首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
饲料配方与制粒工艺对水产饲料质量的影响   总被引:1,自引:0,他引:1  
实验旨在研究加工工艺及配方对水产饲料质量的影响。采集相同生产日期的鲤鱼饲料(LY颗粒饲料和LYF膨化饲料)和草鱼饲料(CY颗粒饲料和CYF膨化饲料),进行硬度、含粉率、漂浮性、水中稳定性、容重、淀粉糊化度、粒度分布测定,分别比较相同配方不同制粒工艺及相同制粒工艺不同配方所制饲料间质量差异。结果表明:1配方相同,膨化制粒工艺生产饲料颗粒质量优于普通制粒工艺生产饲料(P0.01);2制粒工艺相同,淀粉含量高、蛋白含低的配方生产饲料颗粒糊化度极显著优于淀粉含量低、蛋白含量高的配方生产饲料(P0.01)。综上,配方及制粒工艺的不同均对所制饲料有一定影响,其中淀粉含量高、蛋白含量低所生产的膨化饲料质量最好。  相似文献   

2.
陈化早籼糙米的适宜挤压膨化工艺参数研究   总被引:1,自引:0,他引:1  
试验旨在研究实验室条件下的挤压膨化机螺杆转速、套筒温度、喂料速度、原料水分等工艺参数条件,对贮存3年的陈化早籼糙米淀粉糊化度和挤压膨胀度的影响,进而确定陈化早籼糙米的适宜挤压膨化加工参数。结果表明:当螺杆转速或喂料速度加快时降低了陈化早籼糙米淀粉糊化度和挤压膨胀度;适当提高套筒温度、保持适宜的原料水分可提高淀粉糊化度和挤压膨胀度,就评价陈化早籼糙米挤压膨化的效果而言,挤压膨胀度与淀粉糊化度的效应一致。实际生产时建议采用80~90℃膨化温度,20%原料水分,30.6kg/min喂料速度的膨化工艺参数。  相似文献   

3.
不同加工工段对淀粉糊化度的影响   总被引:8,自引:2,他引:6  
通过对淀粉与淀粉糊化度的分析以及对饲料中淀粉糊化度的测定来研究不同加工工段对饲料淀粉糊化度的影响。研究了对一级调质—制粒工艺、二级调质—制粒工艺对淀粉糊化度的影响,测定分析了膨化对淀粉糊化度的影响。得出了在加工过程中采用二级调质—制粒工艺和膨化工艺能得到较好的淀粉糊化度的结论。  相似文献   

4.
本试验旨在研究不同淀粉糊化度对颗粒饲料加工质量以及断奶仔猪生长性能、养分表观消化率与血清生化指标的影响.通过改变挤压膨化工艺参数,制备淀粉糊化度分别为92%、85%、80%和73%的挤压膨化大料.将不同淀粉糊化度的挤压膨化大料与预混料、热敏性原料混合均匀后,在相同条件下低温制成颗粒饲料.试验选用初始体重为7.56 kg...  相似文献   

5.
文章旨在研究膨化加工对玉米中阿拉伯木聚糖含量的影响,及膨化玉米淀粉糊化度与阿拉伯木聚糖的相关性.在膨化机正常配置条件下,改变调质温度和膨化温度,制备不同梯度糊化度的膨化玉米.研究结果表明,调质温度或膨化温度升高,淀粉糊化度增大,阿拉伯木聚糖含量降低.淀粉糊化度与阿拉伯木聚糖呈线性负相关.  相似文献   

