首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
In salmonids, growth hormone (GH) effectively promotes adaptation of freshwater (FW) fish to seawater (SW), but it has been unclear whether GH has osmoregulatory actions apart from those consequent to an increase in body size. Our objectives were first, to examine the minimum time and dose required for GH to enhance SW adaptation; and second, to optimize the conditions for the acute GH response in developing a convenient GH bioassay based on its plasma ion lowering effect. Trout showed markedly improved SW survival when transferred from fresh water 6, 24, or 48h after a single chum salmon GH injection (0.25 μg/g). Preadapting trout to 1/3 SW enhanced the plasma ion lowering effect of ovine GH (oGH) injected 48h before transfer of the fish to 80% SW. Endogenous plasma GH levels were elevated in control trout switched from low salinities to 80% SW but were depressed in oGH-injected fish after transfer. Under optimal test conditions (1/3 SW preadaptation, 48h pre-transfer injection, and 100% SW final challenge), the reduction in plasma Na+, Ca++, and Mg++ levels of oGH-injected fish was dose-dependent. The oGH doses giving minimum and maximum responses were 50 and 200 ng/g, respectively. In short, GH exerts acute osmoregulatory actions that promote SW adaptation in the absence of changes in body size. Compared with growth GH bioassays, the osmoregulatory assay is superior in economy of time, animal costs, and hormone quantity required and potentially in specificity.  相似文献   

2.
The growth-independent effect of ovine growth hormone (oGH) and oGH + cortisol treatment on seawater (SW) adaptation in immature rainbow trout, Salmo gairdneri was investigated. Fish were injected every second day with saline, 2.0 μg oGH/g or 2.0 μg oGH + 8.0 μg cortisol/g for a maximum of 8 injections in freshwater (FW). Subgroups were transferred to 28‰ SW after 4 or 8 injections, and changes in plasma Na+ and Cl, muscle water content and gill Na+/K+-ATPase activity were measured. In both of the hormone-treated groups retained in FW, gill Na+/K+-ATPase activity and interlamellar chloride cell density increased. The effects were most pronounced in the oGH + cortisol group after 2 weeks of treatment. After transfer to SW most of the control fish died due to the osmotic stress, whereas in the hormone-treated groups, mortality was low and there was a positive correlation between pretransfer gill Na+/K+-ATPase and the ability to maintain ionic-osmotic homeostasis after SW transfer. After two weeks of oGH + cortisol treatment, gill Na+/K+-ATPase activity was maximal. In contrast, after SW transfer, Na+/K+-ATPase activity increased further in the oGH-treated group. This group regulated ionic-osmotic parameters less effectively than the oGH + cortisol-treated group. The data indicate that GH and cortisol are important hormones in the regulation of hypoosmoregulatory mechanisms in S. gairdneri.  相似文献   

3.
The influence of cortisol on oxygen consumption and osmoregulatory variables was examined in coastal cutthroat trout (Oncorhynchus clarki clarki) parr kept in fresh water (FW) and transferred to seawater (SW). Intraperitoneal implants containing cortisol (50 g g–1) in vegetable oil resulted in elevated plasma cortisol titres similar to those observed in fish following a 24h SW exposure. Cortisol treatment significantly increased the oxygen consumption and plasma glucose levels of trout in FW, consistent with the glucocorticoid role of cortisol. Cortisol treatment did not cause any changes in plasma ion concentrations or gill Na+,K+-ATPase activity in FW after 10 days. Cortisol-implanted fish exposed to SW for 24h showed slightly improved ion regulatory ability compare to non-implanted controls. The results of this study suggest that during SW transfer in juvenile salmonids, increases in cortisol may act as both a mineralocorticoid and a glucocorticoid, depending on the developmental state of the fish (e.g., smolt versus parr). Furthermore, the relative energetic costs of osmoregulation and that of the stress associated SW transfer cannot be discerned using whole-animal oxygen consumption rates.  相似文献   

