首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study was aimed at determining the effect of light conditions on contents of glucosinolates (GLS) in germinating seeds of white mustard, red radish, white radish, and rapeseed. The seeds were germinated in light and dark, at 25 degrees C, for up to 7 days. As compared to the nongerminated seeds, in seeds exposed to light and germinated for 4, 5, 6, and 7 days the content of total GLS was observed to decrease by 30 to 70% depending on the species. Germination in conducted the dark for the respective periods of time resulted in decreases of total GLS not exceeding 25%. The changes in the concentration of total GLS were attributed to aliphatic GLS predominating in seeds, yet in the case of white mustard to sinalbin belonging to aralkyl glucosinolates. Although seeds germinated in the dark, as compared to those exposed to light, were characterized by a higher total content of indole GLS, the percentage contribution of that group of compounds in white mustard, red radish, and white radish remained at a similar level, irrespective of germination time. Only in the case of rapeseed was the percentage of the sum of indole GLS observed to increase from 17 to up to 45% once the seeds were exposed to light and to 50% once they were germinated in the dark.  相似文献   

2.
Brassica vegetables are the predominant dietary source of glucosinolates (GLS) that can be degraded in the intestinal tract into isothiocyanates, which have been shown to possess anticarcinogenic properties. The effects of pilot-scale long-term boiling on GLS in white cabbage (Brassica oleracea L. ssp. capitata f. alba cv. 'Bartolo') was experimentally determined and mathematically modeled. Cabbage was boiled, resulting in a dramatic decrease of 56% in the total GLS levels within the plant matrix during the first 2 min. After 8-12 min of boiling, the decrease progressed to over 70%. Progoitrin had an exceptionally higher decline rate in comparison to all other GLS. As boiling progressed the concentration of all GLS continued to decrease at a lower rate for the remaining cooking period. A mathematical model was used to describe the concentration profile of the GLS in the plant matrix, based on leaching of GLS to the water phase due to cell lysis and thermal degradation of the GLS both in the plant matrix and in the water phase. The model described the concentration profiles very well. Estimated lysis and degradation rate constants for white cabbage differed from those reported in the literature for red cabbage. The degradation rate constants found were significantly higher in the plant matrix when compared to those in the water phase for all GLS. Identification of the kinetics of decline of GLS during cooking can aid in designing processing and preparation methods and determining the conditions for the optimal effects of ingestion of Brassicaceae toward cancer prevention.  相似文献   

3.
An improvement in the mineral nutrient contents of fruits and vegetables is needed to offset reported declines in concentrations of these elements in fruits and vegetables. The declines have been associated with the high productivity of modern cultivars and to depleted soil fertility. This research addressed differences in mineral nutrient concentrations between modern F1 hybrids and heirloom cultivars of cabbage (Brassica oleraceae var. capitata L.)and among fertilization practices with conventional chemical or organic fertilizers and compost. Crop production was greater with the chemical or organic fertilizers than with the compost. Mineral nutrient composition did not vary between modern or heirloom cultivars or among fertilization regimes but varied among cultivars, suggesting that cultivar selection could lead to production of nutrient-rich cabbage. Neither mass of heads nor days to maturation of crops affected nutrient composition.  相似文献   

4.
To improve nutrition intake of humans, it is recommended that fruits and vegetables constitute a major portion of diets. An improvement in the mineral nutrient contents of fruits and vegetables is needed to offset apparent declines in the elements in these foods. This research addressed the enrichment of cabbage (Brassica oleracea var. capitata L.) through the selection of nutrient-rich cultivars and soil fertility practices. Conventional fertilizers, organic fertilizers, and compost were evaluated with modern F1 hybrids in field experiments. Crop production was greater with the chemical or organic fertilizers than with the compost. Mineral nutrient composition varied among cultivars but not with fertility practices, suggesting that cultivar selection could lead to production of nutrient-rich cabbage. Neither the mass of heads or days to maturation of crops affected nutrient composition.  相似文献   

