首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clostridium perfringens has been implicated in a broad array of enteric infections including the fatal haemorrhagic enteritis/enterotoxaemia syndrome in cattle. The beta2 toxin (CPB2), encoded by cpb2, is suspected to be implicated in this syndrome. However, among C. perfringens isolates from cattle suspected of clostridial disease, an atypical allele was recently found to predominate at the cpb2 locus and atypical corresponding CPB2 proteins were shown to be poorly expressed, thus arguing against a biologically significant role of the beta2 toxin in clostridial diseases in cattle. This study compared genotype and phenotype of the beta2 toxin between C. perfringens isolates from a group of healthy calves (n=14, 87 isolates) and from a group of enterotoxaemic calves (n=8, 41 isolates). PCR results revealed the exclusive presence of the typical "consensus"cpb2 in the enterotoxaemic group. Western blot analysis demonstrated that the typical variant of CPB2 was often expressed in isolates from enterotoxaemic calves (43.9%) and infrequently in isolates from healthy cattle (6.9%). These data suggest that the typical variant of the CPB2 toxin may play a role in the pathogenesis of cattle enterotoxaemia.  相似文献   

2.
Beta2 toxin, encoded by the cpb2 gene, has been implicated in the pathogenesis of porcine, equine and bovine enteritis by type A Clostridium perfringens. By incorporating primers to cpb2 into a multiplex genotyping PCR, we screened 3270 field isolates of C. perfringens. Of these, 37.2% were PCR positive for the cpb2 gene. The majority of isolates from cases of porcine enteritis were positive for cpb2 (>85%), and this was even more true for C. perfringens isolated from cases of porcine neonatal enteritis (91.8%). In contrast, isolates from normal pigs only contained cpb2 in 11.1% of cases. The correlation between enteritis in other animal species and the presence of cpb2 was not so strong. cpb2 was found in 21.4% of C. perfringens isolates from cattle with enteritis, and in 47.3% of isolates from calves with enteritis or abomastitis. The prevalence of cpb2 varied with genotype, with type A isolates being positive for this gene in 35.1% of cases. Furthermore, enterotoxigenic type D or type E strains almost always carried cpb2. We cloned a 6xHIS-tagged beta2 (HIS-beta2) and used this protein to raise antiserum against beta2. Culture supernatants from 68 cpb2-positive and 13 cpb2-negative strains were tested for the presence of beta2 by Western blotting. In cpb2-positive isolates of porcine origin, beta2 was almost always detected (96.9%). However, in cpb2-positive isolates from other animal species, only 50.0% expressed beta2 protein. The high rate of cpb2-positivity among strains from neonatal pigs with enteritis and the high correlation of genotype with phenotype, supports the contention that beta2 toxin plays a role in the pathogenesis of these infections. However, it may be important to consider the use of an additional method for the detection of beta2 toxin in non-porcine cpb2-positive isolates when making claims about the role of beta2 in enteritis in non-porcine species.  相似文献   

3.
Clostridium perfringens is a cause of economically significant enteritis in livestock. Beta2 toxin, encoded by one of two cpb2 alleles, is implicated as a virulence factor in this disease. Previous studies determined that the consensus cpb2 allele is preferentially associated with C. perfringens isolated from pigs. In C. perfringens strain 13, the consensus cpb2 allele is found on the plasmid pCP13, which also carries cna, encoding a putative collagen binding protein, CpCna. This protein was shown to be a bona fide collagen adhesin, as recombinant, HIS-tagged CpCna bound collagen type I as determined by Far Western blotting. Genomic DNA from C. perfringens isolated from a variety of host species were subjected to PCR to determine the prevalence of cna in these strains and correlate its carriage with the presence and type of cpb2 allele. The cna gene was found in 55.8% of isolates from all host species (n=208) and 68.1% of porcine isolates (n=119). In cpb2+ isolates, cna was present in 69.9% of isolates from all hosts (n=153), but was found in 98.7% of porcine isolates (n=75). Furthermore in porcine isolates, the consensus cpb2 allele and cna were absolutely correlated with the presence of pcp12, a pCP13-encoded gene, and pcp12 was never found in any isolate that lacks either cpb2 allele. The finding that CpCna binds collagen and that the cna gene is associated with the consensus cpb2 allele implicates CpCna as a potential virulence factor in porcine enteritis caused by C. perfringens.  相似文献   