4.
The physiological response of Mozambique and Nile tilapia transferred from fresh to brackish (15 ppt) water was compared during a one-week time course. Response in the pituitary was measured by the gene expression pattern of prolactin (PRL I), growth hormone (GH), and calcium-sensing receptor (CaSR), while the response in the gills was measured by the gene expression pattern of the prolactin receptor (PRL-R), Na+/K+/2Cl cotransporter (NKCC) and Na+/Cl cotransporter (NCC), and by activity and expression of Na+/K+-ATPase (NKA). The time-course curves of plasma osmolality levels indicate a rapid elevation 24 h after transfer, which later decreased and maintained at stable level. PRL I expression decreased in both species, but with stronger response in the Nile tilapia, while no differences were found in the slightly elevated levels of GH mRNA. The branchial response demonstrated a faster up-regulation of NKA and NKCC in the Mozambique tilapia, but similar levels after a week, while Nile tilapia had stronger and constant down-regulation of NCC. The time-course response of the measured osmoregulatory parameters indicate that 24 h after transfer is a critical time point for brackish-water adaptation. The differences in responses to saltwater challenge between Mozambique and Nile tilapia shown in this study may be associated with the differences in saltwater tolerance between these two tilapiine species.  相似文献   

5.
Since somatostatin (SRIF) inhibits the release of growth hormone (GH), its immunoneutralization may provide an alternative to GH therapy as a means of enhancing somatic growth in fish. The present study examined the feasibility of accelerating growth in juvenile chinook salmon by means of antiSRIF administration. Yearling salmon of Nicola River stock (BC, Canada) were injected intraperitoneally every 5 days, for a total of 40 days, with either SRIF (1 μg g-1 body wt.), antiSRIF (SOMA-10, 1 μg g−1), recombinant bovine GH (rbGH, 2.5 μg g−1), recombinant porcine GH (rpGH, 2.5 μg g−1) or saline (controls). No significant differences were observed in length, weight or final condition factor (k) between the SRIF-treated and control fish over the experimental period. However, the fish treated with the antiSRIF were significantly (p ≤ 0.05) longer and heavier than the control salmon after 25 and 30 days respectively. Furthermore, antiSRIF treatment caused a lowering in k when compared to the control salmon. Fish injected with rbGH or rpGH were significantly longer and heavier than all other groups (p ≤ 0.05), after only 5 days. GH treated groups also returned higher k when compared against all other treatments (p ≤ 0.05). No differences were observed in growth between the two rGH treatments over the experimental period.  相似文献   

6.
7.
The effects of ovine prolactin (oPRL) on osmoregulatory ability (electrolyte balance, plasma osmolality and activity of gill chloride cells and gill Na+/K+‐ATPase) and stress responses (plasma cortisol, glucose, aspartate aminotransferase: AST and alanine aminotransferase: ALT) were investigated in black porgy transferred to freshwater (FW). Fish in seawater (SW) were injected twice at a 24 h interval with oPRL (at 1, 3, or 5 μg g–1 body weight) or vehicle (0.9% NaCl) and then transferred to FW. They were sampled 3 days after the transfer. With oPRL at 5 μg g–1, levels of plasma Na+ and Cl? and osmolality were significantly higher than in saline‐treated fish, whereas gill CCs number and Na+/K+‐ATPase activity were lower. Also, the 5 μg g–1oPRL treatment led to significantly lower plasma cortisol levels than did saline treatment. However, there were no significant differences in plasma AST and ALT between groups. These results support the positive osmoregulatory role of PRL in black porgy during FW adaptation.  相似文献   

8.
The effect of cortisol on osmoregulatory parameters was studied in rainbow trout, (Salmo gairdneri), kept in freshwater (FW) and/or transferred to seawater (SW). Repeated injections of 20 μg cortisol/g fish stimulated gill and gut Na+/K+-ATPase activity and reduced plasma Na+ and Cl levels after 2 weeks of treatment in FW-adapted fish. Cortisol doses of 0.05 and 1.0 μg/g were without effect. Repeated injections of 10 μg cortisol/g stimulated gill Na+/K+-ATPase activity and reduced plasma Na+ and Cl levels in fish in FW, and significantly improved ion regulation after their transfer to 28SW. Higher doses of cortisol (10 and 20 μg/g) induced hyperglycemia, whereas low doses (0.05 and 1.0 μg/g were without effect or induced hypoglycemia. Plasma glucose levels decreased in cortisol-treated fish transferred to SW, whereas transient hyperglycemia was seen in the control fish.  相似文献   

