首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为准确实现多特征融合的苹果分级,提出了一种基于K-means聚类和改进MLP的苹果分级方法。该方法主要包括图像预处理、亮度均衡化、背景分割、特征加权以及改进的MLP分级网络训练。首先借助均值滤波算法和直方图均衡化操作改善苹果图像质量;接着借助K-means聚类算法进行背景分割;在果体与背景分割的基础上,依次提取苹果的果径、果形、颜色、缺陷、纹理5个特征;然后借助皮尔逊相关性分析和人工挑选偏好权重对特征数据集综合加权,模拟人工分级场景;最后将特征数据送入改进的MLP神经网络中完成苹果的分级定等。通过对400个定好等级的苹果进行分级测试,准确率达到94.25%,验证了分级方法的可行性与准确性。该方法与现行的苹果分级标准相结合,具备时效性强、检测指标完备等分级优势。  相似文献   

2.
基于机器学习的免套袋苹果缺陷分级   总被引:1,自引:0,他引:1  
为提高免套袋苹果分级效率,最小化果梗与花萼对缺陷区分的影响,提出了一种基于机器学习的免套袋苹果缺陷分级方法,该方法根据缺陷的数量和面积进行缺陷程度分级。获取免套袋苹果3个不同侧面的图像,利用固定阈值分割和形态学方法提取每个图像的苹果区域。根据苹果表面缺陷在HSV(Hue saturation value,色调、饱和度、明度)颜色空间的特征提取疑似缺陷区域,用种子填充法按序标记疑似缺陷区域,并计算每个区域的大小及灰度共生矩阵特征值。将特征值输入训练后的SVM(Support vector machine,支持向量机)模型,进行果梗、花萼与缺陷的区分,计算当前图像的缺陷数量与面积,再计算苹果3个不同侧面图像的总缺陷数量与面积,实现免套袋苹果缺陷分级。结果显示,正常区域、果梗区域、花萼区域在SVM模型中的分类正确率分别为96.7%、93.3%、88.3%。利用该缺陷分级方法对60个苹果进行分级的正确率为90.0%,满足苹果分级的实际生产需求。  相似文献   

3.
目前苹果分级自动化程度较低,为了实现苹果品质自动、快速、准确分级设计了一套苹果智能在线检测分级系统。以寒富苹果为测试对象,采用机器视觉技术对苹果分级进行研究。采用阈值分割的方法分割苹果正面图像,逐像素遍历法提取苹果外部轮廓,通过计算其各点到重心的距离提取苹果大小特征,同时计算苹果横径与纵径比提取果形特征。采用支持向量机方法分割侧面苹果图像,计算苹果红色像素占苹果像素的比例提取颜色特征,利用Fisher统计识别的方法提取苹果缺陷。实现了整个分级系统的硬件搭建以及软件的功能,利用该系统对400个苹果样本进行了分级试验,结果表明该系统分级的苹果总体正确率达到95%。设计的基于机器视觉的苹果智能在线检测分级系统克服了传统分级方法的不足,加快了苹果品质分级自动化速度,对水果品质分级等领域有重要研究意义。  相似文献   

4.
【目的】准确获取红富士苹果的分级指标,为实现多特征融合的苹果分级提供依据。【方法】以均值滤波、全局亮度均衡化与图像裁剪方法,预处理实验所需的苹果图像;使用K-means聚类算法、OTSU最大类间方差法,将苹果灰度图转换为二值图;利用二值图与苹果原图的异或运算,提取苹果轮廓;采用苹果的二值图计算苹果的果实区域大小;使用颜色空间转换RGB-HSV中H通道划分果实红色区域;通过构建掩膜、形态学操作判断果体是否含有缺陷及计算其面积;构建最小外接矩形计算苹果的果径及果形;利用KNN分类算法实现多特征融合的苹果在线自动分级。【结果】基于K-means聚类与KNN分类相结合的苹果在线分级方法,在优于传统图像阈值分割效果的基础上,特级果分级准确率为97.14%,一级果分级准确率为100%,二级果分级准确率为93.75%,等外果分级准确率为100%,综合分级准确率达到97%。【结论】100个苹果测试准确率达到97%,验证了该分级方法的可行性与准确性。  相似文献   

