首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 234 毫秒
1.
与传统杆齿式圆柱形纵轴流脱粒滚筒相比,课题组前期研制的杆齿式鼓形纵轴流脱粒滚筒可有效改善轴向负荷,降低脱粒功耗。为进一步提升该滚筒性能,该研究对杆齿进行优化,设计了圆柱杆齿、弯头杆齿和闭式弓齿3种形状杆齿,建立水稻籽粒与杆齿碰撞冲击力学模型,分析了影响功耗的杆齿结构参数。以黄华占水稻为对象,基于EDEM软件构建水稻植株离散元柔性模型,利用仿真试验建立滚筒轴向负荷监测器,探究圆柱杆齿、弯头杆齿和闭式弓齿在不同杆齿直径和脱粒间隙下对滚筒轴向负荷均匀性的影响,得出最佳杆齿结构参数为杆齿直径10 mm,脱粒间隙25 mm。以喂入量、滚筒转速和杆齿形状为试验因素,以脱粒功耗为指标开展三因素三水平Box-Behnken响应面试验,结果表明,最优结构参数下,圆柱杆齿式鼓形滚筒最优工作参数为喂入量1.1 kg/s,滚筒转速900 r/min,功耗最低为4.61 kW;弯头杆齿式鼓形滚筒最优工作参数为喂入量0.95 kg/s,滚筒转速935 r/min,功耗最低为3.58 kW,确定将鼓形滚筒杆齿优化为弯头杆齿形状。分别开展仿真与台架对比试验,结果表明,优化后的弯头杆齿式鼓形滚筒较圆柱杆齿式鼓形滚筒的轴...  相似文献   

2.
针对南方地区大豆草谷比和未成熟豆荚占比高,造成收获机脱粒清选分离质量差、功耗大等问题,设计了一种前后两段组合且两段转速差可调的脱粒滚筒,研究了脱粒滚筒参数变化对豆荚和籽粒的能量、等效形变量等的影响。以脱粒齿类型、前段滚筒转速、两段滚筒转速差为影响因素,以破碎率、未脱净率和夹带损失率为评价指标,得到了差速与非差速脱粒滚筒的最优参数组合,并通过综合性能试验对比了两种脱粒滚筒的脱粒质量、作业油耗和工作效率。结果表明,差速脱粒滚筒最优参数组合是脱粒齿类型为纹杆齿-杆齿组合式脱粒齿,前段滚筒转速为450 r/min,两段滚筒转速差为150 r/min。此时,相较于传统的杆齿式非差速脱粒滚筒,脱粒质量更高,油耗降低了2.7 L/hm2,最大作业效率增大了10.35%。该研究能够为解决南方地区大豆联合收获机脱粒装置适应性问题提供依据。  相似文献   

3.
油菜多滚筒脱粒分离装置的性能试验与分析   总被引:6,自引:5,他引:1  
为了获取适合联合收获机多滚筒油菜脱粒分离装置的结构方式和工作参数,该文在自行研制的多滚筒脱粒分离装置试验台上进行不同喂入量、不同滚筒转速、不同脱粒凹板间隙和不同脱粒齿杆时的切轴流滚筒与横轴流滚筒组合式双滚筒脱粒分离装置(简称切轴双滚筒脱粒分离装置)与切轴流滚筒与双横轴流滚筒组合式3滚筒脱粒分离装置(简称切轴轴3滚筒脱粒分离装置)的脱粒分离性能对比试验。试验结果表明:采用切轴轴3滚筒脱粒分离装置,在喂入量为1.8 kg/s,切轴流滚筒、第Ⅰ横轴流滚筒、第Ⅱ横轴流滚筒的转速依次为800、850和900 r/min、凹板间隙依次为20、25和30 mm、脱粒齿杆均为3排钉齿的组合方案为脱粒分离装置的脱粒损失率最小的最优组合;通过正交试验分析,得出喂入量和滚筒转速是影响脱粒分离装置脱粒损失率的主要因素。研究结果可为研制多滚筒油菜联合收获机提供参考。  相似文献   