9.
Studies in mammals have shown that synthetic Met-enkephalin derivatives, called growth hormone-releasing peptides (GHRPs), stimulate growth hormone (GH) release. In the present study, GHRP-6 action on GH secretion was examined in vivo and in vitro in sexually immature grass carp. GHRP-6 injected intraperitoneally had no influences on serum GH levels in juvenile grass carp. Following intraperitonal injection of GHRP-6 and dopamine (DA) or cysteamine hydrochloride (CSH), alone and in combination into juvenile grass carp, DA and CSH were effective in elevating serum GH levels, but GHRP-6 was not effective in this respect; in addition, the synergistic action of GHRP-6 and DA or CSH on GH secretion was not seen. In this work, we had adapted and validated a perifusion system and a culture system for GH regulation studies. In a perifusion system, GHRP-6 (1000 to 0.1 nM), GHRP-6 (0.1 to 1000 nM), GHRP-6 (1 μM), and Hexarelin (an analog of GHRP, 1 μM) had no action on GH release from juvenile grass carp pituitary fragments or cells. Under static incubation conditions, GHRP-6 was inactive on GH release from juvenile grass carp pituitary fragments after 1 h and 6 h incubation, but human growth hormone-releasing hormone (hGHRH; 1 to 100 nM) as positive control could stimulate GH release in a dose-dependent manner. Furthermore, when GHRP-6 (100 nM) in combination static incubation with neuropeptides [e.g., hGHRH (100 nM), salmon gonadotropin-releasing hormone analogue (sGnRH-A) (100 nM), or D-Ala6,Pro9-NEt-luteinizing hormone-releasing hormone (D-Ala6,Pro9-NEt-LHRH, LHRH-A) (100nM)], GHRP-6 did not strengthen GH secretion actions of neuropeptides, and at the same time neuropeptides also did not modify the effects of GHRP-6 on GH secretion. The present results obtained using in vivo and in vitro techniques adapted for GH regulation studies show that GHRP-6 does not function as a GH-releasing factor in juvenile grass carp as it does in tilapia, amphibians, chickens, and mammals.  相似文献   

10.
Several experiments were performed to investigate the physiology of seawater acclimation in the striped bass, Morone saxatilis. Transfer of fish from fresh water (FW) to seawater (SW; 31–32 ppt) induced only a minimal disturbance of osmotic homeostasis. Ambient salinity did not affect plasma thyroxine, but plasma cortisol remained elevated for 24h after SW transfer. Gill and opercular membrane chloride cell density and Na+,K+-ATPase activity were relatively high and unaffected by salinity. Average chloride cell size, however, was slightly increased (16%) in SW-acclimated fish. Gill succinate dehydrogenase activity was higher in SW-acclimated fish than in FW fish. Kidney Na+, K+-ATPase activity was slightly lower (16%) in SW fish than in FW fish. Posterior intestinal Na+,K+-ATPase activity and water transport capacity (Jv) did not change upon SW transfer, whereas middle intestinal Na+,K+-ATPase activity increased 35% after transfer and was correlated with an increase in Jv (110%). As salinity induced only minor changes in the osmoregulatory organs examined, it is proposed that the intrinsic euryhalinity of the striped bass may be related to a high degree of “preparedness” for hypoosmoregulation that is uncommon among teleosts studied to data.  相似文献   

