首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
ObjectiveTo analyse avian anaesthesia-related mortality in a UK zoological collection over a 5-year period and identify risk factors for mortality.Study designRetrospective cohort study.AnimalsA total of 135 individual birds across 37 species, anaesthetized during 206 events in a UK zoological collection between 1 January 2014 and 30 June 2019 (inclusive).MethodsAnaesthesia records were reviewed and variables such as age, body condition, weight, sex, duration of anaesthesia and health status were collated. Anaesthesia-related mortality was defined as those deaths occurring during anaesthesia and up to 7 days postanaesthesia. Outcome was analysed using multivariable conditional logistic regression. Overall mortality was defined and included birds euthanised during anaesthesia for non-anaesthesia related reasons. Data were summarised as median (range). A value of p < 0.05 was considered significant. Relative risks and 95% confidence intervals (95% CI) were calculated for the association between risk factors and anaesthetic death where a statistically significant difference was found.ResultsThe overall mortality rate was 10.19% (95% CI = 6.06–14.3%), while anaesthesia-related mortality was 3.88% (95% CI = 1.69–7.51%). Birds with an abnormal health status had a 15.53-fold (95% CI = 1.95–123.63) increased risk of death compared with those with a normal health status. The duration of anaesthesia was also a statistically significant risk factor (p = 0.021) in the univariable analysis, but not when combined with health status. No other variables were associated with anaesthesia-related mortality.Conclusions and clinical relevanceAbnormal health status and longer anaesthetic procedures were associated with a significantly increased risk of anaesthesia-related death in this population of birds. It is recommended that anaesthetic duration is minimized, and pre-existing diseases are diagnosed where possible prior to general anaesthesia of birds. Anaesthetizing healthy birds was associated with a low risk of mortality.  相似文献   

2.
ObjectiveTo determine the alfaxalone dose reduction during total intravenous anaesthesia (TIVA) when combined with ketamine or midazolam constant rate infusions and to assess recovery quality in healthy dogs.Study designProspective, blinded clinical study.AnimalsA group of 33 healthy, client-owned dogs subjected to dental procedures.MethodsAfter premedication with intramuscular acepromazine 0.05 mg kg-1 and methadone 0.3 mg kg-1, anaesthetic induction started with intravenous alfaxalone 0.5 mg kg-1 followed by either lactated Ringer’s solution (0.04 mL kg-1, group A), ketamine (2 mg kg-1, group AK) or midazolam (0.2 mg kg-1, group AM) and completed with alfaxalone until endotracheal intubation was achieved. Anaesthesia was maintained with alfaxalone (6 mg kg-1 hour-1), adjusted (±20%) every 5 minutes to maintain a suitable level of anaesthesia. Ketamine (0.6 mg kg-1 hour-1) or midazolam (0.4 mg kg-1 hour-1) were employed for anaesthetic maintenance in groups AK and AM, respectively. Physiological variables were monitored during anaesthesia. Times from alfaxalone discontinuation to extubation, sternal recumbency and standing position were calculated. Recovery quality and incidence of adverse events were recorded. Groups were compared using parametric analysis of variance and nonparametric (Kruskal-Wallis, Chi-square, Fisher’s exact) tests as appropriate, p < 0.05.ResultsMidazolam significantly reduced alfaxalone induction and maintenance doses (46%; p = 0.034 and 32%, p = 0.012, respectively), whereas ketamine only reduced the alfaxalone induction dose (30%; p = 0.010). Recovery quality was unacceptable in nine dogs in group A, three dogs in group AK and three dogs in group AM.Conclusions and clinical relevanceMidazolam, but not ketamine, reduced the alfaxalone infusion rate, and both co-adjuvant drugs reduced the alfaxalone induction dose. Alfaxalone TIVA allowed anaesthetic maintenance for dental procedures in dogs, but the quality of anaesthetic recovery remained unacceptable irrespective of its combination with ketamine or midazolam.  相似文献   

