首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fourteen calves were inoculated intranasally (i.n.) with the viral isolates as follows: 5 with 85/BH 16TV, 1 with 85/BH 17TV, 1 with 85/BH 18TV, 2 with 85/BH 231TN and 5 with 85/BH 232TN. Strain 85/BH 16TV was the only one which caused overt respiratory-like disease in all inoculated calves. Onset of the disease was observed after 7-8 days of incubation and was characterized by fever, depression, nasal discharge and coughing. Virus was isolated from the nasal swabbings of calves obtained from post-infection day (PID) 2-10. The other viral strains did not cause any sign of disease although virus was isolated regularly from the nasal swabbings of the inoculated calves. Virus was recovered from central nervous system tissues of calves that were infected with 85/BH 16TV or 85/BH 232TN strains and were killed on PID 4 or 8. Virus was also isolated from other tissues, such as lymph node, nasal mucosa (PID 8), or lung (PID 4). It was speculated that the nervous system could be one of the target areas of the virus of the naturally occurring infection by BHV-4. This might indicate a possible role of the nervous system (site of latency?) in the pathogenesis of BHV-4 as is the case in certain herpesviral infections of man and the lower animals.  相似文献   

2.
Two strains of Bovid herepesvirus-4 (BHV-4), i.e. the prototype strain DN-599, obtained from a steer suffering of a respiratory disease, and the strain 85/BH 16TV, originated from a cow with vulvovaginitis, were compared in studies which included restriction endonuclease analysis, experimental infection and reciprocal cross protection tests. The restriction endonuclease analysis revealed that the resultant DNA patterns of the isolates were generally similar with only a difference in one fragment. The two strains were capable of causing respiratory tract infection in calves, even if they displayed a different level of virulence: the strain 85/BH 16TV being the most virulent while the strain DN-599 the least. The two viral strains were mutually protective in that the calves were generally found to be refractory to challenge inoculation with either the homologous or the heterologous virus. Finally, both viral strains failed to evoke the production of neutralizing antibody in the experimental calves.  相似文献   

3.
Recrudescence of bovine herpesvirus-5 in experimentally infected calves   总被引:2,自引:0,他引:2  
A latent infection of bovine herpesvirus-5 (BHV-5) was established in 4 calves. These calves, plus 2 controls, were given dexamethasone (DM) to reactivate the latent virus. The 4 principal calves developed antibodies to BHV-5 by postinoculation day (PID) 21. Antibody titers increased until PID 42 before decreasing to low levels of PID 75. After the first DM treatment (started on PID 76), an anamnestic antibody response was demonstrated in the 4 principal calves. Calves, 2, 3, and 4 were euthanatized and necropsied at PID 121, and their antibody titers were again decreasing. The virus BHV-5 was not isolated from the tissues by conventional techniques of viral isolation but was isolated from the trigeminal ganglion and spinal cord of calf 3 by explantation techniques. The BHV-5 was isolated, using conventional viral isolation techniques, from a nasal swab sample of calf 1 on PID 91 (15 days after the first DM treatment) and from the thoracic lymph node 6 days after the start of a 2nd DM treatment. Seemingly, BHV-5 may be latently harbored in the nerve tissues or calves and this virus may be reactivated from the upper respiratory tract following subsequent DM treatment.  相似文献   

4.
The biology of bovine herpesvirus-4 (BHV-4) infection of cattle is reviewed. The infection is distributed worldwide. Most of isolated viruses are non-pathogenic in cattle; some of them are able to produce a genital disease. Twenty-nine structural polypeptides were described; ten of them are glycosylated. Two major glycoproteins were characterized by monoclonal antibodies. Restriction maps of BHV-4 DNA are available for the enzymes EcoRI, BamHi and HindIII. The strain variations studied by restriction analysis are very weak. The virus is able to persist in a latent state after primary infection. The identified sites of latency are nervous ganglia and mononuclear blood cells. The immune response of cattle after BHV-4 infection is characterized by low or undetectable levels of neutralizing antibodies. Four envelope proteins are recognized by convalescent sera and are the main antigenic components. Skin test remains negative in immunized cattle. Bovine herpesvirus-4 is not strictly species-specific: infection was proved in American bison (Bison bison), African buffalo (Syncerus caffer), sheep and probably cat, because feline herpesvirus-2 is in fact a BHV-4 strain. Finally BHV-4 shares antigenic and genomic relationships with alcelaphine herpesvirus-1, the causal agent of the African form of malignant catarrhal fever.  相似文献   