5.
The influence of two Spanish growing locations with well-differentiated climatic conditions (northern and eastern areas) on the main bioactive compounds, glucosinolates (GLS), total phenolic compounds (TPC), and vitamin C, as well as myrosinase activity and antioxidant capacity in five white cabbage ( Brassica oleracea L. var. capitata) cultivars was investigated. Cabbages with the highest concentration of total GLS presented the highest vitamin C level (r = 0.75, P ≤ 0.05) and the lowest antioxidant capacity (r = -0.76, P ≤ 0.05). The cultivars with the highest vitamin C content had the lowest myrosinase activity (r = -0.89, P ≤ 0.05) and antioxidant capacity (r = -0.86, P ≤ 0.05), whereas those with the largest TPC amount showed the highest antioxidant capacity (r = 0.71, P ≤ 0.05). Cabbage cultivars grown in the northern area of Spain with low temperatures and radiation led to higher mean values of myrosinase activity (29.25 U/g dm), TPC (10.0 GAE mg/g dm), and antioxidant capacity (81.6 μmol Trolox/g dm), whereas cultivars grown in the eastern area with high temperature and radiation led to larger mean values of GLS (14.3 μmol/g dm) and vitamin C (5.3 mg/g dm). The results of this investigation provide information regarding the most suitable Spanish growing location to produce white cabbage with an optimized content of health-promoting compounds.  相似文献   

6.
以中甘21(ZG21)、06-115两个甘蓝品种为试验材料,研究叶面喷施6种氨基酸对甘蓝硫代葡萄糖苷组分及其含量的影响。结果表明,不同种类氨基酸处理甘蓝硫代葡萄糖苷组分相同,均含有9种硫苷。氨基酸对甘蓝硫苷含量有一定的影响,半胱氨酸和甲硫氨酸显著提高06-115硫苷的总含量、脂肪族硫苷的含量和4-甲基硫氧丁基硫苷含量,其中半胱氨酸处理含量最高,与对照相比分别提高63.0%、69.6%和69.1%;半胱氨酸处理提高了3-吲哚基甲基硫苷含量,达到725.6 μmol/kg, FW;半胱氨酸处理也显著提高了中甘21硫苷的总含量、脂肪族硫苷的含量、吲哚族硫苷含量和4-甲基硫氧丁基硫苷含量,与对照相比分别提高了27.2%、39.6%、15.3%和26.2%。半胱氨酸、苯丙氨酸、甘氨酸和谷氨酸处理都提高了3-吲哚基甲基硫苷的含量,其中半胱氨酸处理最高,达到292.7 μmol/kg, FW,其次是谷氨酸和甘氨酸处理。  相似文献   

7.
The research focused on the glucosinolate (GLS) breakdown products formed during the fermentation of cabbage. A relationship between the contents of degradation products in fermented cabbage and native GLS in raw cabbage was investigated. The effect of fermented cabbage storage on the contents of individual compounds was also assayed. Ascorbigen formed from one of the degradation products of glucobrassicin (indole GLS) was found to be a dominating compound in fermented cabbage. Irrespective of the time of fermented cabbage storage, the content of ascorbigen reached approximately 14 micromol/100 g. Neither the content of isothiocyanates, the major degradation products of aliphatic GLS, nor that of cyanides exceeded 2.5 microM. Storage of cabbage caused periodical increases and decreases in the contents of cyanides and consequent declines in the contents of isothiocyanates. The highest relative contents (expressed as a percentage of the native GLS content) of degradation products--ranging from >70 to 96%--were reported for the products of glucoraphanin degradation, whereas the lowest-- <5% --were reported for the products of sinigrin degradation.  相似文献   