3.
ObjectiveTo investigate if anaesthesia for canine cancer mastectomy further influences host cell-mediated immunity (CMI) promoting cancer progression.Study designA randomized, controlled, blinded clinical study.AnimalsA total of 20 bitches with malignant mammary tumours of clinical stage II or III undergoing the same type of mastectomy (regional mastectomy).MethodsDogs were randomly allocated to one of two anaesthetic groups (10 per group). The anaesthetic protocol of group A used minimally immunosuppressive drugs (tramadol, robenacoxib, propofol), whereas that of group B (control) used more immunosuppressive drugs (morphine, fentanyl, thiopental, isoflurane). For each animal, measurements of white blood cells (WBCs), neutrophils and lymphocytes, and flow cytometric assessment of T cells (CD3+), helper T cells (CD4+), cytotoxic T cells (CD8+) and CD5low+ T cells were performed prior to anaesthesia (day 0) and on days 3 and 10 postsurgery. Data were analysed using a General Linear Model for repeated measures and presented as mean ± standard deviation, p ≤ 0.05.ResultsIn all animals, on day 3, WBCs and neutrophils were significantly increased (p < 0.0005), while flow cytometry revealed significantly decreased relative percentages of T cells (CD3+) (p = 0.003) and their subpopulations CD4+ (p = 0.006), CD8+ (p = 0.029) and CD5low+ (p = 0.031). Specifically, on day 3, the cytotoxic T cells (CD8+) were significantly decreased (p = 0.05) only in group B, whereas the CD4+ (p = 0.006) and CD5low+ (p = 0.008) T cells in group A. The only significant difference between groups was found preoperatively in the CD4+/CD8+ ratio, which was higher in group A (p = 0.006).Conclusions and clinical relevanceIn dogs with mammary cancer undergoing regional mastectomy, a significant decrease in components of CMI was observed on day 3 postsurgery in both anaesthetic groups. Some indication, however, for better preserved cellular immunity by less immunosuppressive anaesthetic/analgesic drugs was detected, rendering their use advisable.  相似文献   

4.
ObjectiveTo compare the recovery after anaesthesia with isoflurane, sevoflurane and desflurane in dogs undergoing magnetic resonance imaging (MRI) of the brain.Study designProspective, randomized clinical trial.AnimalsThirty‐eight dogs weighing 23.7 ± 12.6 kg.MethodsFollowing pre‐medication with meperidine, 3 mg kg?1 administered intramuscularly, anaesthesia was induced intravenously with propofol (mean dose 4.26 ± 1.3 mg kg?1), the trachea was intubated, and an inhalational anaesthetic agent was administered in oxygen. The dogs were randomly allocated to one of three groups: group I (n = 13) received isoflurane, group S (n = 12) received sevoflurane and group D (n = 13) received desflurane. Parameters recorded included cardiopulmonary data, body temperature, end‐tidal anaesthetic concentration, duration of anaesthesia, and recovery times and quality. Qualitative data were compared using chi‐squared and Fisher's exact tests and quantitative data with anova and Kruskal–Wallis test. Post‐hoc comparisons for quantitative data were undertaken with the Mann–Whitney U‐test.ResultsThe duration of anaesthesia [mean and standard deviation (SD)] in group I was: 105.3 (27.48) minutes, group S: 120.67 (19.4) minutes, and group D: 113.69 (26.68) minutes (p = 0.32). Times to extubation [group I: 8 minutes, (interquartile range 6–9.5), group S: 7 minutes (IQR 5–7), group D: 5 minutes (IQR 3.5–7), p = 0.017] and to sternal recumbency [group I: 11 minutes (IQR 9.5–13.5), group S: 9.5 minutes (IQR 7.25–11.75), group D: 7 minutes (range 3.5–11.5), p = 0.048] were significantly different, as were times to standing. One dog, following sevoflurane, had an unacceptable quality of recovery, but most other recoveries were calm, with no significant difference between groups.Conclusions and clinical relevanceAll three agents appeared suitable for use. Dogs’ tracheas were extubated and the dogs recovered to sternal recumbency most rapidly after desflurane. This may be advantageous for animals with some neurological diseases and for day case procedures.  相似文献   

5.
6.
ObjectiveTo compare effects of intravenous (IV) alfaxalone with ketamine–xylazine combination on anaesthetic induction, recovery and cardiopulmonary variables in mute swans.Study designRandomized, controlled, clinical study.AnimalsA group of 58 mute swans.MethodsSwans were given either alfaxalone (10 mg kg–1; group A) or a combination of ketamine (12.5 mg kg–1) and xylazine (0.28 mg kg–1) (group KX) IV. Heart and respiratory rates, end-tidal carbon dioxide and peripheral haemoglobin oxygen saturation were recorded at 5 minute intervals during anaesthesia. Time from anaesthetic induction to intubation, from cessation of isoflurane to extubation, to lifting head, sternal recumbency and absence of head/neck ataxia were recorded. Anaesthetic and recovery quality were scored (1 = very poor; 5 = excellent). Data are presented as median (interquartile range). Significance was set at p < 0.05.ResultsIn group A, 44% (12/27) of swans required mechanical ventilation for 2–14 minutes versus 3.2% (1/31) of swans in group KX (p = 0.0002). Heart rate was higher in group A than in group KX [146 (127–168) versus 65.5 (56–78) beats minute–1, respectively; p < 0.0001]. The isoflurane concentration required to maintain anaesthesia was higher in group A than in group KX [2.5% (2.0–3.0%) versus 1.5% (1.0–2.0%), respectively; p = 0.0001]. Time from cessation of isoflurane administration to lifting head was significantly longer in group A than in group KX [12 (9–17) versus 6 (4–7.75) minutes, respectively; p < 0.0001]. Anaesthesia quality scores were significantly better in group KX than in group A [4 (4–5) versus 4 (3–4), respectively; p = 0.0011], as were recovery scores [4 (3–5) versus 2 (2–3), respectively; p = 0.0005].Conclusions and clinical relevanceAlfaxalone is a suitable anaesthetic induction agent for use in mute swans. There is a greater incidence of postinduction apnoea and a higher incidence of agitation on recovery with alfaxalone than with ketamine–xylazine.  相似文献   