5.
A study was carried out to determine whether bovid herpesvirus-2 (BHV-2) is able to induce a recurrent infection in experimentally infected calves. Twelve calves infected with the virus were treated with dexamethasone (DMS) beginning 69 days after the infection, ie, several weeks after the animals had recovered from the disease and were negative for BHV-2. The stress induced by DMS treatment failed to reactivate the clinical condition or to induce shedding of BHV-2. However, treatment with DMS reactivated a latent infectious bovine rhinotracheitis (IBR) virus infection in all calves previously inoculated with BHV-2, and also in 2 noninoculated controls. The reactivation of IBR virus occurred without any clinical evidence of the disease, but the virus was isolated from nasal and pharyngeal swabbings and from the organs. A proliferative ganglionitis of the trigeminal ganglion was also observed. Because of the interference by IBR virus, this study did not resolve the question as to whether BHV-2 can induce a recurrent infection.  相似文献   

6.
Bovine viral diarrhea virus (BVDV) persistently infected (PI) calves represent significant sources of infection to susceptible cattle. The objectives of this study were to determine if PI calves transmitted infection to vaccinated and unvaccinated calves, to determine if BVDV vaccine strains could be differentiated from the PI field strains by subtyping molecular techniques, and if there were different rates of recovery from peripheral blood leukocytes (PBL) versus serums for acutely infected calves. Calves PI with BVDV1b were placed in pens with nonvaccinated and vaccinated calves for 35 d. Peripheral blood leukocytes, serums, and nasal swabs were collected for viral isolation and serology. In addition, transmission of Bovine herpes virus 1 (BHV-1), Parainfluenza-3 virus (PI-3V), and Bovine respiratory syncytial virus (BRSV) was monitored during the 35 d observation period. Bovine viral diarrhea virus subtype 1b was transmitted to both vaccinated and nonvaccinated calves, including BVDV1b seronegative and seropositive calves, after exposure to PI calves. There was evidence of transmission by viral isolation from PBL, nasal swabs, or both, and seroconversions to BVDV1b. For the unvaccinated calves, 83.2% seroconverted to BVDV1b. The high level of transmission by PI calves is illustrated by seroconversion rates of nonvaccinated calves in individual pens: 70% to 100% seroconversion to the BVDV1b. Bovine viral diarrhea virus was isolated from 45 out of 202 calves in this study. These included BVDV1b in ranch and order buyer (OB) calves, plus BVDV strains identified as vaccinal strains that were in modified live virus (MLV) vaccines given to half the OB calves 3 d prior to the study. The BVDV1b isolates in exposed calves were detected between collection days 7 and 21 after exposure to PI calves. Bovine viral diarrhea virus was recovered more frequently from PBL than serum in acutely infected calves. Bovine viral diarrhea virus was also isolated from the lungs of 2 of 7 calves that were dying with pulmonary lesions. Two of the calves dying with pneumonic lesions in the study had been BVDV1b viremic prior to death. Bovine viral diarrhea virus 1b was isolated from both calves that received the killed or MLV vaccines. There were cytopathic (CP) strains isolated from MLV vaccinated calves during the same time frame as the BVDV1b isolations. These viruses were typed by polymerase chain reaction (PCR) and genetic sequencing, and most CP were confirmed as vaccinal origin. A BVDV2 NCP strain was found in only 1 OB calf, on multiple collections, and the calf seroconverted to BVDV2. This virus was not identical to the BVDV2 CP 296 vaccine strain. The use of subtyping is required to differentiate vaccinal strains from the field strains. This study detected 2 different vaccine strains, the BVDV1b in PI calves and infected contact calves, and a heterologous BVDV2 subtype brought in as an acutely infected calf. The MLV vaccination, with BVDV1a and BVDV2 components, administered 3 d prior to exposure to PI calves did not protect 100% against BVDV1b viremias or nasal shedding. There were other agents associated with the bovine respiratory disease signs and lesions in this study including Mannheimia haemolytica, Mycoplasma spp., PI-3V, BRSV, and BHV-1.  相似文献   

