首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
本试验以小肽含量为指标,对解淀粉芽孢杆菌单菌固态发酵豆粕以及解淀粉芽孢杆菌、植物乳杆菌和酿酒酵母菌3个菌种混菌固态发酵豆粕的工艺条件进行优化,并对其发酵前后的营养物质含量变化进行研究。通过解淀粉芽孢杆菌、植物乳杆菌和酿酒酵母3个试验菌的生长曲线确定其接种到固态培养基的最佳接种时间。采用单因素试验设计研究解淀粉芽孢杆菌接种量、温度、料水比、发酵时间4个因素对豆粕发酵产小肽的影响,并在此基础上采用四因素三水平的正交试验设计对单、混菌固态发酵豆粕的工艺条件进行优化。对豆粕发酵前后豆粕营养物质含量、大豆球蛋白含量、蛋白质分子质量、发酵产物p H进行测定。结果显示:3株试验菌接在各自种子培养基扩大培养至21 h为其接种到固态培养基的最佳时间。解淀粉芽孢杆菌单菌固态发酵豆粕的最佳工艺条件为:接种量为10%、温度为40℃、料水比为1.0∶1.2、发酵时间为72 h;解淀粉芽孢杆菌、植物乳杆菌、酿酒酵母混菌固态发酵豆粕的最佳工艺条件为:接种量为15%、温度为31℃、料水比为1.0∶1.0发酵时间为120 h,3个菌株的接种比例为:解淀粉芽孢杆菌∶植物乳杆菌∶酿酒酵母=9∶3∶2。经微生物发酵后,发酵产物中小肽、粗蛋白质、粗灰分、粗脂肪含量较发酵前均得到显著提高(P0.05),粗纤维含量则显著下降(P0.05);单菌发酵组和混菌发酵组发酵产物中大豆球蛋白含量均较未发酵组显著降低(P0.05);单菌发酵组和混菌发酵组发酵产物中蛋白质分子质量较未发酵组降低;混菌发酵组发酵产物的p H较未发酵组显著降低(P0.05),而单菌发酵组发酵产物的p H则与未发酵组差异不显著(P0.05)。综上所述,豆粕经微生物固态发酵后营养价值在一定程度上得到改善,大分子蛋白质被降解,p H也发生了变化,并且单菌发酵和混菌发酵的效果存在差异。  相似文献   

2.
本试验以小肽含量为指标,对解淀粉芽孢杆菌单菌固态发酵豆粕以及解淀粉芽孢杆菌、植物乳杆菌和酿酒酵母菌3个菌种混菌固态发酵豆粕的工艺条件进行优化,并对其发酵前后的营养物质含量变化进行研究。通过解淀粉芽孢杆菌、植物乳杆菌和酿酒酵母3个试验菌的生长曲线确定其接种到固态培养基的最佳接种时间。采用单因素试验设计研究解淀粉芽孢杆菌接种量、温度、料水比、发酵时间4个因素对豆粕发酵产小肽的影响,并在此基础上采用四因素三水平的正交试验设计对单、混菌固态发酵豆粕的工艺条件进行优化。对豆粕发酵前后豆粕营养物质含量、大豆球蛋白含量、蛋白质分子质量、发酵产物p H进行测定。结果显示:3株试验菌接在各自种子培养基扩大培养至21 h为其接种到固态培养基的最佳时间。解淀粉芽孢杆菌单菌固态发酵豆粕的最佳工艺条件为:接种量为10%、温度为40℃、料水比为1.0∶1.2、发酵时间为72 h;解淀粉芽孢杆菌、植物乳杆菌、酿酒酵母混菌固态发酵豆粕的最佳工艺条件为:接种量为15%、温度为31℃、料水比为1.0∶1.0发酵时间为120 h,3个菌株的接种比例为:解淀粉芽孢杆菌∶植物乳杆菌∶酿酒酵母=9∶3∶2。经微生物发酵后,发酵产物中小肽、粗蛋白质、粗灰分、粗脂肪含量较发酵前均得到显著提高(P<0.05),粗纤维含量则显著下降(P<0.05);单菌发酵组和混菌发酵组发酵产物中大豆球蛋白含量均较未发酵组显著降低(P<0.05);单菌发酵组和混菌发酵组发酵产物中蛋白质分子质量较未发酵组降低;混菌发酵组发酵产物的p H较未发酵组显著降低(P<0.05),而单菌发酵组发酵产物的p H则与未发酵组差异不显著(P>0.05)。综上所述,豆粕经微生物固态发酵后营养价值在一定程度上得到改善,大分子蛋白质被降解,p H也发生了变化,并且单菌发酵和混菌发酵的效果存在差异。  相似文献   