7.
8.
AIMS: To survey current anaesthesia practices for dogs and cats in small and mixed animal practices in New Zealand in order to improve anaesthesia education.

METHODS: A questionnaire was sent to 440 small and mixed animal practices, including questions regarding the type of practice, preanaesthetic examination, anaesthetic drugs and management, anaesthetic machines, monitoring and topics of interest for continuing professional development.

RESULTS: Responses were obtained from 113/440 (26%) practices, with 78 (69%) respondents from small and 35 (31%) from mixed animal practices. A preanaesthetic physical examination was carried out by >95% of respondents and premedication was usually given to dogs (112/113; 99%) and cats (95/113; 85%). Acepromazine was the preferred sedative for dogs and cats, with morphine or buprenorphine. Propofol and alfaxalone were the preferred induction agents, and isoflurane was preferred for maintenance in both dogs and cats. A venous catheter was usually placed for anaesthesia in dogs (59/113; 52%), but less so in cats (39/113; 35%). Perioperative fluid was administered at 10?mL/kg/hour by 62/110 (56%) respondents. Intubation was usually used for anaesthesia in dogs (111/112; 99%), and cats (87/112; 78%). Almost 40% of respondents usually administered supplementary oxygen if patients were not intubated. Local analgesia was used by 69/111 (88%) respondents sometimes or always if applicable. Morphine or buprenorphine, and meloxicam were common choices for post-operative analgesia after neuter surgery in dogs and cats. A semiclosed (non-rebreathing) system was used in animals weighing <10?kg, and a Mapleson E or F non-rebreathing circuit was used by 66/109 (61%) practices. Only 15/111 (14%) practices had a ventilator in their practice. A dedicated anaesthetist was usually used by 104/113 (92%) practices, and apnoea alarms, pulse oximeters, thermometers and oesophageal stethoscopes were the main monitoring devices available in practices. Loco-regional block, pain management, and anaesthetic drugs were the main topics of interest for continuing education.

CONCLUSIONS AND CLINICAL RELEVANCE: Responses by the veterinarians taking part in this survey indicated that they had a reasonably good standard of anaesthetic practice. A physical examination was carried out preanaesthesia, and premedication including analgesia was routinely administered to most patients. A dedicated anaesthetist usually monitored patients and most respondents reported they had access to basic anaesthetic monitoring equipment. Areas where changes could lead to improved anaesthetic practice were increased use of I/V catheterisation, endotracheal intubation, and supplementary oxygen, and reduced I/V fluid rates.  相似文献   

9.
ObjectiveTo compare breathing patterns and transdiaphragmatic pressure during total intravenous (TIVA) and isoflurane anaesthesia in ponies.Study designExperimental, cross–over study.AnimalsSix healthy ponies weighing 286 (233–388) ± 61 kg, age 13 (9–16) ± 3 years.MethodsFollowing premedication with romifidine [80 μg kg?1 intravenously (IV)], general anaesthesia was induced with midazolam (0.06 mg kg?1 IV) and ketamine (2.5 mg kg?1 IV) and maintained with either isoflurane (Fe’Iso = 1.1%) (T-ISO) or an IV combination of romifidine (120 μg kg?1 per hour), midazolam (0.09 mg kg?1 hour?1) and ketamine (3.3 mg kg?1 hour?1) (T-TIVA), while breathing 60% oxygen (FIO2). The circumference changes of the rib cage (RC) and abdominal compartment (ABD) were recorded using respiratory ultrasonic plethysmography (RUP). Balloon tipped catheters were placed in the distal oesophagus and the stomach and maximal transdiaphragmatic pressure (Pdi max) was calculated during Mueller's manoeuvre.ResultsThe breathing pattern T-ISO was more regular and respiratory rate significantly lower compared with T-TIVA. Ponies in T-TIVA showed regularly appearing sighs, which were never observed in T-ISO. Different contribution of the RC and ABD compartments to the breathing pattern was observed with a smaller participation of the RC to the total volume change during T-ISO. Transdiaphragmatic pressures (mean 13.7 ± SD 8.61 versus 23.4 ± 7.27 cmH2O, p < 0.0001) were higher in T-TIVA compared to T-ISO. The sum of the RC and ABD circumferential changes was lower during T-TIVA compared to T-ISO (6.32 ± 4.42 versus 11.72 ± 4.38 units, p < 0.0001).Conclusion and clinical relevanceMarked differences in breathing pattern and transdiaphragmatic pressure exist during inhalation- and TIVA and these should be taken into account for clinical estimation of anaesthetic depth.  相似文献   