7.
Three strains (479 C, 778 TL, 982 LE) of infectious bovine rhinotracheitis (IBR) virus isolated from latently infected calves were compared with the prototype strain of IBR virus (LA strain) in studies which included restriction endonuclease analysis, experimental infection, and reciprocal cross protection tests in cattle. From the restriction endonuclease analysis it appeared that the 3 "latent" viruses were derived from the same isolate, and that it differed slightly from the LA strain. However, latency does not seem to have affected the pathogenicity or the immunogenicity of the virus. This is demonstrated by the identical clinical and virologic response of calves subjected to experimental infection with the various strains under study, and by the finding that when the LA strain and a "latent" strain (982 LE) were tested in cross protection tests in cattle, they proved to be mutually protective.  相似文献   

8.
A serological comparison of some animal herpesviruses   总被引:3,自引:0,他引:3  
Bovine herpesvirus 1 (BHV-1) isolates (Cooper-type strain 4975 and Oxford) were compared in neutralization tests with the bovine herpesvirus 4 (BHV-4) isolate (85/16 TV) and the herpesviruses of red deer (D2839/1) and goats (E/CH). Hyperimmune antiserum was prepared in rabbits against the plaque-selected viruses and endpoint and kinetic neutralization test were made. BHV-4 was clearly different from the other four viruses. The closely-related BHV-1 strains were also related in these tests to the red deer herpesvirus. The Oxford strain seemed rather closer antigenically than the Cooper-type strain to the red deer herpesvirus. Antiserum to the caprine herpesvirus failed to neutralize either BHV-1 strain or red deer virus, but antiserum to the Cooper-type and red deer herpesviruses did neutralize caprine virus to a limited extent.  相似文献   

9.
Reference strains and field isolates of herpesviruses recovered from cattle in the United States were compared by restriction endonuclease (RE) analysis and the indirect fluorescent antibody test. As a result of these comparisons, 5 major biotypes of bovine herpesvirus (BHV) were defined. These types were (i) infectious bovine rhinotracheitis virus (BHV-1), (ii) bovine herpes mammillitis virus (BHV-2), (iii) malignant catarrhal fever (MCF) virus (herpesvirus alcelaphinae), (iv) the group of slow-growth isolates represented by the prototype strain Movar 33/63 (bovine cytomegalovirus candidate), and (v) the syncytia-forming Pennsylvania 47 strain. Bovine herpesvirus-1 and BHV-2 did not cross-react serologically with any other type of BHV tested. A low, but consistent level of serologic cross-reactivity was detected among MCF virus, the Movar group, and Pennsylvania 47. Several nonsyncytial, slow-growth strains, which were recovered from dissimilar clinical syndromes and were serologically related to Movar 33/63, exhibited similar DNA RE cleavage patterns, confirming their identity as members of a single type. There was no isolate from American domestic cattle similar to the African MCF virus, which has been sporadically isolated from exotic ruminants in the United States. The African MCF virus isolated during a MCF epizootic in a United States zoo exhibited some DNA RE cleavage differences in comparison with the MCF virus world prototype strain WC 11, indicating that strain diversity exists within this biotype.  相似文献   

10.
OBJECTIVE: To determine the efficacy of a modified-live virus vaccine containing bovine herpes virus 1 (BHV-1), bovine respiratory syncytial virus (BRSV), parainfluenza virus 3, and bovine viral diarrhea virus (BVDV) types 1 and 2 to induce neutralizing antibodies and cell-mediated immunity in na?ve cattle and protect against BHV-1 challenge. ANIMALS: 17 calves. PROCEDURES: 8 calves were mock-vaccinated with saline (0.9% NaCl) solution (control calves), and 9 calves were vaccinated at 15 to 16 weeks of age. All calves were challenged with BHV-1 25 weeks after vaccination. Neutralizing antibodies and T-cell responsiveness were tested on the day of vaccination and periodically after vaccination and BHV-1 challenge. Specific T-cell responses were evaluated by comparing CD25 upregulation and intracellular interferon-gamma expression by 5-color flow cytometry. Titration of BHV-1 in nasal secretions was performed daily after challenge. Results-Vaccinated calves seroconverted by week 4 after vaccination. Antigen-specific cell-mediated immune responses, by CD25 expression index, were significantly higher in vaccinated calves than control calves. Compared with control calves, antigen-specific interferon-gamma expression was significantly higher in calves during weeks 4 to 8 after vaccination, declining by week 24. After BHV-1 challenge, both neutralizing antibodies and T-cell responses of vaccinated calves had anamnestic responses to BHV-1. Vaccinated calves shed virus in nasal secretions at significantly lower titers for a shorter period and had significantly lower rectal temperatures than control calves. CONCLUSION AND CLINICAL RELEVANCE: A single dose of vaccine effectively induced humoral and cellular immune responses against BHV-1, BRSV, and BVDV types 1 and 2 and protected calves after BHV-1 challenge for 6 months after vaccination.  相似文献   