6.
饲料淀粉糊化的适宜加工工艺参数研究   总被引:12,自引:4,他引:8  
试验研究了实验及生产条件下影响淀粉糊化的重要工艺参数。试验1,采用三因素二次回归正交组合设计,研究玉米中淀粉糊化度与温度、时间、水分的关系。温度范围为60~120℃,时间为5~65min,水分为12.5%~50%。试验2,按调质条件进行随机试验,选择现行工业生产中蒸汽制粒工艺,固定蒸汽压力(0.5MPa)、调质时间(10s),研究调质条件对产品淀粉糊化度的影响。结果表明:温度、水分、时间具有不同程度地影响淀粉糊化的作用,水分、时间极显著促进淀粉糊化。生产及实验条件下,水分均是明显决定产品糊化度的第一限制性工艺参数。实验条件下,水分大于31.25%,淀粉糊化度迅速增加。适宜淀粉糊化度的优化工艺参数为温度88.6~95.8℃,时间26.24~33.26min,水分.46.83%~48.1%。生产条件下,提高物料水分,将显著增加淀粉糊化度。  相似文献   

7.
饲料淀粉糊化的适宜加工工艺参数研究   总被引:6,自引:1,他引:5  
为了确定饲料加工中淀粉糊化的最适宜工艺参数 ,试验研究了实验及生产条件下影响淀粉糊化的主要因素。试验一 ,采用三因素二次回归正交组合设计 ,研究玉米中淀粉糊化度与加热温度和时间、物料水分的关系。温度范围为60~120℃ ,时间为5~65分钟 ,水分为12.5 %~50 %。试验二 ,按调质条件进行随机试验 ,选择现行工业生产中蒸汽制粒工艺 ,固定蒸汽压力 (0.5MPa)、调质时间 (10秒 ) ,研究调质条件对产品淀粉糊化度的影响。结果表明 :温度、水分、时间具有不同程度地影响淀粉糊化的作用 ,水分、时间极显著促进淀粉糊化。在生产及实验条件下 ,水分均是明显决定产品糊化度的第一限制性工艺参数。在实验条件下 ,水分大于31.25 % ,淀粉糊化度迅速增加。适宜淀粉糊化度的优化工艺参数为 :温度88.6℃~95.8℃、时间26.24~33.26分钟、水分46.83~48.10 %。在生产条件下 ,提高物料水发 ,将显著增加淀粉糊化度  相似文献   

8.
为降低哺乳期母猪饲料的颗粒硬度,提高饲料中淀粉的糊化度,本试验采用熟化加工工艺,首先以水的添加量(25%~37%)、调质温度(100~120℃)和螺杆转速(150~350 r/min)为试验因素,以颗粒饲料的硬度和凝胶成型状况为试验指标,对饲料的加工工艺参数范围进行初步探索;再通过单因素试验研究各个因素对饲料中淀粉糊化度的影响,确定各因素的适宜范围;最后,采用正交试验分析3因素对淀粉糊化度的影响显著性及主次顺序,确定哺乳期母猪熟化软颗粒饲料部分加工工艺的最优参数。优化的工艺参数组合:水的添加量为31%、温度为120℃和螺杆转速为310 r/min,此时饲料的淀粉糊化度可达90.1%,颗粒硬度仅为486 g。  相似文献   

9.
本试验采用差示扫描量热仪(DSC),研究不同升温速率、α-淀粉酶添加量及膨化玉米比例下玉米粉糊化特性变化,并建立运用DSC技术研究淀粉糊化度。结果表明:升温速率对糊化起始温度影响不大,总平均起始温度在66.37℃左右,而峰值温度、结束温度、峰面积、峰高指数及热焓值随升温速率有显著增大;α-淀粉酶添加组与全玉米粉相比,糊化参数均显著增大。α-淀粉酶添加比例升高,起始温度、峰值温度先升高后略有降低,α-淀粉酶添加量比1∶25时,峰面积、热焓值显著增大;膨化玉米比例下降,糊化温度参数波动不大,但峰面积、热焓值极显著的增大。建立热焓值与膨化玉米回归方程,相关性显著(R2=0.9825)。即DSC分析技术可作为研究玉米淀粉糊化度测定的运用。  相似文献   