5.
针对脐橙自动分级检测中存在正确识别率偏低、实时性不强的问题,提出一种综合特征提取方法:在对图像颜色模型进行转换后,用H分量图像提取脐橙的大小特征;S分量图像通过背景分割、边缘灰度补偿、整体亮度变换后提取脐橙的果面缺陷特征;采用R、G、R-G3个分量的均值和标准差提取脐橙的颜色特征。以脐橙的大小特征、果面缺陷特征和颜色特征为支持向量机(Support vector machine,SVM)的试验输入向量,进行脐橙分级检测试验,以实现提高脐橙自动分级正确识别率和增强实时。试验结果表明:该SVM分类器对脐橙分级的正确识别率为91.5%,处理时间为160ms,适合于实时环境下的分级检测。  相似文献   

6.
针对中国猕猴桃分级方法单一、分级成本高等问题,提出了一种基于猕猴桃表面缺陷的分级方法。搭建了一套猕猴桃图像采集系统,运用K-means聚类分割算法对其表面缺陷进行分割,再通过颜色对比判断是否为残次果;随后提取正常果的形状特征并设计了SVM分类器进一步判断其所属等级。该方法具有成本低、算法简单、运行高效等优势,为水果分级打开了新思路,对于促进中国水果分级产业发展、提升国际竞争力有重要意义。  相似文献   

7.
采用混沌多宇宙算法,提高苹果表面缺陷检测的质量。首先建立单宇宙、多宇宙结构,多个单宇宙群组成超单宇宙群;接着超单宇宙群信息交流通过自适应策略选择宇宙个体,Logistic映射对选中的宇宙个体进行混沌优化;然后采用改进OTSU算法进行苹果缺陷区域目标分割,分割区域内像素纹理信息作为苹果提取特征;最后给出了算法流程。试验仿真显示,该算法对苹果表面缺陷检测效果清晰,各种缺陷检测准确率比较高。  相似文献   

8.
针对复杂的玉米田间图像,提出了一种玉米雄穗识别算法。该算法在HOG/SVM算法的基础上进行改进,为了弥补HOG特征只表现图像的轮廓特征这一缺点,分别提取待测图像块的颜色特征、轮廓特征和纹理特征,并送入提出的组合级联SVM分类器中进行判别。该SVM分类器是由2级SVM模型组合构成的,并使用大量经过人工标注的雄穗图像和背景图像为样本训练而成。综合考虑分割结果和性能评价,雄穗成功识别率为83%,该方法能很好地识别玉米雄穗,适用于复杂田间玉米雄穗图像的分割。  相似文献   

9.
为了提升对苹果分级的准确性,采用改进二进制粒子群算法对苹果多特征进行提取分级研究。首先建立苹果多特征提取量,包括大小、颜色、缺陷、形状特征;然后基于辅助搜索空间的二进制粒子群更新,对粒子位置增加状态翻转因子,根据收敛情况动态地获得单向翻转角度;接着通过Sigmoid函数、高斯函数对苹果多特征进行分级建模,确定了分段函数的参数值;最后给出了苹果分级的算法流程。实验仿真显示,该算法对苹果多特征提取分级的结果较其他算法更准确,且运行时间较少。  相似文献   

10.
针对大区域田间复杂背景下植物病害远程识别中的叶片病斑检测难问题,提出一种基于改进Bernsen二值化算法的植物病害远程检测方法。通过物联网采集不同区域的植物叶片图像,根据在RGB和HIS颜色空间中叶片病斑与正常叶片和背景的色调差异的特点,利用改进Bernsen二值化算法分别在图像的R、G、B、H 4个颜色通道上提取病斑,然后进行病斑图像融合,得到病斑图像。采用该方法对多幅物联网视频植物病害叶片图像进行病斑分割。实验结果表明,该算法在复杂背景环境下能够有效分割植物病斑图像,去除大量复杂背景,得到病斑图像。该方法能够为大区域植物病害远程智能监控系统提供技术指导。  相似文献   