11.
Herpesviruses, previously isolated from cattle (Theodoridis, 1978), were further studied and provisionally placed in the bovid herpesvirus 4 (BHV-4) group. Major differences were found between IBR-IPV (BHV-1) and BHV-4 virus strains. In MDBK cells, all BHV-4 strains started growing at the edges of the culture, the process progressing slowly until destruction of the cells was complete by the 10th day. BHV-4 strains failed to induce neutralizing antibodies in cattle, goats and rabbits. Only the addition of mineral oil adjuvant induced neutralizing and complement fixing antibodies in goats. BHV-1 strains, in contrast, produced very potent antisera in all these systems. Cross-neutralization tests indicated the existence of 2 distinct serological groups representing BHV-1 and BHV-4. The BHV-4 strains appear to be interrelated and they could not be grouped. A BHV-1 strain showed fixation of complement with the antisera of 6 BHV-4 strains. Electron micrographs showed an accumulation of nucleocapsids in the cytoplasm and an early release of virus particles due to cell destruction. Variation in incubation temperature had a significant effect on the particle formation. At lower temperatures, the number of enveloped particles in the cytoplasm increased. On the basis of the characteristics uncovered in this study, it is possible that all the BHV-4 strains represent one and the same virus which has undergone certain biological changes, thus illustrating a phenomenon which appears to be a characteristic of the herpesviruses.  相似文献   

12.
Two calves were inoculated intravaginally with a strain of bovid herpesvirus type 1 (BHV-1, IBR/IPV) isolated from a cow with infectious pustular vulvovaginits (IPV). The animals were killed during a latent stage of infection as characterized by seroconversion, absence of virus shedding and recrudescence of virus shedding after dexamethsone treatment.IPV-virus DNA was detected in 9 out of 20 sacral ganglia of the 2 calves. Of the sections, 7.2% (n = 250) contained 1 cell with IPV-virus DNA, which was restricted to the nucleus of neurons. In agreement with findings on herpes simplex virus infections, the viral DNA of BHV-1 is harbored in the local sensory ganglia.Virological and serological implications of the latent IPV infection are discussed.  相似文献   

13.
The associations between herd bovine herpesvirus 1 (BHV-1) seroprevalence, along with other infectious and farm management factors with bovine respiratory disease (BRD) in dairy calves and heifers, were investigated. Serum samples from 103 dairy cattle herds were analyzed for antibodies against BHV-1, bovine respiratory syncytial virus (BRSV), bovine viral diarrhea virus (BVDV), and Mycoplasma bovis (M. bovis). A questionnaire was used to record herd management practices. A high occurrence of respiratory disease in unweaned calves was associated with low to moderate and high prevalence of BHV-1 among cows (OR=14.8, p=0.005 and OR=19.2, p=0.002, respectively) and positive BVDV status of a herd (OR=5.1, p=0.02). The presence of BVDV in a herd was related to a high incidence of respiratory disease in heifers 3-16 months old (OR=4.3, p=0.027). Based on the results of multiple correspondence analysis, holding youngstock separately from cows until pregnancy, introducing new animals and the activities of on-farm employees may contribute to a higher incidence of BRD.  相似文献   

14.
Three strains of herpesvirus were recovered from cows with vulvovaginitis. The three isolates (85/BH 16TV, 85/BH 17TV, 85/BH 18TV), when compared by cross serum neutralization (SN) tests, were found to be antigenically identical. They were serologically distinct from infectious bovine rhinotracheitis (IBR) virus and Bovid herpesvirus 2 (BHV2), while they cross reacted with bovine herpesvirus DN-599. Besides the serologic aspects, the three isolates appeared to share common biological, physical and morphological properties with the newly recognized bovine herpesviruses, of which DN-599 is a representative strain.  相似文献   