3.
研究综合运用单因素试验与正交试验,对植物乳杆菌固态发酵豆粕产L-乳酸的条件进行了优化。通过单因素试验,确定了植物乳杆菌固态发酵豆粕产L-乳酸,可在培养基内添加2.0%的糖蜜作为碳源,发酵培养64 h时L-乳酸的产量达到平衡。在此基础上,进一步采用L9(34)正交试验设计,优选其他固态发酵工艺条件,最终确定影响植物乳杆菌发酵豆粕产L-乳酸各因素的主次顺序为:料水比发酵温度初始p H值接种量,最优发酵工艺条件为:乳酸菌接种量2%,料水比1:0.6,发酵温度42℃,初始p H值6。在最佳优化条件下,植物乳杆菌发酵豆粕具有良好的重复性与稳定性,L-乳酸产量最高可达32.1 mg/g,比单因素试验中最高值(20.8 mg/g)提高54.33%,同时比正交试验最高值(30.0 mg/g)提高7%。研究确定了豆粕经植物乳杆菌固态发酵产L-乳酸的最佳条件,显著提高了L-乳酸的产量,为进一步探讨L-乳酸的固态发酵工艺奠定了基础。  相似文献   

4.
对魔芋飞粉固态发酵生产酵母蛋白饲料进行研究。单因素试验和正交试验优化的固态发酵培养条件:豆粕添加量为20%,葡萄糖淀粉酶添加量为0.3%,培养基含水量为50%,装料量为30g,接种量为1.5%,发酵温度为25℃,发酵时间为60h。优化后的发酵产品中酵母数可达到61.43亿/g,粗蛋白质含量可达34.02%,天门冬氨酸和苏氨酸等16种氨基酸含量均明显增加。在此基础上进行浅盘扩大培养,发酵产品中酵母数可达到60.10亿/g,粗蛋白质含量可达33.77%。  相似文献   

5.
研究饲用纳豆芽孢杆菌发酵豆粕工艺条件,通过单因素和正交试验,比较豆粕发酵后的可溶性固形物和尿素酶活性,结果表明:纳豆芽孢杆菌接种量为5.0%,初始含水量为60%,发酵时间为6 d,发酵温度为40℃,中性蛋白酶和酸性蛋白酶比例为3∶1,含糖量为2.0%,该条件下测定可溶性固形物的含量为74.03%,尿素酶活性为0.010 2 mg/(g·min),发酵效果较为理想。为发酵豆粕在饲料工业上的应用提供技术参数和理论指导。  相似文献   

6.
本试验研究了高产蛋白酶酵母菌在不同条件下对发酵豆粕品质的影响。以蛋白酶活性为指标,对豆粕发酵的时间、含水量、菌液接种量和葡萄糖添加量进行优化,根据单因素试验结果设计正交试验,探究高产蛋白酶酵母菌发酵对豆粕中蛋白酶、纤维素酶、植酸酶、果胶酶活性和粗蛋白质、小分子多肽、胰蛋白酶抑制剂含量的影响。结果表明,单因素试验条件下,分别在含水量50%、菌液添加量4%、葡萄糖添加量1.5%时发酵豆粕具有最高的蛋白酶活性。以单因素试验结果设计正交试验,与对照组相比,9个试验组蛋白酶活性增长100.56%~380.13%、纤维素酶活性增长2.67%~81.77%、植酸酶活性增长53.89%~252.81%、果胶酶活性增长13.84%~70.83%、小分子多肽增长574.67%~1 981.08%、粗蛋白质含量增长9.24%~16.49%、胰蛋白抑制剂含量降低7.36%~67.39%。高产蛋白酶酵母菌发酵豆粕可以显著提升其营养价值,降低抗营养因子含量。使用高产蛋白酶酵母菌对豆粕进行发酵,若需要发酵豆粕中水解酶活性最高,发酵条件为葡萄糖1%、混合菌液2%,含水量45%,在室温下发酵5 d;需要粗蛋白质、多肽含量以及胰蛋白酶抑制剂降低率最高时,发酵条件为葡萄糖2%、混合菌液4%,含水量55%,在室温下发酵5 d。  相似文献   