11.
In previous studies in freshwater tilapia (Oreochromis mossambicus), dietary supplementation with arachidonic acid (ArA; 20:4n?-?6) had considerable, opposing effects on the main ion-transporting enzyme Na(+)/K(+)-ATPase in gills and kidneys and changed the release of osmoregulatory hormones, such as cortisol. The present study was performed to assess the influence of dietary ArA on (1) the osmoregulatory capacity of tilapia acclimated to seawater (SW) (34‰) and (2) the osmoregulatory imbalance associated with acute stress. The increased ambient salinity was associated with significant alterations in the tissue fatty acid composition, particularly the n?-?6 polyunsaturated fatty acids (PUFAs). Tissue levels of ArA were further increased as a result of dietary supplementation, whereas docosahexaenoic acid (DHA, 22:6n?-?3) and eicosapentaenoic acid (EPA, 20:5n?-?3) decreased in gills and kidneys. Basal plasma cortisol as well as lactate levels were elevated in the ArA-supplemented SW-acclimated tilapia compared with the control group. The 5?min of confinement (transient stress) increased plasma cortisol, glucose, and lactate levels with significantly higher levels in ArA-supplemented tilapia. Confinement was also associated with significantly elevated plasma osmolality, sodium, chloride, and potassium levels. ArA-supplemented tilapia showed markedly lower ionic disturbances after confinement, suggesting that dietary ArA can attenuate the hydromineral imbalance associated with acute stress. These results emphasize the involvement of ArA and/or its metabolites in the endocrine and osmoregulatory processes and the response to confinement stress.  相似文献   

12.
The tilapia, Oreochromis mossambicus, exhibits a sexually dimorphic pattern of growth, males growing larger than females. We examined the effects of E2 and DHT on the GH/IGF-I axis and on VTG production in the tilapia. Sexually mature tilapia were injected with 5 μg g body weight of E2 (males) or DHT (females) every 5 days for a total of 3 injections. Female tilapia had significantly higher plasma GH levels than males. However, plasma and liver mRNA levels of IGF-I were significantly lower in females than in males, whereas VTG levels in both the plasma and liver mRNA were significantly higher in females than in males. Although significant amounts of VTG were detected in control males (8 ± 0.3 μg ml), the levels in control females (3000 ± 500 μg ml) were about 400 times higher than in males. Males treated with E2 exhibited a female-like GH/IGF-I profile. That is, they had significantly elevated levels of plasma GH with lower plasma IGF-I and liver IGF-I mRNA levels. Estradiol treatment significantly elevated both plasma and liver mRNA VTG levels. Dihydrotestosterone treatment in females induced a male-like GH/IGF-I profile: plasma GH levels were significantly reduced, whereas plasma and liver IGF-I mRNA levels were significantly elevated. Both plasma and liver mRNA levels of VTG were not altered by DHT treatment. Pituitary GH mRNA levels were similar in all treatment groups. These results clearly indicate that estrogens and androgens feminize and masculinize the GH/IGF-I axis, respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Brown (BT) and rainbow trout (RT) in freshwater (FW) were treated with ovine growth hormone (GH), GH + iopanoic acid (IOP), and GH + IOP plus triiodothyronine (T3) for RT only. After 1 week of treatment, trout were transferred to 30 o/oo SW and treatment continued. In FW, GH treatment increased significantly plasma T3 level (BT) and T3/T4 ratio (BT and RT) by stimulating T4 to T3 deiodination. In the GH + IOP group, the plasma T3 levels and T3/T4 ratio fell significantly as T4 to T3 deiodination was inhibited. In GH + IOP + T3-treated RT, plasma T3 and T3/T4 ratios increased significantly relative to other groups. No mortality occurred and plasma osmolarity (PO) was not altered by any treatment in FW. After transfer to SW, all IOP + GH trout died within 2 (BT) or 3 days (RT). All GH-treated or control BT survived to the end of the experiment (6 days). RT survival rates tended to be improved in GH and GH + IOP + T3 groups relative to controls. Correlatively on day 1 the PO increase was significantly higher in IOP + GH groups (BT and RT) than in the other groups and significantly lower in GH and GH + IOP + T3 treated RT than in controls from days 1 to 6. These data confirm the requirement of T3 and deiodination of T4 to T3 for the development of hypoosmoregulatory mechanisms in SW as previously shown (Lebel and Leloup 1992). Furthermore, the suppression of the hypoosmoregulatory effect of GH, when conversion of T4 to T3 was inhibited by IOP and the reversal when T3 was added to IOP + GH treatment suggests that GH osmoregulatory action in SW acts via the simulation of T4-5′ monodeiodination which increases T3 production.  相似文献   