11.
[目的]以新疆红富士苹果为研究对象,探讨应用高光谱图像技术对其着色面积进行的研究方法.[方法]对852/713双波段比图像作阈值分割,以及形态学开运算去除果梗区域,提取色调H灰度图像对应去除果梗的二值图像像素值为1的累计频度值,依据AdaBoost算法将15个BP神经网络弱分类器训练组成强分类器,对苹果的着色面积进行分类.[结果]采用AdaBoost_NN对苹果着色面积的分级与人工分级一致率达到97.7;.其中45个优等果有2个被错分为一等果,27个等外果有1个被错分为二等果.[结论]利用高光谱图像技术提取的特征波长图像能够很好的对苹果着色面积进行分级,为今后多光谱成像技术在线分析苹果品质奠定研究基础.  相似文献   

12.
应用改进分水岭算法对木材表面缺陷图像分割试验   总被引:1,自引:0,他引:1  
根据木材缺陷样本图像特点,用直方图均衡化和灰度变换对其进行预处理,使缺陷目标和背景反差更大,突出缺陷目标图像;对活节(样本1)、死节(样本2)、虫眼(样本3)缺陷采用多组对比试验的方法,采用传统分水岭算法和改进分水岭算法分割样本缺陷图像,分析两种方法的差异。结果表明:改进分水岭算法,能迅速且较好分割木材缺陷图像,缺陷轮廓更为清晰完整,曲线更为平滑,弥补了传统分水岭算法过渡分割和欠分割的不足,达到较为理想的分割效果;改进分水岭算法分割效率比传统分水岭算法更高,分割时间更短,更准确;试验证明了改进分水岭算法对木材缺陷图像分割的可行性和可靠性。  相似文献   

13.
针对利用植物病害叶片图像特征识别病害类别的复杂性,提出一种基于特征融合与局部判别映射的植物叶部病害识别方法。首先,在中心对称局部二值模式(CS-LBP)的基础上,设计了一种自适应中心对称局部二值模式(ACS-LBP),由此分割病害叶片的病斑图像;然后提取并融合病斑图像的纹理、形状和颜色特征;再利用局部判别映射算法对融合特征进行维数约简;最后利用支持向量机进行病害类别分类。在3种常见苹果病害叶片图像数据库上进行病害识别验证试验,结果表明,该方法能够有效识别苹果叶部病害,平均识别率高达96%以上。  相似文献   

14.
苹果叶部的3种常见病害(斑点落叶病、花叶病和锈病)严重影响苹果的产量和质量。病害识别是病害防治的基础,传统的苹果病害识别方法不能有效选择病害的分类特征。基于主分量分析算法,提出一种叶片颜色、形状和纹理特征相结合的苹果病害识别方法。首先对苹果病害叶片图像进行预处理,降低图像干扰;然后利用改进的分水岭方法分割病斑,提取病斑图像的颜色、形状和纹理特征,组成特征矩阵;再利用主分量分析(PCA)对该矩阵进行维数约简,得到低维分类特征;最后利用BP神经网络识别苹果的3种病害类型。结果表明,该方法能够有效识别苹果的3种病害,平均识别率超过94%。  相似文献   

15.
自然光照条件下苹果识别方法对比研究   总被引:1,自引:0,他引:1  
针对自然光照条件下果园苹果识别效果不佳的问题,从苹果的颜色分割和形状提取2方面进行对比研究,提出一种自然光照条件下的苹果识别方法。利用错检率、漏检率和处理速度3个量化指标综合对比分析颜色阈值、SVM和BPNN 3种苹果颜色分割方法的处理效果。比较6种边缘检测算法对苹果区域图像的边缘检测效果,并使用Hough圆检测算法对苹果形状进行提取,以获得苹果的圆心和半径。试验结果表明:由BPNN的苹果颜色分割方法以及结合Log和Hough的苹果形状提取方法所构建的果实识别算法具有较高的鲁棒性和准确性,能有效克服果实遮挡、重叠和颜色变异等问题,果实平均识别率可达91.6%。  相似文献   