8.
Fifty-nine Brassica oleracea cultivars, belonging to five botanical varieties, were evaluated for microsatellite (SSR) polymorphisms using 11 database sequence derived primer pairs. The cultivars represented 12 broccoli (Brassica oleracea var. italica), ten Brussels sprouts (B. o. var. gemmifera), 21 cabbage (B. o. var. capitata, including the groups white and red cabbage), six savoy cabbage (B. o. var. sabauda), and ten cauliflower (B. o. var. botrytis) cultivars from 13 seed suppliers. The 11 primer pairs amplified in total 47 fragments, and differentiated 51 of the cultivars, whereas the remaining eight cultivars were differentiated from the rest in four inseparable pairs. All SSR markers, except one, produced a polymorphic information content (PIC value) of 0.5 or above. The average diversity for all markers within the tested material was 0.64. There was no major difference in the diversity within botanical varieties and groups. The cluster analysis and the resulting dendrogram showed that the cultivars tended to group within these taxonomic units. The present study substantiates the use of microsatellite markers as a powerful tool for cultivar differentiation and identification in vegetable brassicas.  相似文献   

9.
A rotation experiment was conducted in a greenhouse with three vegetable crops on red yellowish soil (RYS) and silt loamy soil (SLS) to study Cd accumulation in pak choi ( Brassica chinensis L.), tomato ( Lycopersicon esculentum), and radish ( Raphanus sativus L.). Critical Cd concentrations in the two soils were evaluated for these vegetables based on human dietary toxicity. Cadmium was added as Cd(NO 3) 2 at a rate of 0-7.00 mg Cd kg (-1) soil. Shoot growth was not inhibited by Cd except for radish grown on RYS. A small amount of Cd stimulated growth of the vegetables. Cadmium concentration in edible parts of the vegetables generally increased with Cd concentration in soils but was higher in RYS than SLS. The distribution of Cd in pak choi and tomato decreased in the order root > shoot > fruit, but the order was shoot > root for radish. When Cd content in the edible parts reached maximum contaminant levels for safety food standards, the soil total Cd concentrations were 0.327 and 0.120 mg kg (-1) in RYS and 0.456 and 0.368 mg kg (-1) in SLS for pak choi stem and radish, respectively, whereas ammonium acetate-extractable Cd was 0.066 and 0.089 mg kg (-1) in RYS and 0.116 and 0.092 mg kg (-1) in SLS for pak choi leaf and tomato, respectively, based on food safety standards.  相似文献   

10.
Flavonoids and carotenoids of pigmented rice ( Oryza sativa L.), including five black cultivars and two red cultivars, from Korea were characterized to determine the diversity among the phytochemicals and to analyze the relationships among their contents. Black cultivars were higher in flavonoids and carotenoids than the red and white cultivars. The profiles of eight phytochemicals identified from the rice grains were subjected to principal component analysis (PCA) to evaluate the differences among cultivars. PCA could fully distinguish between these cultivars. The Heugjinjubyeo (BR-1) and Heugseolbyeo (BR-2) cultivars were separated from the others based on flavonoid and carotenoid concentrations. Flavonoid contents had a positive correlation with carotenoid contents among all rice grains. The BR-1 and BR-2 cultivars appear to be good candidates for future breeding programs because they have simultaneously high flavonoid and carotenoid contents.  相似文献   

11.
Crucifer species, which include widely consumed vegetables, contain glucosinolates as secondary metabolites. Cruciferous vegetables are consumed in Japan in salt-preserved or pickled form as well as cooked and raw fresh vegetables. In this study, changes in contents of glucosinolates during the pickling process were investigated. 4-Methylthio-3-butenyl glucosinolate, a major glucosinolate in the root of Japanese radish, daikon (Raphanus sativus L.), was detected in pickled products with a short maturation period but not in those with a long maturation period. As a model pickling experiment, fresh watercress (Nasturtium officinale) and blanched watercress were soaked in 3% NaCl solution for 7 days. The results showed that the ratio of indole glucosinolates to total glucosinolates increased during the pickling process, whereas total glucosinolates decreased. Myrosinase digestion of glucosinolates in nozawana (Brassica rapa L.) indicated that indole glucosinolates, especially 4-methoxyglucobrassicin, were relatively resistant to the enzyme. The effect of pickling on glucosinolate content and the possible mechanism are discussed in view of degradation by myrosinase and synthetic reaction in response to salt stress or compression during the pickling process.  相似文献   