10.
ObjectiveTo evaluate the effects of detomidine or romifidine on cardiovascular function, isoflurane requirements and recovery quality in horses undergoing isoflurane anaesthesia.Study designProspective, randomized, blinded, clinical study.AnimalsA total of 63 healthy horses undergoing elective surgery during general anaesthesia.MethodsHorses were randomly allocated to three groups of 21 animals each. In group R, horses were given romifidine intravenously (IV) for premedication (80 μg kg–1), maintenance (40 μg kg–1 hour–1) and before recovery (20 μg kg–1). In group D2.5, horses were given detomidine IV for premedication (15 μg kg–1), maintenance (5 μg kg–1 hour–1) and before recovery (2.5 μg kg–1). In group D5, horses were given the same doses of detomidine IV for premedication and maintenance but 5 μg kg–1 prior to recovery. Premedication was combined with morphine IV (0.1 mg kg–1) in all groups. Cardiovascular and blood gas variables, expired fraction of isoflurane (Fe′Iso), dobutamine or ketamine requirements, recovery times, recovery events scores (from sternal to standing position) and visual analogue scale (VAS) were compared between groups using either anova followed by Tukey, Kruskal-Wallis followed by Bonferroni or chi-square tests, as appropriate (p < 0.05).ResultsNo significant differences were observed between groups for Fe′Iso, dobutamine or ketamine requirements and recovery times. Cardiovascular and blood gas measurements remained within physiological ranges for all groups. Group D5 horses had significantly worse scores for balance and coordination (p = 0.002), overall impression (p = 0.021) and final score (p = 0.008) than group R horses and significantly worse mean scores for VAS than the other groups (p = 0.002).Conclusions and clinical relevanceDetomidine or romifidine constant rate infusion provided similar conditions for maintenance of anaesthesia. Higher doses of detomidine at the end of anaesthesia might decrease the recovery quality.  相似文献   

11.
ObjectiveTo estimate the incidence of raised cTnI after general anaesthesia in dogs and to explore major risk factors influencing this.Study designProspective clinical study.AnimalsA total of 107 (ASA physical status 1?2) dogs, 63% male and 37% female, median age 5 years (range 0.3–13.4), median weight 24.4 kg (range 4.2–66.5 kg) undergoing anaesthesia for clinical purposes.MethodsVenous blood samples were taken within 24 hours prior to induction and 24 hours after the termination of anaesthesia. Serum concentrations of cardiac troponin I were measured using a chemiluminescent enzyme immunometric assay with a lower level of detection of 0.20 ng mL?1 (below this level <0.20 ng mL?1). Continuous data were assessed graphically for normality and paired and unpaired data compared with the Wilcoxon signed ranks and Mann–Whitney U‐tests respectively. Categorical data were compared with the Chi squared or Fisher’s exact test as appropriate (p < 0.05).ResultsOf the 107 dogs recruited, 100 had pre‐ and post‐anaesthetic cTnI measured. The median pre‐anaesthesia cTnI was ‘<0.20’ ng mL?1 (range ‘<0.20’–0.43 ng mL?1) and the median increase from pre‐anaesthesia level was 0.00 ng mL?1 (range ?0.12 to 0.61 ng mL?1). Fourteen dogs had increased cTnI after anaesthesia relative to pre‐anaesthesia (14%, 95% CI 7.2–20.8%, range of increase 0.03–0.61 ng mL?1). Six animals had cTnI levels that decreased (range 0.02–0.12 ng mL?1). Older dogs were more likely to have increased cTnI prior to anaesthesia (OR = 5.32, 95% CI 1.35–21.0, p = 0.007) and dogs 8 years and over were 3.6 times as likely to have an increased cTnI after anaesthesia (95% CI 1.1–12.4, p = 0.028).Conclusion and clinical relevanceIncreased cTnI after anaesthesia relative to pre‐anaesthesia levels was observed in a number of apparently healthy dogs undergoing routine anaesthesia.  相似文献   