14.
In the present study, we examined the long-term effects of environmental salinity, diet (35% and 25% crude protein) and 17-methyltestosterone (MT) on corresponding levels of pituitary and serum growth hormone (GH) and prolactins (tPRL177 and tPRL188) in the tilapia (Oreochromis mossambicus). We observed no discernible patterns in serum GH that would suggest an effect of salinity, diet or MT. However, serum GH levels in all treatments declined at 1 and 3h after first feeding. Serum tPRL177 and tPRL188 were significantly higher in freshwater (FW) than in seawater (SW) and levels were significantly affected by dietary protein. tPRL177 levels were higher in all groups fed a 35% protein diet, but tPRL188 levels were higher only in the groups fed the MT-treated 35% protein diet; only serum tPRL188 levels were affected by MT. Moreover, serum tPRL177 and tPRL188 increased throughout the sampling time-course. Subsequent work using fasted tilapia suggests that first feeding is likely to initiate the post-prandial suppression of serum GH levels. In contrast with the picture observed in blood, pituitary glands of SW animals showed higher levels of GH than FW fish. Pituitary GH was elevated by MT in both FW and SW. We also observed that pituitary tPRL177 and tPRL188 levels were higher in FW fish than in SW fish; tPRL177 and tPRL188 levels were elevated by MT only in FW animals. To assess the somatomedin activity of plasma from FW- and SW-reared tilapia, we measured [35S]-sulfate incorporation into ceratobranchial cartilage explants in vitro. Plasma from SW-adapted tilapia showed greater activity in this assay than plasma from FW-reared tilapia, suggesting that the GH-dependent IGF bioactivity of plasma is higher in SW-reared tilapia. Collectively, these studies suggest that the growth-promoting actions of SW rearing and of MT administration in tilapia may be linked to elevations in GH and/or prolactin (tPRL177 and tPRL188)levels.  相似文献   

15.
In an attempt to understand growth regulation in the Japanese eel, Anguilla japonica, we cloned insulin-like growth factor-I (IGF-I) cDNAs and examined their mRNA expression in several tissues. Two eel IGF-I (eIGF-I) cDNAs encoding preprohormones, eIGF-I-Ea1and eIGF-I-Ea2, were cloned from the liver by polymerase chain reaction (PCR). The preproIGF-Is were identical in signal peptide and mature IGF-I, but different in the E domain—eIGF-I-Ea2 mRNA was 36 bp longer than eIGF-I-Ea1 mRNA. Eel IGF-I was 83–94% identical with that of teleosts, 71% identical with that of dogfish, 87% identical with that of bullfrog and chicken, and 83% identical with that of humans. In both males and females the highest eIGF-I-Ea1 mRNA levels were observed in the liver, with detectable levels also found in the gills, heart, stomach, spleen, kidney, intestine, swim-bladder, muscle, and gonads. eIGF-I-Ea1 mRNA levels in the liver were higher in females than in males whereas in the intestine they were lower than in males. eIGF-I-Ea2 mRNA was detected in all the tissues examined and at similar levels in males and females. In this experiment higher eIGF-I-Ea1 mRNA levels were observed in the liver of larger glass eels than in those of smaller fish. eIGF-I-Ea2 mRNA levels were also higher in larger eels, although they were lower than IGF-I-Ea1 mRNA levels. Both eIGF-I mRNA levels in liver were positively correlated with the body size of the␣glass eels. Intraperitoneal injection of recombinant eel GH (reGH), 0.25 μg g−1 body weight, into glass eels resulted in a significant increase in both eIGF-I mRNAs in the liver 1 day after injection compared with control fish, but no elevation was observed 2 days after injection. Incubation of liver slices with reGH at concentrations of 10, 100, and 1,000 ng mL−1 for 24 h resulted in a significant concentration-dependent increase in the levels of both eIGF-I mRNAs. Higher levels of eIGF-I-Ea1 and Ea2 mRNA were observed in the gills ofseawater-reared eels than in those of freshwater-reared fish, but no differenceswere observed in the whole kidney. These results suggest that IGF-I is involved in the regulation of somatic growth and also in adaptation of the Japanese eel to seawater.  相似文献   