12.
Brassica oleracea L. includes various types of important vegetables that show extremely diverse phenotypes. To elucidate the genetic diversity and relationships among commercial cultivars derived by different companies throughout the world, we characterized the diversity and genetic structure of 91 commercial B. oleracea cultivars belonging to six varietal groups, including cabbage, broccoli, cauliflower, kohlrabi, kale and kai-lan. We used 69 polymorphic microsatellite markers showing a total of 359 alleles with an average number of 5.20 alleles per locus. Polymorphism information content (PIC) values ranged from 0.06 to 0.73, with an average of 0.40. Among the six varietal groups, kohlrabi cultivars exhibited the highest heterozygosity level, whereas kale cultivars showed the lowest. Based on genetic similarity values, an UPGMA clustering dendrogram and a two-dimensional scale diagram (PCoA) were generated to analyze genetic diversity. The cultivars were clearly separated into six different clusters with a tendency to cluster into varietal groups. Model-based structure analysis revealed six genetic groups, in which cabbage cultivars were divided into two subgroups that were differentiated by their head shape, whereas cauliflower and kai-lan cultivars clustered together into a single group. Furthermore, we identified 18 SSR markers showing 27 unique alleles specific to only one cultivar that can be used to discriminate 22 cultivars from the others. Our phylogenetic and population structure analysis presents new insights into the genetic structure and relationships among 91 B. oleracea cultivars and provides valuable information for breeding of B. oleracea species. In addition, we demonstrate the utility of SSR markers as a powerful tool for discriminating between the cultivars. The SSR markers described herein will also be helpful for Distinctness, Uniformity and Stability (DUS) test of new cultivars.  相似文献   

13.
采用水培方法,探讨了小白菜(叶菜类)、黄瓜、豇豆(瓜果类)和萝卜(根茎类)幼苗对重金属Pb的吸收累积量大小及Pb对其幼苗生长发育的影响。结果表明,蔬菜幼苗根和茎叶累积Pb量均随Pb处理浓度的增加而显著增加(P〈0.05),且同一处理浓度下根中Pb含量远高于茎叶中Pb含量。蔬菜苗期根对Pb的敏感性排序为黄瓜〉小白菜〉萝卜〉豇豆,茎叶为小白菜〉萝卜〉黄瓜〉豇豆。低浓度的Pb对叶绿素的合成有一定程度的刺激作用,随Pb浓度增加,叶片中叶绿素含量降低。小白菜过氧化氢酶(CAT)含量随着Pb浓度的增大先增大后缓慢降低,其他3种蔬菜则表现为先减小后增大的趋势。此外,黄瓜和豇豆出芽率显著降低,4种蔬菜幼苗根长均明显受到抑制。  相似文献   