4.
To investigate the possible role of cpb2-positive type A Clostridium perfringens in neonatal diarrheal illness in pigs, the jejunum and colon of matched normal and diarrheic piglets from 10 farms with a history of neonatal diarrhea were examined grossly and by histopathology, and tested for C. perfringens, for C. perfringens beta2 (CPB2) toxin, as well as for Clostridium difficile toxins, Salmonella, enterotoxigenic Escherichia coli, rotavirus, transmissible gastroenteritis (TGE) virus, and coccidia. Clostridium perfringens isolates were tested using a multiplex real-time polymerase chain reaction (PCR) to determine the presence of cpa, consensus and atypical cpb2, and other virulence-associated genes. The numbers of C. perfringens in the intestinal contents were lower in diarrheic piglets (log10 5.4 CFU/g) compared with normal piglets (log10 6.5 CFU/g) (P < 0.05). The consensus cpb2 was present in 93% of isolates in each group, but atypical cpb2 was less common (56% healthy, 32% diarrheic piglets isolates, respectively, P < 0.05). The presence of CPB2 toxin in the intestinal contents of normal and diarrheic piglets did not differ significantly. Clostridium difficile toxins and rotavirus were each detected in 7 of the 21 (33%) diarrheic piglets. Rotavirus, C. difficile toxins, Salmonella, or enterotoxigenic E. coli were concurrently recovered in different combinations in 4 diarrheic piglets. The cause of diarrhea in 8 of the 21 (38%) piglets on 6 farms remained unknown. The etiological diagnosis of diarrhea could not be determined in any of the piglets on 2 of the farms. This study demonstrated that the number of cpb2-positive type A C. perfringens in the intestinal contents was not a useful approach for making a diagnosis of type A C. perfringens enteritis in piglets. Further work is required to confirm whether cpb2-carrying type A C. perfringens have a pathogenic role in enteric infection in neonatal swine.  相似文献   

5.
Up to 60% of cases of equine colitis have no known cause. To improve understanding of the causes of acute colitis in horses, we hypothesized that Clostridium perfringens producing enterotoxin (CPE) and/or beta2 toxin (CPB2) are common and important causes of severe colitis in horses and/or that C. perfringens producing an as-yet-undescribed cytotoxin may also cause colitis in horses. Fecal samples from 55 horses (43 adults, 12 foals) with clinical evidence of colitis were evaluated by culture for the presence of Clostridium difficile, C. perfringens, and Salmonella. Feces were also examined by enzyme-linked immunosorbent assay (ELISA) for C. difficile A/B toxins and C. perfringens alpha toxin (CPA), beta2 toxin (CPB2), and enterotoxin (CPE). Five C. perfringens isolates per sample were genotyped for the following genes: cpa, cpb, cpb2 consensus, cpb2 atypical, cpe (enterotoxin), etx (epsilon toxin), itx (iota toxin), netB (necrotic enteritis toxin B), and tpeL (large C. perfringens cytotoxin). The supernatants of these isolates were also evaluated for toxicity for an equine cell line. All fecal samples were negative for Salmonella. Clostridium perfringens and C. difficile were isolated from 40% and 5.4% of samples, respectively. All fecal samples were negative for CPE. Clostridium perfringens CPA and CPB2 toxins were detected in 14.5% and 7.2% of fecal samples, respectively, all of which were culture-positive for C. perfringens. No isolates were cpe, etx, netB, or tpeL gene-positive. Atypical cpb2 and consensus cpb2 genes were identified in 15 (13.6%) and 4 (3.6%) of 110 isolates, respectively. All equine C. perfringens isolates showed far milder cytotoxicity effects than a CPB-producing positive control, although cpb2-positive isolates were slightly but significantly more cytotoxic than negative isolates. Based on this studied population, we were unable to confirm our hypothesis that CPE and CPB2-producing C. perfringens are common in horses with colitis in Ontario and we failed to identify cytotoxic activity in vitro in the type A isolates recovered.  相似文献   