7.
本试验拟在大豆分离蛋白培养基上筛选出一株生长良好、对大豆蛋白水解能力较强的枯草芽孢杆菌菌株KF01。本文研究了KF01对豆粕原料进行固态发酵的工艺参数并进行了条件优化。结果表明,在固态豆粕物料初始含水量49%、KF01菌种接种量10%、料层厚度20cm、发酵时间48h、翻料次数4次的条件下,酸溶蛋白含量由3.5%提高到8%以上。该菌株可以用于豆粕原料蛋白的发酵生产富含小肽蛋白饲料。  相似文献   

8.
菌种和发酵条件对发酵豆粕营养成分的影响   总被引:1,自引:0,他引:1  
研究利用单一枯草芽孢杆菌、枯草芽孢杆菌和米曲霉混合菌种分别对豆粕进行固态发酵,通过单因素和正交试验对发酵时间、pH、温度、接种量和菌种比例进行优化,比较研究菌种和发酵条件对发酵豆粕营养成分的影响.结果表明:用枯草芽孢杆菌和米曲霉混合菌种发酵豆粕比用单一菌种枯草芽孢杆菌发酵更有利于提高发酵豆粕营养水平,发酵豆粕最优的方案为枯草芽孢杆菌和米曲霉混合菌种比例为2∶1,初始pH为7.5,温度为37℃,发酵时间为48 h.  相似文献   

9.
本研究旨在对黑曲霉和乳酸杆菌(植物乳杆菌和发酵乳杆菌)二段固态发酵大豆皮和菜籽饼工艺条件进行优化,并对其发酵前后营养物质和抗营养因子含量变化进行研究。采用单因素试验设计,以发酵产物中还原糖含量为指标,筛选出黑曲霉发酵阶段适宜的发酵温度、料液比、发酵时间、大豆皮和菜籽饼原料比例和接种量,并通过四因素三水平(L 934)正交试验探究料液比、发酵时间、大豆皮和菜籽饼原料比例和接种量对黑曲霉发酵产物中还原糖含量的影响。在黑曲霉固态发酵的最佳工艺基础上,采用单因素试验设计,以发酵产物中乳酸杆菌活菌数为指标,探究乳酸杆菌发酵阶段适宜的发酵时间、发酵温度、接种量和尿素添加量,并通过四因素三水平(L 934)正交试验探究发酵时间、发酵温度、接种量和尿素添加量对乳酸杆菌发酵产物中乳酸杆菌活菌数的影响。结果表明:黑曲霉最优发酵工艺为发酵温度35℃,料液比1.0∶2.8 g/mL,发酵时间60 h,大豆皮和菜籽饼原料比例2∶1,接种量5×107 CFU/g。乳酸杆菌最优发酵工艺为发酵温度35℃,发酵时间60 h,接种量5×106 CFU/g,尿素添加量1.0%。经黑曲霉和乳酸杆菌二段固态发酵后,发酵产物中粗蛋白质、粗脂肪、粗灰分含量较发酵前均显著增加(P<0.05),粗纤维、大豆球蛋白、β-伴大豆球蛋白、硫代葡萄糖苷和单宁含量较发酵前均显著降低(P<0.05)。由此可见,黑曲霉和乳酸杆菌(植物乳杆菌和发酵乳杆菌)二段固态发酵可提高大豆皮和菜籽饼饲用价值。  相似文献   

10.
研究以清香型白酒糟为原料,添加酿酒酵母SY、枯草芽孢杆菌D和植物乳杆菌2-41进行混菌固态发酵,制备蛋白饲料。探索麸皮添加量对混菌固态发酵饲料质量的影响,优化发酵培养基配比后,采用单因素试验和正交试验,以酒糟饲料的粗蛋白含量为考察指标,研究发酵温度、发酵时间、菌种接种量和发酵培养基初始酸度对混菌固态发酵饲料质量的影响,从而优化混菌固态发酵工艺条件。结果显示,清香型白酒糟发酵培养基的最佳酒糟和麸皮比为9∶1,在酒糟初始水分为50%~60%的条件下,发酵培养基总装料量为50 g,其中清香型白酒糟45 g,麸皮5 g。混菌固态发酵最优工艺条件为菌种接种量13%、发酵温度26℃、发酵时间6 d、初始酸度0.90 mmol NaOH/10 g。在此混菌固态发酵工艺条件下进行3组平行试验,测得酒糟饲料中粗蛋白含量为(24.97±0.05)%,感官评价最终得分18分,等级为优良。研究结果对混菌固态发酵酒糟制备蛋白饲料具有一定的指导价值。  相似文献   