16.
Osmoregulatory actions of growth hormone (GH) and its mode of action in salmonids are reviewed. We present evidence suggesting that insulin-like growth factor I (IGF-I) mediates some of the actions of GH on seawater acclimation. Plasma concentration and turnover of GH rise following exposure to seawater. Exogenous GH (in vivo) increases gill Na+,K+-ATPase activity and the number of gill chloride cells, and inhibits an increase in plasma osmolarity and ions following transfer of fish to seawater. A single class of high affinity GH receptors is present in the liver, gill, intestine, and kidney. The levels of IGF-I mRNA in the liver, gill and kidney increased after GH-injection. After transfer to seawater, IGF-I mRNA increased in the gill and kidney following the rise in plasma GH, although no significant change was seen in the liver. Injection of IGF-I improved the ability of the fish to maintain plasma sodium levels after transfer to seawater. GH treatment also sensitizes the interrenal to adrenocorticotropin (ACTH), increasing cortisol secretion. Both cortisol and IGF-I may be involved in mediating the action of GH in seawater adaptation, although studies on the effect of GH on osmoregulatory physiology of non-salmonid species are limited. An integrated model of the osmoregulatory actions of GH is presented, and areas in need of research are outlined.
Résumé Cet article est une revue des effets osmorégulateurs de l'hormone de croissance et de son mode d'action. Nous présentons des résultats qui suggèrent que le facteur de croissance de type insuline (IGF-I) est un médiateur de certaines des actions de la GH sur l'adaptation à l'eau de mer. Les concentrations plasmatiques et le renouvellement de la GH augmentent après transfert en eau de mer. La GH exogène stimule (in vivo) l'activité Na+,K+-ATPase et le nombre de cellules à chlorure branchialeset inhibe les augmentations de l'osmolarité et des concentrations ioniques du plasma observées après transfert en eau de mer. Une seule classe de récepteurs à haute affinité pour la GH est présent dans le foie, les branchies, l'intestin et le rein. Les niveaux d'ARNm d'IGF dans le foie, les branchies et le rein augmentent après injection de la GH. Après transfert en eau de mer, les ARNm de l'IGF augmentent dans les branchies et dans le rein en suivant l'augmentation de GH plasmatique, bien qu'aucune modification ne soit observée au niveau du foie. L'injection d'IGF augmente la capacité du poisson à maintenir ses niveaux de sodium plasmatique après transfert en eau de mer. Le traitement à la GH augmente la sensibilité à l'adrenocorticotropine (ACTH) et stimule donc les niveaux de cortisol. A la fois le cortisol et l'IGF-I semblent impliqués comme médiateurs des effets de la GH dans l'adaptation à l'eau de mer, bien que les études sur les effets de la GH sur la physiologie de l'osmorégulation chez les espèces non-salmonidés restent encore limitées. Un modèle intégré des actions de la GH sur l'osmorégulation est présenté et les domaines de recherche à développer sont soulignés.
  相似文献   

17.
SLICE? (active ingredient 0.2% emamectin benzoate (EMB)), a feed premix developed by Schering‐Plough Animal Health for the control of sea lice on cultured salmonids, is registered for use in several countries and is being prescribed on an emergency basis in Canada and the United States. The concentration of EMB in feed administered to farmed salmon ranges from 1 to 25 μg g?1. To determine the acute toxicity of the compound to juvenile and adult American lobster (Homarus americanus), commercial salmon feed was coated with SLICE? at a range of concentrations and provided to the animals for 7 d in the laboratory. The LC50 is estimated to be 644 μg g?1 (95% CI=428, 1275) for adult lobsters and >589 μg g?1 for stage V and VI juvenile lobsters. The consumption of medicated pellets by adult lobsters decreased significantly with increasing concentration of EMB. Adult lobsters that died during the study had a significantly greater concentration of emamectin B1a in their muscle tissue than those that survived. These results support the conclusion that salmon feed medicated with EMB at the concentrations used by the aquaculture industry is unlikely to pose an acute lethal threat to adult and small juvenile American lobsters.  相似文献   