14.
石灰与磷肥可以降低华南5种常见蔬菜对镉的吸收量   总被引:7,自引:0,他引:7  
A pot experiment was conducted in artificially Cd-contaminated (5 mg Cd kg-1) soils to investigate the feasibility of using lime (3 g kg-1) or phosphate (80 mg P kg-1) to mitigate uptake of Cd by vegetables.Five common vegetables in South China,including lettuce (Lactuca sativa L.var.ramosa Hort.),Chinese cabbage [Brassica rapa L.subsp.Chinensis (L.) var.parachinensis (L.H.Bailey) Hanect],Chinese broccoli (Brassica oleracea L.var.albiflora Kuntze),white amaranth (Amaranthus tricolor L.) and purslane (Amaranthus viridis L.),were grown in the soils and harvested after 60 d.The results showed that liming significantly reduced Cd uptake by most vegetables by 40%-50% (or a maximum of 70%),mainly due to immobilization of soil Cd.Increased availability of Ca in the soil might also contribute to the Cd uptake reduction as a result of absorption competition between Ca and Cd.Liming caused biomass reduction in white amaranth and purslane,but did not influence growth of the other vegetables.Phosphate decreased Cd uptake by vegetables by 12%-23%.Compared with lime,phosphate decreased,to a smaller extent,the bioavailability of Cd in most cases.Phosphate markedly promoted growth of vegetables.Changes in soil chemistry by adding lime or phosphate did not markedly influence nutrient uptake of vegetables except that lime increased Ca content and phosphate increased P content in shoots of the vegetables.The results suggested that a proper application of lime could be effective in reducing Cd uptake of vegetables,and phosphate could promote growth of the vegetables as well as alleviate the toxicity of Cd.  相似文献   

15.
通过大田试验研究了不同施氮水平对蔬菜地土壤N2O排放的影响。试验设置5个氮水平[0(N0)、430(N1)、860(N2)、1290(N3)、1640(N4)kgN.hm-2],2a试验期间种植的蔬菜有辣椒、萝卜、菠菜和小白菜。结果表明,施氮显著影响N2O排放通量,各施氮水平土壤N2O排放通量范围分别为-8~39、0.4~157、12~626、8.5~982、16~1342μg.m-.2h-1;同时,氮肥施用显著提高了N2O排放总量,各施氮处理(N0、N1、N2、N3和N4)试验期间土壤N2O平均排放总量分别为0.48、1.35、4.49、7.83、10.57kgN.hm-2,土壤N2O排放系数范围是0.33%~1.13%,且施氮水平与土壤N2O排放总量间呈显著的指数函数关系;不同季节蔬菜地土壤N2O排放总量差异很大,其中最大的是辣椒,最小的是菠菜;此外,土壤N2O排放通量季节变化除受施氮水平影响外,还受土壤温度的影响,排放高峰出现在高温的夏季。  相似文献   

16.
氮肥形态和用量对蔬菜生长与硝态氮累积的影响   总被引:31,自引:0,他引:31  
Experiments were carried out on a vegetable field with Peking cabbage (Bvassica pekinensis (Lour.) Rupr.), cabbage (Bvassica chinensis var. oleifera Makino and nemoto), green cabbage (Brassica chinensis L.), spinach (Spinacia oleracea L.) and rape (Brassica campestris L.) to study the effects of N forms and N rates on their growth and nitrate accumulation. The results indicated that application of ammonium chloride, ammonium nitrate, sodium nitrate and urea significantly increased the yields and nitrate concentrations of Peking cabbage and spinach. Although no significant difference was found in the yields after application of the 4 N forms, nitrate N increased nitrate accumulation in vegetables much more than ammonium N. The vegetable yields were not increased continuously with N rate increase, and oversupply of N reduced the plant growth, leading to a yield decline. This trend was also true for nitrate concentrations in some vegetables and at some sampling times. However, as a whole, the nitrate concentrations in vegetables were positively correlated with N rates. Thus, addition of N fertilizer to soil was the major cause for increases in nitrate concentrations in vegetables. Nitrate concentrations were much higher in roots, stems and petioles than in blades at any N rate.  相似文献   

17.
Brassica vegetables and glucosinolates contained therein are supposed to reduce the risk of cancer and to possess health-promoting properties. The benefits of a Brassica-based diet may be particularly expressed by eating sprouts, in which the glucosinolate content is higher than in mature vegetables. With this in mind, a first objective of this study was to evaluate the antioxidant properties of radish (Raphanus sativus L.) sprouts (Kaiware Daikon) extract (KDE), in which the glucosinolate glucoraphasatin (GRH), showing some antioxidant activity, is present at 10.5% w/w. The contribution of GRH to KDE's antioxidant activity was considered in two chemical assays (Trolox equivalent antioxidant capacity and Briggs-Rauscher methods). The total phenol assay by Folin-Ciocalteu reagent was performed to quantify the reducing capacity of KDE. Finally, on the basis of the putative choleretic properties of antioxidant plant extracts, the effect on the bile flow of KDE administration was investigated in an animal experimental model. The findings showed that KDE has antioxidant properties and significantly induced bile flow in rats administered 1.5 g/kg of body weight for 4 consecutive days.  相似文献   