10.
本研究的目的是鉴定鱼粉的理化性质,及其对机械能、淀粉糊化、颗粒耐久性及硬度的影响。试验基于膨化、干燥和包被条件评估了鱼粉的13种理化特性。利用最小二乘法回归建立多变量模型(R^2=0.91-0.97)。机械能的升高水平伴随着系水力和颗粒平均粒径的显著降低(P <0.05),但蛋白溶解度和可溶蛋白(分子量<0.2 kDa)显著升高(P <0.05)。淀粉糊化度的升高伴随着系水力的显著降低(P <0.05)及蛋白溶解度的显著升高(P <0.05)。颗粒硬度的升高显著降低pH和不溶性蛋白(P <0.05),同时显著升高了盐分及分子大小为5~6、20~35及> 60 kDa的水溶性蛋白成分(P <0.05)。鱼粉作为一种理化特性复制的蛋白原料,其物理化学性质对测定的机械能、淀粉糊化度、耐久性和硬度均有很大影响。主成分分析和最小二乘法回归是识别鱼粉特性的有效方法。  相似文献   

11.
本试验旨在研究同一饲料配方条件下,高效调质低温制粒工艺对颗粒饲料加工质量及维生素E保留率的影响。对照组(A组)饲料采用普通畜禽饲料加工工艺,试验组饲料分别选用3种调质器,即双层调质器(B组)、调质保持器(C组)及膨胀器(D组),对饲料配方中大料混合料进行湿热处理,经湿热处理后的大料混合料与添加剂和其他饲料原料混合后经低温(50、55、60和65℃)调质后制粒。结果表明,大料混合料经双层调质器处理后淀粉糊化度显著低于调质保持器及膨胀器处理后(P0.05)。D组淀粉糊化度显著高于B组及C组(P0.05),C组颗粒硬度显著高于B组及D组(P0.05),C组颗粒耐久性指数显著高于B组及D组(P0.05),B组颗粒成型率显著低于其余3组(P0.05),B组、C组及D组维生素E保留率显著高于A组(P0.05)。65℃组淀粉糊化度显著高于50、55及60℃组(P0.05),65℃组颗粒硬度显著高于50、55及60℃组(P0.05),65℃组颗粒耐久性指数显著高于50、55及60℃组(P0.05),65℃组颗粒成型率显著高于50及55℃组(P0.05),65℃组维生素E保留率显著低于50、55及60℃组(P0.05)。由此可见,大料混合料经调质保持器加工熟化,采用65℃低温制粒能有效保护维生素E热敏性成分,且饲料加工质量与普通畜禽饲料加工工艺制得的饲料无显著差异。  相似文献   

12.
本试验旨在探究粗脂肪水平和不同调质温度对颗粒饲料硬度的影响。在粗脂肪水平分别为3.37%、4.0%和4.65%时,调质温度为60℃、70℃和80℃时进行制粒为9种饲料,测定制粒后不同风干时间颗粒饲料的硬度、颗粒耐久性指数(PDI)等加工质量指标。结果表明:对于未经风干的颗粒饲料,当调质温度为60℃,当粗脂肪含量由3.37%提高到4.65%时,颗粒饲料硬度降低了30.6%(P0.05);而当粗脂肪含量为3.37%,调质温度从60℃升高到80℃,颗粒饲料硬度升高了138.5%(P0.05);与粉料相比,调质温度为60℃、70℃和80℃时颗粒饲料淀粉糊化度分别显著增加了67.9%、88.1%和130.5%(P0.05);随着颗粒饲料风干时间的延长,饲料水分降低,颗粒硬度却随之增加(P0.05);PDI与颗粒硬度呈显著的正相关(R~2=0.954,P0.05)。综上可知,颗粒饲料的粗脂肪含量、调质温度和水分含量均会影响颗粒饲料的硬度。在实际生产过程中,可通过提高调质温度,降低饲料中粗脂肪或水分含量,进而提高颗粒饲料的硬度。  相似文献   