15.
In this work, a role for the genes encoding glycoproteins I (gI) and E (gE) and the US9 protein of bovine herpesvirus type 5 (BHV-5) in neuropathogenicity and reactivation of latent infections was examined. Calves infected intranasally with a gI/gE/US9 deleted recombinant shed up to 10(2.85) TCID50/ml infectious virus in nasal secretions. Calves infected with the wild type BHV-5 parental virus shed up to 10(5) TCID50/ml virus. No signs of disease were observed in calves infected with the recombinant virus, whereas those infected with wild type virus displayed respiratory and neurological signs. The recombinant was only able to reach the basal portions of the central nervous system. In contrast, wild type virus was found widespread within the brain. Reactivation with dexamethasone 60 days post-infection resulted in reactivation of wild type virus, whereas the recombinant virus could not be reactivated. These studies demonstrate that genes gI, gE and US9 of BHV-5 are important for its neuropathogenicity and its ability to reactive from latency.  相似文献   

16.
An investigation based on 2 studies was carried out to assess the involvement of bovine virus diarrhoea virus (BVDV), bovine herpesvirus type 1 (BHV-1), and bovine respiratory syncytial virus (BRSV) in calf respiratory disease in dairy farms in Venezuela. In the first study, 8 farms were selected and paired serum samples from 42 calves with respiratory disease were tested by ELISA for antibodies to the 3 viruses. Seroconversion to BVDV, BHV-1, and BRSV was found to 5, 2, and 6 farms out of the 8, respectively. The proportion of calves that showed seroconversion to BVDV, BHV-1, and BRSV were 19%, 14%, and 26%, respectively. In the second study, another farm having previous serological evidence of BVDV infection was selected. The decline of maternal antibodies against BVDV was monitored in 20 calves and the half-life of maternal antibodies was 34 +/- 12 days presumably indicating an early natural infection with BVDV. Furthermore, sera free of BVDV antibodies that were collected in studies 1 and 2 and were assayed for the presence of BVDV by nested RT-PCR. Two BVDV strains were detected and compared to those of ruminant and porcine pestiviruses. Both strains were assigned to subgroup Ib of type I BVDV. This investigation provides information on BVDV genotypes circulating in Venezuela and may contribute to the establishment of official control programmes against the viruses studied.  相似文献   

17.
The prevalence of bovine viral diarrhea virus (BVDV) infections was determined in a group of stocker calves suffering from acute respiratory disease. The calves were assembled after purchase from Tennessee auctions and transported to western Texas. Of the 120 calves, 105 (87.5%) were treated for respiratory disease. Sixteen calves died during the study (13.3%). The calves received a modified live virus BHV-1 vaccine on day 0 of the study. During the study, approximately 5 wk in duration, sera from the cattle, collected at weekly intervals, were tested for BVDV by cell culture. Sera were also tested for neutralizing antibodies to BVDV types 1 and 2, bovine herpesvirus-1 (BHV-1), parainfluenza-3 virus (PI-3V), and bovine respiratory syncytial virus (BRSV). The lungs from the 16 calves that died during the study were collected and examined by histopathology, and lung homogenates were inoculated onto cell cultures for virus isolation. There were no calves persistently infected with BVDV detected in the study, as no animals were viremic on day 0, nor were any animals viremic at the 2 subsequent serum collections. There were, however, 4 animals with BVDV type 1 noncytopathic (NCP) strains in the sera from subsequent collections. Viruses were isolated from 9 lungs: 7 with PI-3V, 1 with NCP BVDV type 1, and 1 with both BVHV-1 and BVDV. The predominant bacterial species isolated from these lungs was Pasteurella haemolytica serotype 1. There was serologic evidence of infection with BVDV types 1 and 2, PI-3V, and BRSV, as noted by seroconversion (> or = 4-fold rise in antibody titer) in day 0 to day 34 samples collected from the 104 survivors: 40/104 (38.5%) to BVDV type 1; 29/104 (27.9%) to BVDV type 2; 71/104 (68.3%) to PI-3V; and 81/104 (77.9%) to BRSV. In several cases, the BVDV type 2 antibody titers may have been due to crossreacting BVDV type 1 antibodies; however, in 7 calves the BVDV type 2 antibodies were higher, indicating BVDV type 2 infection. At the outset of the study, the 120 calves were at risk (susceptible to viral infections) on day 0 because they were seronegative to the viruses: 98/120 (81.7%), < 1:4 to BVDV type 1; 104/120 (86.7%) < 1:4 to BVDV type 2; 86/120 (71.7%) < 1:4 to PI-3V; 87/120 (72.5%) < 1:4 to BRSV; and 111/120 (92.5%) < 1:10 to BHV-1. The results of this study indicate that BVDV types 1 and 2 are involved in acute respiratory disease of calves with pneumonic pasteurellosis. The BVDV may be detected by virus isolation from sera and/or lung tissues and by serology. The BVDV infections occurred in conjunction with infections by other viruses associated with respiratory disease, namely, PI-3V and BRSV. These other viruses may occur singly or in combination with each other. Also, the study indicates that purchased calves may be highly susceptible, after weaning, to infections by BHV-1, BVDV types 1 and 2, PI-3V, and BRSV early in the marketing channel.  相似文献   