18.
产地环境中镉(Cd)对蔬菜的影响主要表现为蔬菜可食部分超标,高浓度时影响其生长发育,基于评述蔬菜幼苗对Cd的敏感性是按其对Cd的吸收累积量来排序,累积Cd量越高定义为该蔬菜幼苗对Cd越敏感,采用水培方法,探讨了Cd对小白菜(叶菜)、黄瓜、豇豆(果菜)和萝卜(根菜)幼苗吸收累积量及生长发育的影响。结果表明,蔬菜幼苗根和茎叶中累积Cd量均随Cd处理浓度的增加而显著增加(P〈0.05)。同一处理浓度下根中Cd含量远高于茎叶中Cd含量,根和茎叶对Cd的累积强弱顺序也即蔬菜苗期对Cd的敏感性排序为小白菜〉萝卜〉黄瓜〉豇豆;随Cd浓度增加,叶片中叶绿素含量降低,过氧化氢酶(CAT)含量升高;蔬菜出苗率、幼苗根长、植株鲜重显著降低。  相似文献   

19.
The responses of three cultivars of Chinese cabbage (Brassica chinensis L.), one of the main vegetable crops in China, to different ratios of NH4+-N/NO3--N was investigated to find the optimal ratio of ammonium to nitrate for maximal growth and to explore ways of decreasing the nitrate content, increasing nitrogen use efficiency of Chinese cabbage, and determining distributions of nitrogen and carbon. Three cultivars of Chinese cabbage were hydroponically grown with three different NH4+-N/NO3--N ratios (0:100, 25:75 and 50:50). The optimal ratio of NH4+-N/NO3--N for maximal growth of Chinese cabbage was 25:75. The increase in the ratio of NH4+-N/NO3--N significantly decreased nitrate content in various tissues of Chinese cabbage in the order of petiole > leaf blade > root. The highest total nitrogen (N) content was found when the ratio of NH4+-N/NO3--N was 25:75, and N contents in plant tissues were significantly different, mostly being in the order of leaf blade > petiole > root. At the NH4+-N/NO3--N ratio of 25:75, the biomasses of Chinese cabbage cultivars 'Shanghaiqing', 'Liangbaiye 1' and 'Kangre 605' increased by 47%, 14% and 27%, respectively. The biomass, SPAD chlorophyll meter readings and carbon content of 'Shanghaiqing' were all higher than those of 'Liangbaiye 1', while nitrate and total nitrogen contents were lower. Thus, partial replacement of nitrate by ammonium could improve vegetable production by both increasing yields and decreasing nitrate content of the plants.  相似文献   

20.
This research characterized flour and raw starches isolated from red and white sweet potato cultivars. Their composition, determined by proximate analysis, is typical of sweet potato cultivars. These cultivars have high amylose content (32-34%) and exhibit a Ca-type X-ray diffraction pattern. Similar gelatinization characteristics were detected for both starches with onset temperature of 67 degrees C and enthalpy of 10.5-11.0 J/g. Starches of both red and white cultivars had well-correlated (r (2) = 0.982) and high solubilization and swelling temperatures, starting at 80 degrees C. Pasting properties of the white cultivar exhibit lower tendency for retrogradation. Water and oil absorption capacities were low for both red and white flours. When parboiled, both cultivars showed improved water absorption capacity and decreased least gelation concentration. It is concluded that the white cultivar should be preferred when low retrogradation tendency is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号