12.
ObjectiveTo compare isoflurane alone or in combination with systemic ketamine and lidocaine for general anaesthesia in horses.Study designProspective, randomized, blinded clinical trial.AnimalsForty horses (ASA I-III) undergoing elective surgery.MethodsHorses were assigned to receive isoflurane anaesthesia alone (ISO) or with ketamine and lidocaine (LKI). After receiving romifidine, diazepam, and ketamine, the isoflurane end-tidal concentration was set at 1.3% and subsequently adjusted by the anaesthetist (unaware of treatments) to maintain a light plane of surgical anaesthesia. Animals in the LKI group received lidocaine (1.5 mg kg−1 over 10 minutes, followed by 40 μg kg−1 minute−1) and ketamine (60 μg kg−1 minute−1), both reduced to 65% of the initial dose after 50 minutes, and stopped 15 minutes before the end of anaesthesia. Standard clinical cardiovascular and respiratory parameters were monitored. Recovery quality was scored from one (very good) to five (very poor). Differences between ISO and LKI groups were analysed with a two-sample t-test for parametric data or a Fischer's exact test for proportions (p < 0.05 for significance). Results are mean ± SD.ResultsHeart rate was lower (p = 0.001) for LKI (29 ± 4) than for ISO (34 ± 6). End-tidal concentrations of isoflurane (ISO: 1.57% ± 0.22; LKI: 0.97% ± 0.33), the number of horses requiring thiopental (ISO: 10; LKI: 2) or dobutamine (ISO:8; LKI:3), and dobutamine infusion rates (ISO:0.26 ± 0.09; LKI:0.18 ± 0.06 μg kg−1 minute−1) were significantly lower in LKI compared to the ISO group (p < 0.001). No other significant differences were found, including recovery scores.Conclusions and clinical relevanceThese results support the use of lidocaine and ketamine to improve anaesthetic and cardiovascular stability during isoflurane anaesthesia lasting up to 2 hours in mechanically ventilated horses, with comparable quality of recovery.  相似文献   

13.
ObjectiveTo determine the haemodynamic effects of halothane and isoflurane with spontaneous and controlled ventilation in dorsally recumbent horses undergoing elective surgery.Study designProspective randomized clinical trial.AnimalsTwenty-five adult horses, body mass 487 kg (range: 267–690).MethodsHorses undergoing elective surgery in dorsal recumbency were randomly assigned to one of four treatment groups, isoflurane (I) or halothane (H) anaesthesia, each with spontaneous (SB) or controlled ventilation (IPPV). Indices of cardiac function and femoral arterial blood flow (ABF) and resistance were measured using transoesophageal and transcutaneous Doppler echocardiography, respectively. Arterial blood pressure was measured directly.ResultsFour horses assigned to receive isoflurane and spontaneous ventilation (SBI) required IPPV, leaving only three groups for analysis: SBH, IPPVH and IPPVI. Two horses were excluded from the halothane groups because dobutamine was infused to maintain arterial blood pressure. Cardiac index (CI) was significantly greater, and pre-ejection period (PEP) shorter, during isoflurane compared with halothane anaesthesia with both spontaneous (p = 0.04, p = 0.0006, respectively) or controlled ventilation (p = 0.04, p = 0.008, respectively). There was an association between CI and PaCO2 (p = 0.04) such that CI increased by 0.45 L minute−1m−2 for every kPa increase in PaCO2. Femoral ABF was only significantly higher during isoflurane compared with halothane anaesthesia during IPPV (p = 0.0006). There was a significant temporal decrease in CI, but not femoral arterial flow.ConclusionThe previously reported superior cardiovascular function during isoflurane compared with halothane anaesthesia was maintained in horses undergoing surgery. However, in these clinical subjects, a progressive decrease in CI, which was independent of ventilatory mode, was observed with both anaesthetic agents.Clinical relevanceCardiovascular function may deteriorate progressively in horses anaesthetized for brief (<2 hours) surgical procedures in dorsal recumbency. Although cardiovascular function is superior with isoflurane in dorsally recumbent horses, the need for IPPV may be greater.  相似文献   