13.
本研究旨在评价不同水分和颗粒粒度的高粱制粒或膨化对不同原料粒度、肉鸡代谢能、氨基酸回肠消化率和肉鸡生长性能的影响。试验以720只雄性雏鸡为研究对象,随机分为6组,每组6个重复,每个重复20只。试验处理以2×2×2因子设计,即2种加工方式(制粒和膨化),2个调质水分(1.6%和0.8%),2个颗粒粉碎粒度(650和850μm)。结果显示:在添加1.6%水分的膨化日粮中,制粒制粒和颗粒耐久指数较高。850μm的粒径增加了饲料颗粒耐久指数。各处理组对肉鸡日增重和屠体性状均无显著影响(P>0.05)。在10~13 d饲喂颗粒饲料和添加1.6%水分的饲料的肉鸡表观代谢能和氮校正代谢能均较高(P<0.05),与添加膨化性饲料相比,高粱制粒饲料回肠赖氨酸和甘氨酸消化系数显著提高(P<0.05)。在评价饲料加湿效果时,饲料添加1.6%水分后赖氨酸、蛋氨酸、胱氨酸、甘氨酸、组氨酸、异亮氨酸和精氨酸回肠表观消化系数显著升高(P<0.05)。1.6%水分的膨化饲料较0.8%水分显著提高了21 d肉鸡采食量(P<0.05),在42 d时,0.8%水分的颗粒饲料显著提高了采食量(P<0.05)。结论:以650μm的粉碎粒度和1.6%的水分制备颗粒饲料在肉鸡生长后期可以提高回肠氨基酸消化率和表观代谢能,而膨化工艺提高了42 d肉鸡饲料颗粒制粒和饲料转化率。  相似文献   

14.
响应面法优化挤压膨化犬粮加工工艺的研究   总被引:1,自引:0,他引:1  
以犬粮配方研究中所确定的最佳配方为基础,以糊化度作为挤压膨化犬粮核心品质指标,通过单因素和响应面实验,对螺杆转速、物料水分、喂料速率和套筒温度等双螺杆挤压机的主要操作参数与犬粮糊化度之间的关系进行了研究。建立了糊化度与4个因素变化的二次回归方程。结果表明,物料水分为25%,螺杆转速为30 Hz(1 Hz=5 r/min),套筒温度为160℃,喂料速率为24 Hz(1 Hz=1.7 r/min)的条件下,犬粮的糊化度达到89.7%。  相似文献   

15.
Maintaining an optimal pelleting production rate can be difficult when manufacturing feeds for meat birds. Increased production time may be required to fill feed demand and feed outages occur if demand is not met. Identifying management strategies to enhance overall feed production rate without compromising broiler performance is warranted. This study examined the effects of adding varying amounts of corn, ground through a roller mill, to pelleted supplements on feed production parameters, growth performance, and intestinal strength of broiler chickens. Four treatments were used from 18 to 41 d, which included a control (total diet pelleted), and addition of rolled corn to pelleted supplements at 15, 25, and 35% of the corn required in diet formulation. The final diets fed were identical in nutrient composition. Decreasing the amount of ground corn in the pelleted supplement did not affect pellet durability index in the grower diet, but pellet quality declined in the finisher diet. The dietary treatments did not adversely affect final BW gain or feed conversion. Progressive additions of ground corn to pelleted supplement did not affect gizzard weight or peak force intestinal strength. These data indicate that 35% of the formula corn can be added postpellet to reduce electrical cost for grinding and pelleting and improve overall production rate without adversely affecting cumulative growth performance of broilers.  相似文献   