18.
19.
Four bovine herpesvirus-1 (BHV-1) commercial vaccines, three of which (vaccines B, D, E) were modified live vaccines (MLV) and one (vaccine A) identified as a live strain of BHV-1 gE negative, were used for vaccination of calves, using three calves for each vaccine. Three months after vaccination calves were subjected to dexamethasone (DMS) treatment following which virus was recovered from calves inoculated with vaccine B and from those given vaccine D. No virus reactivation was obtained in calves, which received vaccines A or E. The DNA extracted from the two reactivated viruses was subjected to restriction endonuclease analysis. The restriction pattern of the isolate obtained from calves vaccinated with vaccine D differs significantly from that of the original vaccine, whereas the reactivated virus from calves given vaccine B conserved the general pattern of the original vaccine strain. For each reactivated virus in this experiment (B and D) as well as for the isolate obtained from calves vaccinated with a further MLV (vaccine C) in a previous trial, three calves were inoculated. No clinical signs of disease were detected in any of the inoculated calves during the observation period. When the nine calves were exposed 40 days later to challenge infection with virulent BHV-1, they remained healthy and no virus was isolated from their nasal swabbings. These results indicate that some BHV-1 vaccines considered in the project can establish latency in the vaccinated calves, however, the latency does not appear to interfere with the original properties of the vaccines in terms of safety and efficacy.  相似文献   

20.
The prevalence of bovine viral diarrhea virus (BVDV) infections was determined in 2 groups of stocker calves with acute respiratory disease. Both studies used calves assembled after purchase from auction markets by an order buyer and transported to feedyards, where they were held for approximately 30 d. In 1 study, the calves were mixed with fresh ranch calves from a single ranch. During the studies, at day 0 and at weekly intervals, blood was collected for viral antibody testing and virus isolation from peripheral blood leukocytes (PBLs), and nasal swabs were taken for virus isolation. Samples from sick calves were also collected. Serum was tested for antibodies to bovine herpesvirus-1 (BHV-1), BVDV1a, 1b, and 2, parainfluenza 3 virus (PI3V), and bovine respiratory syncytial virus (BRSV). The lungs from the calves that died during the studies were examined histopathologically, and viral and bacterial isolation was performed on lung homogenates. BVDV was isolated from calves in both studies; the predominant biotype was noncytopathic (NCP). Differential polymerase chain reaction (PCR) and nucleic acid sequencing showed the predominant subtype to be BVDV1b in both studies. In 1999, NCP BVDV1b was detected in numerous samples over time from 1 persistently infected calf; the calf did not seroconvert to BVDV1a or BVDV2. In both studies, BVDV was isolated from the serum, PBLs, and nasal swabs of the calves, and in the 1999 study, it was isolated from lung tissue at necropsy. BVDV was demonstrated serologically and by virus isolation to be a contributing factor in respiratory disease. It was isolated more frequently from sick calves than healthy calves, by both pen and total number of calves. BVDV1a and BVDV2 seroconversions were related to sickness in selected pens and total number of calves. In the 1999 study, BVDV-infected calves were treated longer than noninfected calves (5.643 vs 4.639 d; P = 0.0902). There was a limited number of BVDV1a isolates and, with BVDV1b used in the virus neutralization test for antibodies in seroconverting calves' serum, BVDV1b titers were higher than BVDV1a titers. This study indicates that BVDV1 strains are involved in acute respiratory disease of calves with pneumonic Mannheimia haemolytica and Pasteurella multocida disease. The BVDV2 antibodies may be due to cross-reactions, as typing of the BVDV strains revealed BVDV1b or 1a but not BVDV2. The BVDV1b subtype has considerable implications, as, with 1 exception, all vaccines licensed in the United States contain BVDV1a, a strain with different antigenic properties. BVDV1b potentially could infect BVDV1a-vaccinated calves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号