14.
OBJECTIVE: To ascertain anaesthetic practices currently for dogs and cats in Australia. METHODS: A questionnaire was distributed to 4,800 veterinarians throughout Australia, seeking data on numbers of dogs and cats anaesthetised per week; drug preferences for anaesthetic premedication, induction and maintenance; use of tracheal intubation, supplemental nitrous oxide and anaesthetic antagonists; and types of vaporisers, breathing systems and anaesthetic monitoring devices used or available. Additional questions concerned proportions of different animal types seen in the practice, and the respondent's university and year of graduation. RESULTS: The response rate was 19%; 95% of respondents graduated from Australian universities, about half since 1985. Most responses (79%) came from mainly small animal practices. On average 16 dogs and 12 cats were anaesthetised each week. Premedication was used more often in dogs than cats, with acepromazine and atropine most favoured in both species. For anaesthetic induction, thiopentone was most preferred in dogs and alphaxalone/alphadolone in cats. Inhaled agents, especially halothane, were preferred for maintenance in both species. Most respondents usually employed tracheal intubation when using inhalational anaesthetic maintenance, but intubation rates were lower during injectable anaesthetic maintenance and a minority of respondents provided supplemental O2. Nitrous oxide was administered regularly by 13% of respondents. The agents most frequently used to speed recovery from anaesthesia were doxapram and yohimbine. The most widely used vaporisers were the Fluotec Mark III and the Stephens machine. Most (95%) respondents used a rebreathing circuit for large dogs and a non-rebreathing system was used for small dogs by 68% of respondents. Most respondents (93%) indicated some form of aid was available to monitor general anaesthesia: the three most mentioned were an apnoea alarm, oesophageal stethoscope and electrocardiogram. CONCLUSION: Diverse approaches were evident, but there appeared to be less variation in anaesthetising dogs: premedication was more frequent and less varied in type, while thiobarbituates dominated for induction and inhalants for maintenance. Injectable maintenance techniques had substantial use in cats, but little in dogs. Evident disparity between vaporisers available and circuits used suggested either confusion in terminology or incorrect use of some vaporisers in-circuit. While most respondents used monitoring equipment or a dedicated observer to invigilate anaesthesia, the common reliance on apnoea alarms is of concern, because of unproven reliability and accuracy.  相似文献   

15.
ObjectiveTo compare the ease of endoscopic duodenal intubation (EDI) in dogs during maintenance of general anaesthesia with isoflurane or propofol infusion.Study designProspective, randomized, partially blinded clinical trial.AnimalsA total of 22 dogs undergoing upper gastrointestinal tract endoscopy to include EDI were recruited.MethodsDogs were randomly assigned isoflurane (ISO; n = 10) or propofol (PROP; n = 11) for maintenance of general anaesthesia. Following anaesthetic premedication with intramuscular medetomidine (0.005 mg kg–1) and butorphanol (0.2 mg kg–1), general anaesthesia was induced with propofol, to effect, maintained with 1.5% (vaporizer setting) isoflurane in 100% oxygen or 0.2 mg kg–1 minute–1 propofol. The dose of both agents was adjusted to maintain general anaesthesia adequate for the procedure. Degree of sedation 20 minutes post-anaesthetic premedication, propofol induction dose, anaesthetist and endoscopist training grade, animal’s response to endoscopy, presence of gastro-oesophageal and duodenal-gastric reflux, spontaneous opening of the lower oesophageal and pyloric sphincters, antral movement and time to achieve EDI were recorded. EDI was scored 1 (immediate entry with minimal manoeuvring) to 4 (no entry after 120 seconds) by the endoscopist, blinded to the agent in use. Data were tested for normality (Shapiro-Wilk test) and differences between groups analysed using independent t test, Mann-Whitney U test and Fisher’s exact test as appropriate.ResultsThere were no significant differences between groups for EDI score [median (interquartile range): 2 (3) ISO, 2 (3) PROP] or time to achieve EDI [mean ± standard deviation: 52.50 ± 107.00 seconds (ISO), 70.00 ± 196.00 seconds (PROP)]. Significantly more dogs responded to passage of the endoscope into the oesophagus in group PROP compared with group ISO (p = 0.01).Conclusions and clinical relevanceMaintenance of general anaesthesia with either isoflurane or propofol did not affect EDI score or time to achieve EDI.  相似文献   