6.
This study examined known or possible virulence-associated genes in type A Clostridium perfringens from cases of both bovine clostridial abomasitis (BCA) and jejunal hemorrhage syndrome (JHS) and compared these to isolates from calves that were healthy or had undifferentiated diarrheal illness. A real-time polymerase chain reaction (PCR) assay was used to genotype the 218 C. perfringens isolates. Isolates were sourced from healthy and diarrheic young and mature cattle (n = 191), from calves with confirmed or suspected BCA (n = 22), and from mature cattle with JHS (n = 5). Of 216 isolates (96%), 208 were positive for the cpa gene and 13% (29/218) were positive for atypical cpb2. Three of 8 (37.5%) confirmed BCA isolates, 2 of 13 (15.4%) suspected BCA isolates, and no JHS isolates tested positive for atypical cpb2. As all isolates were negative for cpb, cpb2, cpe, etx, netB, and tpeL, the results of the present study do not support a role for these genes in BCA or JHS. A subset of unique genes identified in 1 bovine clostridial abomasitis isolate (F262), for which a genome sequence is available, was searched for in 8 BCA isolates by PCR. None of the 10 genes was consistently present in all or even in a majority of BCA isolates. Many of these genes were also variably and inconsistently present in type A isolates from calves that did not have BCA. Although a virulence signature to aid in the diagnosis of BCA caused by C. perfringens type A was not identified, further work may discover a gene or group of genes that would constitute such a signature.  相似文献   

7.
为验证重组α毒素对携带非典型cpb2基因的A型产气荚膜梭菌的免疫保护性,本研究应用PCR技术,从某牛场牛源A型产气荚膜梭菌G1分离株中扩增出1 194 bp的α毒素编码基因(cpa)和795 bp的β2毒素编码基因(cpb2)。经BLAST分析显示,G1分离株携带的cpb2基因与14个菌株的非典型cpb2基因的氨基酸序列同源性为95.1%~98.9%,与典型cpb2基因(L77695)的氨基酸序列同源性为61.7%。这表明,G1的cpb2基因为非典型cpb2基因。同时分别将cpa和cpb2基因扩增产物克隆于原核表达载体中,构建重组表达质粒pET-a和pET-b2,重组菌经IPTG诱导表达重组蛋白,将其纯化后单独及联合免疫小鼠进行免疫保护试验。结果显示,单独免疫重组α毒素蛋白组以及联合免疫重组β2毒素蛋白组的小鼠,均可以抵抗至少6倍最小致死量(MLD)的G1外毒素(包含α毒素和非典型β2毒素)的攻击,也可以完全抵抗至少6 MLD的G2外毒素(不包含β2毒素)的攻击。表明,重组α毒素蛋白对含有及不含有非典型β2毒素的A型产气荚膜梭菌均具有良好的免疫保护作用。  相似文献   

8.
Currently, the factors/toxins responsible for Clostridium perfringens-associated avian enteritis are not well understood. To assess whether specific C. perfringens' toxinotypes are associated with avian enteritis, the isolates of C. perfringens from 31 cases of avian necrotic or ulcerative enteritis submitted between 1997 and 2005 were selected for retrospective analysis using multiplex PCR. C. perfringens was isolated from chickens, turkeys, quail, and psittacines. The toxinotypes of isolates from diseased birds were compared against the toxinotype of 19 C. perfringens isolates from avian cases with no evidence of clostridial enteritis. All C. perfringens isolates were classified as type A regardless of species or disease history. Although many isolates (from all avian groups) had the gene encoding the C. perfirngens beta2 toxin, only 54% produced the toxin in vitro when measured using Western blot analysis. Surprisingly, a large number of healthy birds (90%) carried CPB2-producing isolates, whereas over half of the cpb2-positive isolates from diseased birds failed to produce CPB2. These data from this investigation do not suggest a causal relationship between beta2 toxin and necrotic enteritis in birds.  相似文献   