16.
传统的支持向量机(SVM)方法在图像分割时需要人工选取训练样本,降低了生猪图像分割的自适应性且费时费力,本文提出了一种基于FCM-SVM相结合的生猪红外热图像自动分割方法,首先,将图像由RGB颜色空间变换到HSV颜色空间;然后,利用模糊C均值(FCM)聚类算法自动获取训练样本;最后,提取图像的颜色特征作为SVM模型的训练样本进行训练,实现对生猪红外热图像的自动分割。结果表明,该方法能够取得较好的分割结果,正确率基本上能达到95%以上,为后续生猪各个部位特征的获取提供较好的技术支撑。  相似文献   

17.
试验采用传统GrabCut算法和改进的GrabCut算法,针对单目标、多目标、复杂背景下多目标的木材表面缺陷图像进行多组对比实验。结果表明:改进后的GrabCut算法,针对木材表面的缺陷图像分割进行了优化,能有效改进传统GrabCut算法中的欠分割和过分割、易受区域凹凸纹理的干扰等缺点,而且分割各类木材表面缺陷图像时都能取得较好的效果。说明改进后的GrabCut算法具有其优势和可行性。  相似文献   

18.
改进分水岭算法在无人机遥感影像树冠分割中的应用   总被引:1,自引:0,他引:1  
提出了一种基于NDVI植被指数计算的改进分水岭分割方法.利用该方法对原始无人机多光谱遥感影像进行波段甄选、NDVI指数计算、形态学滤波等预处理,得到树冠的显著性区域图像;再利用彩色向量空间梯度算法计算显著性区域图像的梯度,从显著性区域图像中提取树冠的顶点及其范围作为标记,加到梯度图像上;最后采用基于标记控制的分水岭算法对树冠层进行分割.结果表明,该算法能够有效去除输电线路等背景区域的影响,算法样本精度达到88.3%.  相似文献   

19.
基于空频变换的木材缺陷图像分割   总被引:1,自引:0,他引:1  
针对木材缺陷这一自然纹理型事物,为了提取出其缺陷目标部分,进行下一步的分析和识别,采用一种空频变换方法对缺陷图像进行分割。选取虫眼、死节、活节3类木材缺陷图像样本各50个,构造一组多通道的Gabor滤波器对缺陷图像进行滤波,并提取出图像的多方向Gabor能量特征。最后结合模糊聚类算法和数学形态学后处理操作对缺陷图像进行了成功的分割。实验结果表明,此方法对3种木材缺陷图像的平均分割正确率分别达到了95.81%、94.58%、96.52%,证明了该方法的有效性。  相似文献   

20.
针对梅花数据的特点,提出一种基于自然背景下的梅花花朵分割算法TC(Texture Color)。该算法综合运用了分形纹理和颜色2种特征,有效分割背景图像中的干扰物,实现梅花图像分割。首先,采用双毯子方法计算图像的局部分形维数图,并对分形维数图采用大津阈值分割去除背景中大部分的干扰物;然后,利用颜色特征对剩余的干扰物进行有效分割。在采用颜色特征进行分割时,改进了色度直方图累加算法,并融合了饱和度特征,取得了很好的分割效果。在分割过程中,算法还采取了形态学操作、去噪和填充等处理技术,得到最终的分割结果。对9种梅花图像(每种20幅,共180幅)进行了分割实验,采用误分率对实验结果进行评价,并分别和2RGB模型分割方法、GrabCut算法进行了实验对比。实验结果表明:TC算法平均误分率控制在3%之内,比2RGB模型分割方法更加有效,并且该算法所耗费的时间比GrabCut算法要少很多而且无需人工交互。因此,本文提出的TC算法针对梅花图像的分割是非常有效的。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号