11.
外加酶提高发酵豆粕蛋白质水解度的研究   总被引:2,自引:0,他引:2  
在枯草芽孢杆菌发酵豆粕的工艺基础上添加外源蛋白酶进行优化,以蛋白质水解度为指标,试验得到酶添加量、接种量、料水比、温度、时间5个单因素的最佳条件为:加酶量120U/g,接种量1%、料水比1:1.2、温度35℃、发酵时间48h。对5个因素进行正交优化试验,得到优化发酵方案为:加酶量50U/g、接种量1.5%、料水比1:1.2、温度35℃、发酵时间48h,发酵豆粕水解度从对照的16.25%提高到37.29%,提高了1.3倍。  相似文献   

12.
利用青霉(Penicillium sp.)F-5、暗孢毛壳(Chaetomium atrosporum)F-21和曲霉(Aspergil-lus sp.)F-25复合菌种对芦笋老茎生料培养基进行固态发酵生产反刍动物饲料,通过单因素试验、正交试验对培养基进行优化。单因素试验结果表明,芦笋老茎生料培养基最佳含水量为65%,最佳氮源及含量为4%的(NH_4)_2SO_4,麸皮为最适辅料,主料与辅料的最佳比例为87%11%。在单因素试验基础上,选择含水量、麸皮含量、(NH_4)_2SO_4含量进行了L_9(3~4)正交试验,正交试验结果表明,芦笋老茎生料培养基最佳配方为:芦笋老茎89%、麸皮9%、(NH_4)_2SO_4 2%、含水量62%,自然p H值。  相似文献   

13.
对菊芋糟渣固态发酵生产蛋白饲料进行了研究。试验采用马克斯克鲁维酵母、白地霉和产朊假丝酵母组合发酵生产蛋白饲料效果较好。单因素和正交试验优化的固态发酵培养条件为最适麸皮添加量10%,最适初始pH为5.5,加水比为1:1.7,尿素含量为2%,接种量为9%,在此条件下30℃培养5 d,粗蛋白含量达到32.09%,比培养基初始粗蛋白含量提高了超过90%。在此基础上,对固态发酵糟渣生产蛋白饲料进行了扩大试验,粗蛋白含量达到27.92%。  相似文献   

14.
本研究采用菌酶协同发酵玉米副产品型饲料,以pH、还原糖含量作为指标验证发酵质量,设计单因素试验、正交试验优化发酵参数,包括菌种、酶制剂及发酵条件。通过单菌和混合菌发酵试验确定菌种最佳添加比例。结果表明:酿酒酵母、植物乳杆菌混合发酵效果最好,添加比例为1∶1。试验添加单酶和多酶发酵玉米副产物饲料结果显示,纤维素酶和葡聚糖酶混合发酵效果最佳,比例为1∶1,最佳添加总量为200 U/g。采用3因子(发酵温度、料水比、接菌量)3水平设计正交试验优化发酵条件。最终确定最佳发酵条件为:发酵温度30℃,料水比1∶1.2(g/mL),接菌量12%,此条件下,可使饲料中粗蛋白质、粗纤维及粗脂肪含量发生大幅变化。  相似文献   

15.
青年猪空肠粘膜筛选的枯草芽孢杆菌YZ-11。通过单因素试验考察无机盐、碳源等对菌株发酵豆粕产大豆多肽含量的影响,并采用正交实验优化发酵工艺。实验结果表明,其最佳发酵工艺条件为:玉米粉2.0%,大豆粕35%,KH2PO4 0.8%,含水量40%,接种量8%,发酵温度37℃,培养时间72h。发酵产大豆多肽含量为23.04%,提高了1.71倍。  相似文献   

