.35%和9.34%。硅肥对茎秆形态学、力学特性及籽粒产量均无主效应,但硅肥与钾肥的互作使茎粗显著增加。抗倒伏指数与茎粗、壁厚呈显著正相关,与株高、重心高度呈显著负相关。品种间的茎秆抗倒伏特性差异较大,施用钾肥显著改善了抗倒的茎秆表观形态学特性,优化了茎秆机械性能,增强了油用亚麻的抗倒伏能力;供钾量较低时,硅肥与钾肥对茎粗的互作正效应明显。  相似文献   

17.
不同小麦品种茎秆显微结构与抗倒强度关系研究   总被引:2,自引:1,他引:1  
为了研究小麦的抗倒伏性能,探讨茎秆抗倒性的微观结构及生理特性,采用田间与实验室相结合的方法,以目前大面积推广的常规小麦品种和有推广前途的杂交小麦为试材,从小麦的外部形态、内部显微结构及生理性状等方面综合分析小麦茎秆的抗倒伏性。结果发现,株高较低、茎秆重心高度下降、基部节间短粗的小麦品种倒伏指数较小,且秆壁较厚,茎秆截面积较大。通过显微观察可知,倒伏指数较小的‘百农矮抗58’、‘杂麦4号’小麦品种,其茎秆内大维管束数量较多,分别为41.8个/茎和37.7个/茎,而小维管束数量相对较少,分别为22.7个/茎和21.0个/茎。同时发现,茎秆倒伏指数较小的‘百农矮抗58’、‘周麦18’、‘杂麦4号’小麦品种,其灌浆后期茎秆活力较强,特别是矮秆品种‘百农矮抗58’,茎秆活力值达到了49.33 mg/(g?h),且与其他品种相比均达到了极显著的差异。综合分析可知,‘百农矮抗58’、‘杂麦4号’小麦品种抗倒性较强,但茎秆活力与抗倒伏的关系有待进一步验证。  相似文献   

18.
Stem lodging is a common problem in cereal crop production and a main constraint for grain yield improvement. The leaf sheath that surrounds and protects the hollow internodes of stem could provide the plants with a great physical support. However, this biomechanical function has been ignored for several decades in cereal crops. This study aimed to examine the biomechanical properties of basal stem internodes and lodging susceptibility of the whole plants with or without the clasping leaf sheath in wheat (Triticum aestivum L.) and oat (Avena sativa L.) among different genotypes and agronomic practices (including planting densities and nitrogen application rates). The main objective was to quantify the mechanical role of the leaf sheath in oat and wheat crops by a “safety factor” method. On average, the leaf sheath contributed 40%, 68% and 38% of the overall stem bending strength, flexural rigidity and safety factor, in oat, while it accounted for 11%, 24% and 10%, respectively, in wheat plants. The significant contribution of the leaf sheath is due to its vital role in enlarging the peripheral position (i.e., second moment of area) and stiffness (i.e., Young's modulus). The contribution ratios (%) were found to be higher in oat than in wheat plants, due to the greater mass density of leaf sheath and more proficient/prevailing stay-green capability in oat genotypes. This study emphasizes the important mechanical role of clasping leaf sheath on stem internodes of cereals and indicates that the stay-green trait of the leaf sheath can be exploited to design appropriate varieties with improved lodging resistance and great yield potential.  相似文献   

19.
钾肥用量对不同品种旱地胡麻抗倒伏能力及产量的影响   总被引:1,自引:0,他引:1  
为探索钾肥调节胡麻抗倒伏特性的机理,在大田环境下,以2个当地主栽胡麻品种‘陇亚11号’(V1)和‘定亚23号’(V2)为供试材料,设置不施钾(K0, 0 kg/hm2)、低钾(K1, 30 kg/hm2)、中钾(K2, 60 kg/hm2)与高钾(K3, 90 kg/hm2)4个施钾水平的裂区试验,分析了不同品种和钾肥施量组合对旱地胡麻株高、重心高度、茎粗、抗折力、抗倒伏指数、实际倒伏率和产量与产量构成的影响及其与植株抗倒伏特性的关系。结果表明:在0~90 kg/hm2钾肥施量范围内,增施钾肥在促进胡麻生长发育的同时亦可提高胡麻抗倒伏性能,最终提高产量。施钾后,2品种胡麻株高和重心高度在全生育期较不施钾(K0)平均分别提高了4.74%和8.88%。茎粗值(青果期)在施钾60 kg/hm2(K2)时最大,较不施钾(K0)平均增加11.79%。施钾较不施钾(K0)茎秆抗折力和抗倒伏指数平均高出18.32%和11.50%。不同施钾水平下胡麻实际倒伏率表现为:K2K3>K1>K0,较不施钾增产率依次分别为20.69%、24.93%和17.15%;相关分析表明:胡麻株高和重心高度与茎秆抗折力无显著相关性,与抗倒伏指数呈显著、极显著负相关(除成熟期外);各生育时期胡麻茎秆抗折力和抗倒伏指数与茎粗均呈正相关,与籽粒产量呈显著、极显著正相关关系。综合分析,在本试验条件下60 kg/hm2作为适宜钾肥施用量,在兼顾增产的同时亦能有效增强胡麻抗倒伏能力。  相似文献   

20.
With the expected increase of abiotic stress under global climate change, significant research has been devoted to how abiotic stress will affect crop production. To date, there has been little research on the stage sensitivity of short‐term heat stress to crop lodging and yield determination in canola. This research was conducted in a controlled growth facility and aimed to examine root morphology, pod fertility, seed yield and crop lodging of two contrasting canola genotypes subjected to a short‐term heat stress (27.0/24.3°C, light/dark), imposed respectively at three growth stages, rosette vegetative stage (RVHT), early flowering stage (EFHT) and late flowering stage (LFHT), in comparison with non‐stressed control (CK) (23/17°C). The results demonstrate that heat stress imposed at RVHT and LFHT was less detrimental to seed yield and lodging resistance. However, EFHT showed significant adverse effects on both, which was further confirmed by redundancy analysis (RDA) and structural equation modelling (SEM). Compared with the CK, EFHT resulted in a yield loss of 43%, which was mainly due to poor pod fertility, less number of filled pods (?28%), decreased pollen viability (?38%) and a lower success ratio of filled pods (?29%). The taproot was found to be relatively tolerant to heat stress, but lateral roots were sensitive to heat stress at EFHT and LFHT. Root capacitance could be used as a non‐destructive method for evaluating lateral root morphology. Compared with the CK, EFHT displayed a high risk of stem lodging, as indicated by a 27% lower safety factor. This was mainly attributed to the reduced stem bending strength that was caused by the deterioration of stem mechanical properties under EFHT, as illustrated by SEM. Root lodging resistance was not altered by any stages of short‐term heat stress, as the taproot remained stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号