16.
ObjectiveTo describe alfaxalone total intravenous anaesthesia (TIVA) following premedication with buprenorphine and either acepromazine (ACP) or dexmedetomidine (DEX) in bitches undergoing ovariohysterectomy.Study designProspective, randomised, clinical study.AnimalsThirty-eight healthy female dogs.MethodsFollowing intramuscular buprenorphine (20 μg kg?1) and acepromazine (0.05 mg kg?1) or dexmedetomidine (approximately 10 μg kg?1, adjusted for body surface area), anaesthesia was induced and maintained with intravenous alfaxalone. Oxygen was administered via a suitable anaesthetic circuit. Alfaxalone infusion rate (initially 0.07 mg kg?1 minute?1) was adjusted to maintain adequate anaesthetic depth based on clinical assessment. Alfaxalone boluses were given if required. Ventilation was assisted if necessary. Alfaxalone dose and physiologic parameters were recorded every 5 minutes. Depth of sedation after premedication, induction quality and recovery duration and quality were scored. A Student's t-test, Mann–Whitney U and Chi-squared tests determined the significance of differences between groups. Data are presented as mean ± SD or median (range). Significance was defined as p < 0.05.ResultsThere were no differences between groups in demographics; induction quality; induction (1.5 ± 0.57 mg kg?1) and total bolus doses [1.2 (0 – 6.3) mg kg?1] of alfaxalone; anaesthesia duration (131 ± 18 minutes); or time to extubation [16.6 (3–50) minutes]. DEX dogs were more sedated than ACP dogs. Alfaxalone infusion rate was significantly lower in DEX [0.08 (0.06–0.19) mg kg?1 minute?1] than ACP dogs [0.11 (0.07–0.33) mg kg?1 minute?1]. Cardiovascular variables increased significantly during ovarian and cervical ligation and wound closure compared to baseline values in both groups. Apnoea and hypoventilation were common and not significantly different between groups. Arterial haemoglobin oxygen saturation remained above 95% in all animals. Recovery quality scores were significantly poorer for DEX than for ACP dogs.Conclusions and clinical relevanceAlfaxalone TIVA is an effective anaesthetic for surgical procedures but, in the protocol of this study, causes respiratory depression at infusion rates required for surgery.  相似文献   

17.
ObjectiveTo evaluate the sleep quality, prevalence of fatigue and depressive symptoms in veterinary anaesthesia personnel.Study designAnonymous online voluntary survey.MethodsSleep quality, fatigue, depressive symptoms and self-perceived burnout were scored using the Pittsburgh Sleep Quality Index (PSQI), Fatigue Severity Scale (FSS), Patient Health Questionnaire-9 (PHQ-9) and single-item burnout measure, respectively. Demographic data and questions about work-related fatigue, out-of-hours duty, transport and rest periods were included. PSQI, FSS and PHQ-9 scores were compared using Spearman rank correlation tests.ResultsResponses from 393 participants were obtained from an estimated population of 1374 including diplomates of the American and European Colleges of Veterinary An(a)esthesia and Analgesia (43.9%), residency-trained veterinarians (15.6%), residents-in-training (13.8%) and veterinary technicians and nurses (12.0%), from 32 countries. Most were employed in clinical university teaching hospitals (54.2%) or clinical private practice (41.5%).PSQI scores > 5 were reported by 71.2% of respondents, with 52.4% reporting insufficient sleep to meet their job demands. Many showed high or borderline fatigue (56.4%), and 74.7% reported mistakes due to work-related fatigue. Major depressive symptoms (PHQ-9 score ≥ 10) were found in 42.7%, with 19.2% reporting they had thought about suicide or self-harm in the previous 2 weeks. Over half (54.8%) met the criteria for burnout and more veterinary nurses and technicians suffered from burnout than other roles, with 79.6% of this group affected (p < 0.001).Scores for PSQI and FSS [r (388) = 0.40, p < 0.001]; PSQI and PHQ-9 [r (389) = 0.23, p < 0.001]; and FSS and PHQ-9 [r (387) = 0.24, p < 0.001] were all positively correlated.Conclusions and clinical relevanceThis survey demonstrates a high prevalence of poor sleep, fatigue, depressive symptoms and burnout in veterinary anaesthesia personnel, and more should be done to improve the health of those in the profession.  相似文献   

18.
ObjectiveTo investigate the relationship between urine specific gravity (USG) and the risk of arterial hypotension during general anaesthesia (GA) in healthy dogs premedicated with dexmedetomidine and methadone.Study designProspective clinical cohort study.AnimalsA total of 75 healthy client-owned dogs undergoing GA for elective tibial plateau levelling osteotomy.MethodsAfter placing an intravenous catheter, dogs were premedicated with dexmedetomidine (5 μg kg–1) and methadone (0.3 mg kg–1) intravenously. After induction of GA with alfaxalone to effect, the bladder was expressed and USG measured. An arterial catheter was placed, and residual blood was used to measure packed cell volume (PCV) and total protein (TP). GA was maintained with isoflurane vaporised in oxygen and a femoral and sciatic nerve block were performed. Arterial blood pressure < 60 mmHg was defined as hypotension and recorded by the anaesthetist. Treatment for hypotension was performed in a stepwise manner following a flow chart. Frequency of hypotension, treatment and response to treatment were recorded. Logistic regression modelling was used to assess the association between USG, TP and PCV and incidence of perioperative hypotension; p < 0.05.ResultsData from 14 dogs were excluded. Of the 61 dogs, 16 (26%) were hypotensive during GA, 15 dogs needed treatment of which 12 were responsive to a decrease in inhalant vaporiser setting. The logistic regression model was not statistically significant (p = 0.8). There was no significant association between USG (p = 0.6), TP (p = 0.4), PCV (p = 0.8) and arterial hypotension during GA.Conclusions and clinical relevanceIn healthy dogs premedicated with dexmedetomidine and methadone and maintained under GA with isoflurane and a femoral and sciatic nerve block, there was no relationship between the specific gravity of urine collected after premedication and intraoperative arterial hypotension.  相似文献   