4.
柔性杆齿滚筒脱粒机理   总被引:10,自引:7,他引:3  
传统的水稻脱粒是采用刚性脱粒齿,由于打击力大,造成水稻籽粒破碎或内部破损,从而影响水稻种子的发芽率或大米加工的成米率。为进一步探索降低水稻脱粒破碎或破损率的方法,设计了一种脱粒原理类似刚性杆齿脱粒的柔性杆齿脱粒滚筒,对其脱粒力进行了研究。分析表明在滚筒转速一定的情况下,采用柔性杆齿脱粒增加了与稻穗的接触时间,减少了冲击力,柔性杆齿打击力小于刚性杆齿。脱粒对比试验结果表明,直径小于刚性杆齿的柔性杆齿脱粒滚筒能适应水稻脱粒要求,脱粒指标中破碎率显著低于刚性杆齿滚筒,未脱净率、含杂率、脱粒率和断穗率均与刚性杆齿脱粒滚筒相近。  相似文献   

5.
小区小麦育种收获机锥型脱粒滚筒性能试验   总被引:5,自引:3,他引:2  
小区小麦育种收获机锥型脱粒滚筒体积小、功耗低,可加快脱粒滚筒轴向物料输送,提高清机效率。为了进一步研究锥型脱粒滚筒作业性能,结合自行研制的纵轴流锥型滚筒脱粒装置,通过改变锥型滚筒主要结构参数进行对比试验,得出滚筒锥角及滚筒脱粒元件是影响滚筒作业性能的主要结构参数。在选取最优参数后研制出一种集钉齿、短纹杆-板齿于一体,锥角为13°的组合齿锥型滚筒,并进行试验。试验结果表明,该滚筒作业时种子破碎率为0.52%,滚筒脱粒损失率及籽粒含杂率分别为0.43%及6.23%,装置内部种子残留率为0,功耗为2.48 kW,符合小区小麦育种收获要求。  相似文献   

6.
切流-横轴流玉米脱粒系统改进设计及台架试验   总被引:5,自引:4,他引:1  
对玉米脱粒过程的研究,理论分析与数学建模存在着理想假设的局限性,整机田间试验受制于系统结构、环境条件而不能深入测试分析。为便于室内研究玉米脱粒过程,以4YL-4/5型收获机脱粒系统为参照,设计了切流-横轴流脱粒试验系统,结构设计模块化,可根据需要更换脱粒滚筒等关键零部件或调整技术参数,以便兼顾开展多种谷物脱粒试验研究。工作参数标定表明,试验台架可满足最高37 k W的工作负载,满足滚筒线速度为0~29.06 m/s、喂入量为0~8.08kg/s的谷物脱粒试验。在入口脱粒间隙为36 mm,出口间隙为12 mm,喂入量为2.6 kg/s的条件下,切流滚筒采用螺旋柱齿结构、横轴流滚筒采用柱齿-板齿结构形式,以不同的横轴流滚筒线速度为测试速度,对含水率在22%~32%的玉米果穗进行脱粒试验,试验表明:切流滚筒的脱粒物质量占比随着含水率的增加而减弱,当含水率在28%以下,切流滚筒与横轴流滚筒脱粒筛分段的脱粒能力几乎相当,当含水率高于28%,切流滚筒的脱粒物质量占比下降明显。脱粒系统在线速度15.84~18.72 m/s和含水率为22%~26%的条件下,籽粒破碎率指标满足国标规定值≤5%。在滚筒线速度为17.28 m/s、含水率为24%~26%区间内,脱粒系统的籽粒破碎率最低,平均值为1.7%。通过脱粒试验台,将玉米脱粒过程的试验研究与田间测试有效结合,可为玉米籽粒收获机脱粒系统的设计提供科学依据。  相似文献   

7.
短纹杆-板齿与钉齿脱粒滚筒的脱粒对比试验研究   总被引:8,自引:7,他引:1  
目前所使用的全喂入式水稻联合收割机的脱粒装置大多采用轴流式钉齿滚筒,其功耗较大,籽粒的破损率较高,脱出的茎秆较碎,脱出混合物中杂余含量高,使得后续的清选负荷增加.为了降低功耗,减轻清选负荷,提高联合收割机的工作效率,试制了一种新型脱粒滚筒——短纹杆-板齿脱粒滚筒,并与钉齿脱粒滚筒进行了脱粒对比台架试验.试验结果表明,相对钉齿脱粒滚筒而言,短纹杆-板齿脱粒滚筒在脱粒水稻时功耗低,脱出混合物杂余含量少,能有效的减轻清选负荷.  相似文献   