18.
A 120-day experiment was performed with 4-month-old juvenile tench [initial mean weight: 0.31 g; total length (TL): 32 mm] to evaluate live Artemia nauplii as supplement to a dry diet for salmonids. All groups received the dry diet. Five treatments, differing in the amount of supplemented Artemia, were tested: without supplement, 450, 900, and 1,800 nauplii g−1 initial fish biomass, and nauplii in excess. Groups that received Artemia supplement had significantly higher survival (between 89.4 and 98.7%) compared to those that received dry diet alone (49.2%), while among them there was no significant difference. Juvenile tench fed the dry diet supplemented with Artemia in excess had a specific growth rate (1.98), weight (3.40 g), and TL (63.90 mm) significantly higher than those in the rest of the treatments. The latter three features were not significantly different under limited co-feeding (450, 900, and 1,800 nauplii g−1 biomass) averaging 1.26 specific growth rate, 1.40 g weight, and 48.50 mm TL. Tench fed the dry diet alone grew significantly less than the rest. Thus, the drawbacks of feeding juvenile tench with dry foods originally formulated for other fish species can be overcome by providing a supplement of Artemia nauplii.  相似文献   

19.
Four isonitrogenous [30% crude protein (CP)] diets containing different gross energy levels (13.39, 16.74, 20.50 and 23.85 kJ g−1) were evaluated to determine the optimum energy for the Malawian tilapia Oreochromis shiranus. Each tank (120 L) was stocked with 18 juvenile tilapia (average weight 7.32±0.25 g) and they were fed the experimental diets for 10 weeks. The final average weight of the fish was approximately twofold higher (range: 12.64–16.77 g) than the initial weight. The dietary energy significantly (P<0.05) influenced growth. The average weight of fish fed dietary energy level 20.50 kJ g−1 was significantly higher (P<0.05) than the weight of the fish fed any of the other experimental diets. There was no significant difference in growth of fish fed 13.39 and 16.74 kJ g−1 energy levels, but 23.85 kJ g−1 produced the lowest growth rates. There were no significant differences (P>0.05) between feed intake across the treatments. Feed conversion ratio (range: 2.2–3.0) and protein efficiency ratio (range: 1.10–1.50) among the dietary treatment groups were in agreement with trends for weight gain. Dietary energy level significantly (P<0.05) influenced the body composition of O. shiranus. Whole‐body moisture (range: 64.27–67.15%) and ash (range: 13.21–14.73%) decreased in all treatments. Whole‐body protein (range: 63.57–66.16%) increased only in groups fed on the diet containing 20.50 kJ g−1. Whole‐body fat (range: 13.58–17.27%) and gross energy (range: 28.411–33.210 kJ g−1) increased significantly (P<0.05). Fish survival was 100% in all treatments. The results demonstrated that to maximize growth at a temperature of 23°C, O. shiranus should be fed diets containing 20.50 kJ g−1 gross energy.  相似文献   

20.
A growth trial was conducted to feed juvenile tilapia (initial weight, 9.1±0.1 g), Oreochromis niloticus×O. aureus, isonitrogenous diets for 8 weeks. Six diets were formulated containing 29% crude protein from casein and gelatin, 10% crude fat from soybean oil and refined soybean lecithin and varying levels of corn starch ranging from 6% to 46% at increments of 8%, with corresponding energy to protein (E/P) ratios of 35.6, 37.9, 40.2, 42.5, 44.8 and 47.1 kJ g?1. Weight gain (WG), specific growth rate, feed efficiency ratio and protein efficiency ratio were significantly higher in fish fed diets with starch ≥22% (or E/P ratio ≥40.2 kJ g?1) than in fish fed diets with 6% or 14% starch (or E/P ratio of 35.6 or 37.9 kJ g?1). No further improvement was measured when dietary starch content increased beyond 22%. Body protein retention showed the same general pattern as WG, and was highest in fish fed the 22% starch diet. Body composition was significantly affected by dietary starch level. Fish fed diets with starch ≥30% had significantly higher lipid content than fish fed diets with 6% or 14% starch. Ash content was negatively correlated with starch inclusion level, but moisture and protein contents did not show discernible trends among treatments. Results indicate that hybrid tilapia can utilize 46% dietary starch without growth retardation, while 22% starch in feed for juvenile tilapia containing 29% protein and 10% lipid, or an E/P ratio of 37.9 kJ g?1 is optimal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号