16.
The effect of starch gelatinisation degree in extruded feed on intestinal morphology, intestinal pH and faecal bacteriology was investigated in pigeons. Extruded complete pigeon diets would offer the principle advantage of providing equilibrated nutrients and energy, but factors such as starch gelatinisation require investigation before these diets are offered as main dietary items to pigeons. Birds were fed two diets with equal ingredient composition and nutrient content, but with a different degree of starch gelatinisation resulting from altered extrusion processing (high gelatinisation degree (HG) with 73.6% gelatinisation vs. low gelatinisation degree (LG) with 53.1% gelatinisation). Feed intake and weight gain changes were measured weekly. Blood samples were collected at day 28 and analysed for non‐esterified fatty acids, lactate dehydrogenase and glucose. The pH values for fresh excreta were measured; thereafter fresh excreta were collected and cultured for measurement of colony‐forming units for bacterial classes. At the end, morphological measurements were examined and the pH values throughout the gastrointestinal tract were recorded. Liver, pancreas and abdominal fat were weighed. There was a tendency (p = 0.07) towards higher numbers of Escherichia coli in the excreta of the LG group compared with those in the HG group. No dietary treatment effects were noted on the number of Lactobacillus sp. in the excreta. In proximal parts of the intestine, LG revealed a significantly lower pH than HG. Villus height and crypt depth were not affected by dietary treatment, but the duodenum muscularis thickness, liver weight and pancreas weight were significantly lower in the LG than that in HG group. This trial demonstrated that the lower level of starch gelatinisation degree of extruded feed leads to acidification of the proximal gut and altered gut morphology in pigeons. Hence, extruded pigeon diets should preferably contain low‐gelatinised starch instead of high‐gelatinised starch. In addition, future research must focus on the effects of starch gelatinisation on the correlation between the intestinal pH, microflora content and intestinal morphology.  相似文献   

17.
The palatability of different cereals was studied in 2 two-way choice (preference) experiments using pigs of 56 d of age and 17 kg of BW. In Exp. 1, the effect of 24 cereals vs. a common reference diet containing white rice on feed preference in pigs was studied. Pigs were offered free choice between the reference diet and a diet with the cereal under study for 4 d. Barley, corn (2 sources), wheat, cassava meal, biscuit meal, rye, sorghum, and 1 source of oats were tested at inclusion rates of 300 and 600 g x kg(-1). Short-grain rice (whole, brown, or extruded white), long-grain white rice (raw and cooked), extruded barley, extruded corn, extruded wheat, oats (2 sources), thick rolled oats, cooked oats, and naked oats (raw, extruded, or micronized) were tested at inclusion rates of 150, 300, and 600 g x kg(-1). Relative preference of cereals (% of total feed intake) was affected by type of cereal and by rate of inclusion. The diets containing extruded rice (150 g x kg(-1)), extruded naked oats (150, 300, and 600 g x kg(-1)), or naked oats (150 and 300 g x kg(-1)) were preferred (P < 0.05) by pigs to the reference diet. However, the reference diet was preferred (P < 0.05) to the diets containing 150, 300, and 600 g x kg(-1) of cooked long-grain rice, oats, or cooked oats, 300 and 600 g x kg(-1) of extruded wheat, wheat, corn, sorghum, or unhulled short-grain rice, and 600 g x kg(-1) of thick rolled oats, extruded corn, rye, extruded barley, micronized naked oats, barley, cassava, or biscuit meal. Extrusion improved (P < 0.05) preference values for corn and naked oats by pigs, but had no effect on barley, rice, or wheat. In Exp. 2, the preferences of pigs for oats and barley were studied using mash and pelleted diets. Diet form did not affect preference in oats diets. However, for barley, greater preference values were obtained when measured in pelleted form compared with mash form. Additionally, direct 2-way choices were also performed between oats and barley diets and between diets presented in mash and pelleted forms. Pigs preferred barley to oats, and preferred diets presented in pelleted form to those presented in mash form. In conclusion, cereal type, inclusion rate, and diet form affected feed preference in pigs. Using cereals with greater preference values may contribute to the formulation of more palatable feeds, which enhance feed intake of piglets at critical stages such as weaning time.  相似文献   