8.
油菜联合收获机种子籽粒脱粒装置结构及运行参数优化   总被引:7,自引:6,他引:1  
为探究油菜联合收获机脱粒系统对油菜籽粒的收获效果,寻求较优的脱粒装置结构及运行参数,以喂入量、脱粒滚筒间隙、脱粒滚筒转速和脱粒元件型式种类为影响因素,油菜种子籽粒发芽率、脱粒损失为评价指标,开展油菜联合收获脱粒试验、发芽率试验及无损伤籽粒发芽率对比试验,探究了联合收获油菜籽粒的脱粒损伤机理。结果表明:影响油菜种子籽粒脱粒损伤的主次因素依次为脱粒元件型式、脱粒滚筒间隙、脱粒滚筒转速、喂入量;所选因素水平下,综合考虑脱粒损伤及损失,采用喂入量3.2 kg/s、脱粒滚筒间隙9 mm、脱粒滚筒转速856 r/min、全钉齿时为较优组合。分析表明:联合收获脱粒会对油菜种子籽粒造成损伤,影响脱粒损伤的直接因素为种子籽粒在滚筒内受打击次数及打击力大小;通过调整脱粒系统结构及运行参数,能够显著降低油菜的脱粒损伤及损失,本文为脱粒装置结构及运行参数的优化提供参考。  相似文献   

9.
纵轴流脱粒装置水稻最佳脱粒分离参数预测与控制   总被引:1,自引:1,他引:0  
在水稻脱粒过程中,脱粒滚筒的转速、凹板间隙、齿间距等是脱粒籽粒损失率和脱粒功耗的重要影响因素。为获得水稻联合收割机上纵轴流脱粒滚筒的最佳脱粒参数组合及可控范围,在自行研制的切纵流脱粒分离试验台上开展了水稻脱粒分离性能试验研究。对纵轴流滚筒在不同脱粒滚筒转速、凹板间隙、齿间距参数组合下进行水稻脱粒性能台架试验研究,并对试验结果进行回归分析和置信度分析。将获得的最佳操作参数置信区间用于控制纵轴流滚筒的水稻脱粒性能并预测其最优参数组合,同时进行了验证。结果表明,为将纵轴流脱粒滚筒的总损失率控制在0.33%以内且将脱粒功耗控制在46.36 kW以内,则具有95%置信度的纵轴流滚筒转速为772.61~905.74 r/min、脱粒间隙为22.18~37.93mm、齿间距为104.96~170.17 mm,其相应的纵轴流滚筒最佳转速为839 r/min、凹板间隙为30 mm、齿间距为138 mm。该研究对于降低纵轴流滚筒的脱粒功耗和籽粒损失具有重要意义,同时可为水稻联合收割机纵轴流脱粒滚筒最佳结构及参数设计提供参考。  相似文献   

10.
在水稻脱粒过程中,脱粒滚筒的转速、凹板间隙、齿间距等是脱粒籽粒损失率和脱粒功耗的重要影响因素。为获得水稻联合收割机上纵轴流脱粒滚筒的最佳脱粒参数组合及可控范围,在自行研制的切纵流脱粒分离试验台上开展了水稻脱粒分离性能试验研究。对纵轴流滚筒在不同脱粒滚筒转速、凹板间隙、齿间距参数组合下进行水稻脱粒性能台架试验研究,并对试验结果进行回归分析和置信度分析。将获得的最佳操作参数置信区间用于控制纵轴流滚筒的水稻脱粒性能并预测其最优参数组合,同时进行了验证。结果表明,为将纵轴流脱粒滚筒的总损失率控制在0.33%以内且将脱粒功耗控制在46.36 k W以内,则具有95%置信度的纵轴流滚筒转速为772.61~905.74 r/min、脱粒间隙为22.18~37.93mm、齿间距为104.96~170.17 mm,其相应的纵轴流滚筒最佳转速为839r/min、凹板间隙为30 mm、齿间距为138 mm。该研究对于降低纵轴流滚筒的脱粒功耗和籽粒损失具有重要意义,同时可为水稻联合收割机纵轴流脱粒滚筒最佳结构及参数设计提供参考。  相似文献   