9.
10.
The novel beta 2-toxin of Clostridium perfringens has recently been described as the cause of enteric diseases in animals. The biological activity of beta 2-toxin is similar to that of the beta1-toxin with a possibly weaker cytotoxic activity. However, the production of beta 2-toxin in vitro is not seen in all beta 2-toxin-gene (cpb2)-positive C. perfringens strains, and to deduce a clinical importance solely from the detection of cpb2 is difficult. Detection of cpb2-positive C. perfringens from various animal species with and without enteric diseases demonstrates the wide distribution of cpb2 in nature, and the presence of cpb2 gene is therefore not considered a risk by itself. Predisposing factors like low trypsin activity in the intestinal tract, antibiotic and/or antiphlogistic treatment or changes in diet can result in the selection of beta 2-toxigenic C. perfringens which may lead to enteritis or enterotoxaemia.  相似文献   

11.
A study was carried out in the South of Italy to assess the role of clostridia in neonatal diseases of lambs and kids. Eighty-seven lambs and 15 kids belonging to 25 flocks were examined and Clostridium perfringens was the microorganism most commonly identified. C. perfringens isolates were analysed by polymerase chain reaction (PCR), in order to determine the prevalence of the genes cpa, cpb, cpb2, etx, iap and cpe. The most prevalent toxin-type of C. perfringens was found to be type A found in 84% of the cases with clostridial enterotoxaemia. No C. perfringens type B, C or E were found. C. perfringens type D was isolated in 16% of the cases. About 24% of the isolates were cpb2 positive. The prevalence of cpb2 across the different C. perfringens types varied. The beta(2)-toxin gene cpb2 was detected in 4/21 (19%) type A isolates, in 1/2 type D isolates, and in 1/2 type DE (cpe-carrying type D) isolates. The high rate of positivity to cpb2 among the isolates suggests that a vaccine based on the beta(2)-toxin, should be included in the vaccination schedule of the animals to confer adequate protection and to prevent the disease.  相似文献   

12.
Clostridium perfringens which is a causative agent of several diseases in animals and humans is capable of producing a variety of toxins. Isolates are typed into five types on the basis of the presence of one or more of the four major toxins genes, i.e. cpa, cpb, etx, and iap. A decade ago another toxin termed beta2 (beta2) and its gene (cpb2) were identified. Two alleles of cpb2 are known and a possible link between differences in gene expression and allelic variation has been reported. A correlation between the level of expression and the origin of the isolates has also been suggested. The demonstration and typing of the cpb2 gene in the genome of isolates can be seen as a vital part of research on the role of the beta2 toxin in the pathogenesis of disease. This study describes a PCR with a single primer set which in contrast to published primer sets recognizes both alleles. Subsequent restriction enzyme analysis of the PCR product enables typing of the alleles. Applying this protocol on a total of 102 isolates, a sub-variant was found which occurred only in C. perfringens isolates from pigs and appeared to be the predominant variant found in C. perfringens isolates from this species.  相似文献   

13.
Clostridium perfringens is ubiquitous in the environment and the intestinal tracts of most mammals, but this organism also causes gas gangrene and enteritis in human and animal hosts. While expression of specific toxins correlates with specific disease in certain hosts, the other factors involved in commensalism and host pathogenesis have not been clearly identified. A multilocus sequence typing (MLST) scheme was developed for C. perfringens with the aim of grouping isolates with respect to disease presentation and/or host preference. Sequence data were obtained from one virulence and seven housekeeping genes for 132 C. perfringens isolates that comprised all five toxin types and were isolated from 10 host species. Eighty sequence types (STs) were identified, with the majority (75%) containing only one isolate. eBURST analysis identified three clonal complexes, which contained 59.1% of the isolates. Clonal complex (CC) 1 contained 31, predominantly type A isolates from diverse host species. Clonal complex 2 contained 75% of the bovine type E isolates examined in this study. Clonal complex 3 consisted predominantly of porcine type A and type C isolates. Interestingly, these porcine isolates (n=32) all carried consensus cpb2 and cna genes, encoding beta2 toxin and CpCna, a collagen binding protein, respectively. This compares to carriage of both these genes by only 3.6% of porcine isolates not present in clonal complex 3 (n=28). The data obtained indicates that MLST may be used to identify host species relationships with respect to these C. perfringens isolates.  相似文献   