19.
ObjectiveTo examine the influence of direct current shock application in anaesthetized horses with atrial fibrillation (AF) and to study the effects of cardioversion to sinus rhythm (SR).Study designProspective clinical study.AnimalsEight horses successfully treated for AF (transvenous electrical cardioversion after amiodarone pre-treatment).MethodsCardioversion catheters and a pacing catheter were placed under sedation [detomidine 10 μg kg?1 intravenously (IV)]. After additional sedation (5–10 μg kg?1 detomidine, 0.1 mg kg?1 methadone IV), anaesthesia was induced with ketamine, 2.2 mg kg?1 and midazolam, 0.06 mg kg?1 (IV) in a sling and maintained with isoflurane in oxygen. Flunixin meglumine, 1.1 mg kg?1, was administered IV. Shocks were delivered as biphasic truncated exponential waves, synchronized with the R-wave of the electrocardiogram. Monitoring included pulse oximetry, electrocardiography, capnography, inhalational anaesthetic agent concentration, arterial blood pressure, LiDCO and PulseCO cardiac index (CI) and arterial blood gases. Values before and after the first unsuccessful shock and before and after cardioversion to SR were compared.ResultsValues before the first shock were comparable to reported values in healthy, isoflurane anaesthetized horses. Reliable CI measurements could not be obtained using the PulseCO technique. Intermittent positive pressure ventilation was required in most horses (bradypnea and/or PaCO2 >8 kPa, 60 mmHg), while dobutamine was administered in two horses (0.3–0.5 μg kg?1 minute?1). After the 1st unsuccessful shock application, systolic arterial pressure (SAP) was decreased (p = 0.025), other recorded values were not influenced (CI measurements not available for this analysis). SR was associated with increases in CI (p = 0.039) and stroke index (p = 0.002) and a decrease in SAP (p = 0.030).Conclusions and clinical relevanceDespite the presence of AF, cardiovascular function was well maintained during anaesthesia and was not affected by shock application. Cardiac index and stroke index increased and SAP decreased after cardioversion.  相似文献   

20.
ObjectiveTo compare racemic ketamine and S-ketamine as induction agents prior to isoflurane anaesthesia.Study designProspective, blinded, randomized experimental study.AnimalsThirty-one healthy adult goats weighing 39-86 kg.MethodsGoats were premedicated with xylazine (0.1 mg kg?1) intravenously (IV) given over 5 minutes. Each goat was assigned randomly to one of two treatments for IV anaesthetic induction: group RK (15 goats) racemic ketamine (3 mg kg?1) and group SK (16 goats) S-ketamine (1.5 mg kg?1). Time from end-injection to recumbency was measured and quality of anaesthetic induction and condition for endotracheal intubation were scored. Anaesthesia was maintained with isoflurane in oxygen for 90 minutes. Heart rate, invasive arterial blood pressure, oxygen saturation, temperature, end-tidal carbon dioxide and isoflurane were recorded every 5 minutes. Arterial blood samples were taken for analysis every 30 minutes. Recovery time to recurrence of swallowing reflex, to first head movement and to standing were recorded and recovery quality was scored. Two-way repeated measures anova, Mann-Whitney and a Mantel-Cox tests were used for statistical analysis as relevant with a significance level set at p < 0.05.ResultsInduction of anaesthesia was smooth and uneventful in all goats. There was no statistical difference between groups in any measured parameter. Side effects following anaesthetic induction included slight head or limb twitching, moving forward and backward, salivation and nystagmus but were minimal. Endotracheal intubation was achieved in all goats at first or second attempt. Recovery was uneventful on all occasions. All goats were quiet and needed only one or two attempts to stand.Conclusions and clinical relevanceS-ketamine at half the dose rate of racemic ketamine in goats sedated with xylazine and thereafter anaesthetised with isoflurane induces the same clinically measurable effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号