16.
以甜叶菊渣为主要原料配合适当辅料生产微生物发酵浓缩饲料。原料配比甜叶菊渣:玉米粉:豆粕为5:4:1,采用黑曲霉、里氏木酶和酿酒酵母三种菌种混合发酵分段添加,设计三种菌种按比例添加的正交试验L9(34),发酵前后测定真蛋白、游离氨基酸、粗纤维和可溶性还原糖含量进行比较分析。试验结果显示最佳发酵效果的菌种接种量是黑曲霉8%、里氏木酶4%、酿酒酵母3%,该条件获得的发酵饲料中真蛋白含量为21.44%、游离氨基酸5.19%、可溶性还原糖6.87%,比发酵前分别提高了57.65%、278.83%和161.21%;粗纤维含量从原来的15.85%降为7.86%,降解率50.41%。甜叶菊渣作为主要原料制备发酵饲料是一种很好的资源利用方式。  相似文献   

17.
试验研究了不同发酵条件对发酵豆粕品质的影响,采用单因素优化,逐级递进法,对豆粕发酵条件进行了优化。以豆粕为原料,以益生蜡样芽孢杆菌和粪肠球菌作为发酵菌种进行固态发酵试验研究,主要考察其对发酵产物酸溶蛋白和总有机酸的影响。结果表明,豆粕固体发酵最优工艺条件为:发酵菌种比2:1(蜡样芽孢杆菌菌液:粪肠球菌菌液=2:1)、发酵初始含水量45%,发酵时间54 h、好氧与厌氧时间比2:1,在此发酵条件下酸溶蛋白达到14.95%、总有机酸2.47%、抗原蛋白降解率在90%以上。  相似文献   

18.
以玉米粉、豆粕、麦麸为基质,以保加利亚乳杆菌、嗜酸乳杆菌、嗜热链球菌为发酵菌种,采用固态发酵技术,以活菌数为指标,通过单因素和L9(34)正交试验确定了三种菌混合发酵的最佳条件,并对其发酵产物的常规营养成分进行分析测定。结果表明:固态基质中玉米粉:豆粕:麦麸=1:1:1、培养基初始含水量80%p、H值6.3、接种量为10%、三种菌接种比例为1:1:1、发酵温度40℃时的发酵效果最好。在此条件下,保加利亚乳杆菌数为3.0×109 CFU/g,嗜酸乳杆菌数为4.6×109 CFU/g,嗜热链球菌数为5.8×109 CFU/g,发酵产物粗蛋白质、粗脂肪和氨基酸态氮含量分别是发酵前的1.16、1.12和6.94倍。为开发一种新型生物饲料打下基础。  相似文献   

19.
本试验旨在研究酶解参数(料水比、温度、酶添加量和处理时间)对角蛋白酶降解豆粕β-伴大豆球蛋白和大豆球蛋白效果的影响,并以小麦麸为酶解豆粕的辅料探究酶解豆粕干燥速率和干燥后物料结块程度。结果表明:在本试验条件下,25℃、添加6 kg/t角蛋白酶、料水比为5:4、酶解24 h,豆粕中约60%的β-伴大豆球蛋白和37%的大豆球蛋白被降解;65℃恒温干燥后,与纯酶解豆粕相比,添加30%小麦麸的酶解豆粕的干燥速率变化不大,但是干燥后物料结块现象不明显;纯豆粕酶解干燥后,6目大颗粒占总物料含量由0增加至7%,6~18目颗粒占总物料含量由20%增加至40%;添加30%小麦麸的豆粕酶解干燥后,6目大颗粒含量变化不明显,6~18目颗粒含量由25%增加至30%。综上可知,在本试验条件下,酶解豆粕中添加30%小麦麸能够有效降低豆粕中的抗营养因子以及减少在高水分条件下酶解豆粕结块。  相似文献   

20.
为了研究乳酸菌和酵母菌混菌发酵制备菌制剂的最佳适宜条件,试验采用麸皮、玉米皮、豆粕为主要原料,采用固态发酵技术,以植物乳杆菌L.casei Zhang p8和酵母菌S1为发酵菌种,以发酵后的活菌数作为指标,通过单因素和4因素3水平L9(34)正交试验,对双菌混合发酵的最佳条件进行研究。结果表明:在发酵温度34℃、接种量12%、乳酸菌和酵母菌接种比例3∶7、含水量50%、料量50 g条件下发酵60 h,植物乳杆菌L.casei Zhang p8菌数可以达到39.8×108cfu/g,酵母菌S1菌数可以达到17.1×108cfu/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号