14.
The study was aimed to express the EP402R gene of African swine fever virus (ASFV) Georgia 2007/1 strain via prokaryotic expression system,obtain the recombinant CD2v protein,and prepare polyclonal antibodies against the purified recombinant CD2v protein.After codon optimization,ASFV EP402R full-length gene was linked into pET-28a(+) expression vector to construct prokaryotic recombinant expression plasmid.After induction by 1 mmol/L IPTG at 16 ℃ for 12 h,the recombinant protein was identified by SDS-PAGE and Western blotting.The purified recombinant CD2v protein was used as immunogen to prepare mouse anti-CD2v polyclonal antibodies.The antibody titer was measured by indirect ELISA and the specificity was further analyzed by indirect immunofluorescence assay (IFA) and Western blotting.The results showed that ASFV EP402R gene was successfully cloned into pET-28a(+),and pET-28a-EP402R was obtained.The recombinant plasmid was transformed into E.coli BL21(DE3) for expression,the recombinant protein was expressed mainly in the form of inclusion bodies,with molecular mass at about 47 ku,while some of the recombinant protein could also exist in a soluble form.Western blotting results showed that the purified protein had good immunoreactivity.The indirect ELISA result showed that the polyclonal antibodies had a high titer of 1:512 000,IFA and Western blotting results indicated that it could specifically recognize recombinant CD2v protein.These results confirmed the recombinant CD2v protein expressed via prokaryotic system had good immunogenicity,and the prepared polyclonal antibodies had high titer and specificity.This research provided technical support for further study of ASFV EP402R biological function,as well as its gene-deletion based vaccine development.  相似文献   

15.
本试验旨在探究羊源多杀性巴氏杆菌OmpA基因的原核表达及其生物信息学特征。以羊源多杀性巴氏杆菌HN-01株基因组为模板,设计特异性引物扩增OmpA基因;构建pET-28a (+)-OmpA重组质粒后转化大肠杆菌BL21(DE3)感受态细胞,将鉴定正确的重组菌经IPTG诱导表达;通过SDS-PAGE及Western blotting分析表达蛋白的特征,并运用生物信息学工具对OmpA基因序列进行分析。结果显示,羊源多杀性巴氏杆菌OmpA基因大小约为1 044 bp,该基因序列与HN-06株的同源性达89.72%。通过诱导后发现,pET-28a (+)-OmpA重组菌最佳诱导条件为1 mmol/L IPTG 37℃诱导6 h,表达的重组蛋白大小约为40 ku,以包涵体的形式存在。Western blotting结果显示,约40 ku的重组蛋白携带His标签。经生物信息学分析,OmpA分子式为C1684H2619N457O505S3,属碱性疏水蛋白,其多肽链的1-21位氨基酸为信号肽区域,并具有多种结构。综上所述,OmpA可能具有特殊结构,与众多外膜蛋白结构特点相似。本研究构建了多杀性巴氏杆菌OmpA基因原核表达系统,优化诱导条件后能稳定获得OmpA重组蛋白,为进一步探究巴氏杆菌的致病机理提供理论依据。  相似文献   

16.
本试验旨在表达猪源戊型肝炎病毒(sHEV)ORF2部分基因片段,纯化表达产物并进行抗原性分析。以sHEV的cDNA为模板,PCR扩增ORF2基因片段,构建重组质粒pET32a-dORF2,转化表达菌BL21,IPTG诱导,SDS-PAGE凝胶电泳和Western blotting进行检测。试验结果表明,获得60 ku的目的蛋白,该蛋白具有良好的抗原性,主要以可溶性形式存在。  相似文献   

17.
血凝素(hemagglutinin,HA)蛋白是猪流感病毒(swine influenza virus,SIV)的一个重要蛋白,在疾病预防和治疗中具有重要作用。本试验旨在克隆和表达H3N2亚型猪流感病毒A/swine/Henan/1/2010(H3N2)的HA1和HA2基因。用含有H3N2亚型SIV的鸡胚尿囊液提取RNA,RT-PCR扩增后将目的基因定向克隆到pET-28a(+)原核表达载体上,并将其转入宿主菌BL21(DE3)pLyS进行表达,IPTG诱导后经SDS-PAGE检测并用该病毒重组HA蛋白制备的特异性单克隆抗体1C10作为一抗对两种蛋白进行Western blotting分析。SDS-PAGE结果显示,得到HA1和HA2大小分别为34.8、23.2 ku的重组蛋白,Western blotting结果表明,HA1蛋白与1C10单克隆抗体具有良好的反应原性,且1C10单克隆抗体表位在HA1蛋白上。本试验结果为进一步研究血凝素蛋白的结构和功能,以及建立快速诊断方法和基因工程疫苗提供材料。  相似文献   