18.
芦萤萤 《饲料工业》2012,33(5):8-10
为了能够提高饲料膨化的质量,利用参数自调整模糊PID控制算法对其温度进行控制。首先,分析了饲料膨化机温度控制的基本要求;其次,研究了饲料膨化机温度模糊参数自调整PID控制的基本思想;然后,讨论了饲料膨化机温度模糊参数自调整PID控制器的输入和输出;最后,进行了仿真分析,仿真结果表明该方法具有较高的鲁棒性。  相似文献   

19.
[Objective] The paper was to compare the effects of traditional granulating process and post-expanding lower temperature granulating process on starch gelatinization degree and in vitro protein digestibility of conversation feed, and growth performance of piglets. [Method] Sixty weaned piglets, 25 days old, were randomly divided into two groups, six replicates each group, and each replicate contained five piglets. Piglets in control group were fed with the conversation feed developed by traditional granulating process, and those in experimental group were fed with the conservation feed developed by post-expanding lower temperature granulating process. The trial lasted 28 d. [Result] Compared to traditional granulating process, post-expanding lower temperature granulating process significantly enhanced starch gelatinization degree of conservation feed by56.9%(P0.05), and significantly improved in vitro protein digestibility of conservation feed by 11.48%(P0.05). Compared to the control group, the feed intake of piglets in experimental group was increased by 21.63%(P0.05); the average daily gain was increased by 27.61%(P0.05); the diarrhea rate was lowered; and the feed gain ratio was improved by 4.51%(P0.05). The results suggested that post-expanding lower temperature granulating process effectively enhanced feed digestion and absorption of piglets. [Conclusion] The paper provides a theoretical basis and practical reference for improvement of production process of conservation feed.  相似文献   

20.
An experiment was conducted to measure the effect of thermal treatment on the digestibility of CP, AA, starch, NDF, ADF, and energy in field peas fed to growing pigs. Five pea-containing diets were formulated. The peas included in these diets were either not heat-treated (control) or extruded at 75, 115, or 155 degrees C or pelleted at 75 degrees C. A N-free diet was also included in the experiment to measure basal endogenous losses of CP and AA. The 6 diets were fed to 6 growing pigs (initial BW: 69.3 +/- 2.9 kg) that were allotted to dietary treatments in a 6 x 6 Latin square design. A T-cannula was installed in the distal ileum of each pig, allowing for the collection of ileal digesta. Each experimental period lasted 9 d; fecal samples were collected on d 6 and 7, and ileal samples were collected on d 8 and 9 of each period. Apparent ileal digestibilities (AID) for CP, AA, starch, and energy and standardized ileal digestibility values (SID) for CP and AA were calculated. Apparent total tract digestibilities (ATTD) for NDF, ADF, starch, and energy were also calculated. As the extrusion temperature increased, the AID and SID for CP and all AA, except Pro, increased (quadratic, P < 0.05). In contrast, except for Arg and Pro, the peas that were pelleted at 75 degrees C had AID and SID for CP and AA that were similar to those obtained for the control peas but less (P < 0.05) than the AID for the peas that were extruded at 75 degrees C. The AID for starch and energy increased (linear, P < 0.001) as the extrusion temperature increased to 155 degrees C (from 89.8 to 95.9% and from 71.5 to 79.0%, respectively), but the AID for starch and energy in the pelleted diet was not different from the AID in the control diet (90.1 vs. 89.8% and 69.1 vs. 71.5%, respectively). The ATTD for starch varied from 98.6 to 99.7% and did not differ among treatments. Likewise, no differences were observed for the ATTD of NDF and ADF. However, the ATTD for energy in the diets increased from 89.0 to 93.3% (linear and quadratic, P < 0.05) as field peas were extruded, and the ATTD for energy in the pelleted diet was also greater (P < 0.05) than that of the control diet (91.6 vs. 89.0%). In conclusion, extrusion of field peas increases the AID of CP, AA, starch, and energy and the ATTD of energy. Pelleting field peas at 75 degrees C does not influence the AID of nutrients or energy but improves the ATTD of energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号