18.
To develop an effective vaccine against porcine circovirus type 2 (PCV2), ORF2 gene was cloned into a Lactobacillus plantarum (L.plantarum) pSCPSP under the control of a SCP promoter to construct recombinant plasmid pSCPSP-Cap that was transformed into LP1 by electroporation. Extracellular expression of the Cap protein was confirmed by SDS-PAGE and Western blotting analysis. Afterwards, 8-week-old SPF BALB/c mice were randomly divided into control group, carrier group, lavage group, group of drinking water and inactived vaccine group. After 14,28,42 and 56 d, mice serums were collected to evaluate the level of specific antibody by SDS-PAGE and Western blotting. Eventually, SDS-PAGE and Western blotting results indicated that the Cap protein of PCV2 could be efficiently expressed in L. plantarum, expression of protein molecular weight was 28 ku and with good immunogenicity. In addition, higher levels of specific antibody in the serum of mice was observed by oral administration with L. plantarum expressing the PCV2 Cap antigen (P<0.05). In conclusion, the ORF2 gene of PCV2 could be successfully expressed in recombinant L. plantarum and expressed protein with good biological activity, which would lay the foundation for the development of PCV2 oral vaccination.  相似文献   

19.
为研制一种能有效控制猪圆环病毒2型(porcine circovirus type 2,PCV2)的新型疫苗,本试验将PCV2的ORF2基因克隆至植物乳杆菌表达载体pSCPSP超强启动子SCP的下游,构建重组表达质粒pSCPSP-Cap,用电击转化法转化克隆至表达宿主菌植物乳杆菌,获得一株重组植物乳杆菌。以SDS-PAGE和Western blotting法检测24 h上清液中表达的蛋白;将8周龄的SPF级BALB/c小鼠随机分组,每组8只,分别设置对照组、空载体组、灌胃组、饮水组、灭活疫苗组,试验14、28、42和56 d后对小鼠采血,分离血清,利用PCV2 ELISA抗体检测试剂盒检测小鼠血清中PCV2的抗体水平。SDS-PAGE、Western blotting结果显示,PCV2衣壳蛋白在植物乳杆菌中成功分泌表达,表达的蛋白分子质量为28 ku,且具有良好的反应原性,重组植物乳杆菌免疫小鼠诱导机体产生PCV2特异性抗体显著高于其他组(P<0.05)。结果表明,PCV2的ORF2基因在植物乳杆菌中成功表达,且具有良好的生物活性,可为PCV2口服疫苗的开发研究提供理论参考。  相似文献   

20.
Hemagglutinin protein plays an important role in disease prevention and treatment of the swine influenza virus (SIV).In order to clone and express subtype H3N2 SIV A/swine/Henan/1/2010 (H3N2) HA1 and HA2 genes with chicken embryo allantoic fluid containing the H3N2 SIV after extraction of RNA.The HA1 gene and HA2 gene were amplified from the total RNA using RT-PCR and they were inserted into prokaryotic expression vector pET-28a (+) to construct recombinant expression vector.Then the vector was transformed and expressed in E.coli BL21 (DE3) pLyS.Then the bacteria were induced by IPTG and their lysates were analyzed by SDS-PAGE and Western blotting,respectively.The monoclonal antibody 1C10,which was specific to HA protein,was used as primary antibody in Western blotting analysis.It was found that the expressed recombinant HA1 protein was 34.8 ku and recombinant HA2 protein was 23.2 ku analyzed by SDS-PAGE.As demonstrated by Western blotting,this HA1 expressed products showed the capacity of reacting with monoclonal antibody 1C10.All the results suggested that the expressed HA1 and HA2 proteins of H3N2 influenza virus would be very helpful in the development of rapid diagnosis method and vaccine development,which would facilitate further study on the function of HA at the same time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号