11.
大豆联合收获机作业参数优化   总被引:9,自引:9,他引:0  
现阶段国内大豆联合收获机收获作业时由于脱粒、清选系统作业参数调整不当而导致大豆机收损失率、破碎率、含杂率较高。为解决这一问题,该文对影响大豆机收作业质量的相关参数开展田间试验研究,探索各参数对大豆机收作业质量的影响规律,探寻最佳作业参数组合。以机收损失率、破碎率、含杂率为目标,选择脱粒清选系统对作业质量影响较大的前进速度、滚筒转速、脱粒段脱粒间隙、分离段脱粒间隙、导流板角度、分风板角度、风机转速、上筛前部开度、上筛后部开度共9个因素,利用Box-Behnken中心组合试验方法,进行九因素三水平响应面试验,使用Design-Expert对试验结果进行响应面分析,探索各因素对试验指标的影响规律,并构建相关数学模型。试验结果表明:对大豆收获损失率影响较为显著的因素为风机转速、脱粒段脱粒间隙、前进速度、脱粒滚筒转速;对破碎率影响较为显著的因素为脱粒滚筒转速、脱粒段脱粒间隙、前进速度、导流板角度;对含杂率影响较为显著的因素为导流板角度、风机转速、分风板角度、上筛后部开度。通过多目标参数优化,确定最佳工作参数组合为前进速度6 km/h、脱粒滚筒转速450 r/min、脱粒段脱粒间隙25 mm、分离段脱粒间隙20 mm、导流板角度26?、风机转速1 260 r/min、分风板角度11.5?、上筛前部开度19 mm、上筛后部开度11 mm,此时损失率为0.24%、破碎率为0.90%、含杂率为0.14%,田间试验实测损失率、破碎率和含杂率平均值分别为0.24%、0.90%和0.14%,与优化值相对误差分别为0、4.7%和7.7%。研究结果可为大豆联合收获机结构改进和作业参数控制提供参考。  相似文献   

12.
纹杆块与钉齿组合式轴流玉米脱粒滚筒的设计与试验   总被引:8,自引:6,他引:2  
为解决黄淮海地区玉米直接进行籽粒收获破碎率和未脱净率高的问题,该文在分析现有脱粒滚筒结构特点的基础上,设计了组合式轴流玉米脱粒滚筒,选取滚筒转速、滚筒倾角和凹板间隙为试验因素,在自制的玉米脱粒试验台上进行了单因素试验和正交试验,并运用SAS统计分析软件对试验结果进行了分析。单因素试验结果表明:随着滚筒转速的增大,籽粒破碎率先降低后升高,未脱净率则急剧减小并趋于稳定;随着滚筒倾角的增大,籽粒破碎率和未脱净率则逐渐变小;随着凹板间隙的增大,籽粒破碎率先降低后升高,未脱净率先升高后降低并趋于稳定。正交试验结果表明:影响籽粒破碎率和未脱净率的主次因素顺序均为滚筒转速、滚筒倾角、凹板间隙,且转速430 r/min、滚筒倾角6?和凹板间隙55 mm时籽粒破碎率和未脱净率均最低。该研究可为高含水率玉米脱粒滚筒的设计提供参考。  相似文献   

13.
稻麦联合收获开沟埋草多功能一体机行走及脱粒性能改进   总被引:1,自引:1,他引:1  
针对自行研制的稻麦联合收获开沟埋草多功能一体机所存在的行走直线稳定性差、脱粒质量较低等问题。依据横向轴流式滚筒对稻麦秸秆的传递导流作用和二次复脱的原则,通过增设辅助滚筒的方法既改变出草口位置使开沟总成中移,消除整机偏向力,又延长秸秆在滚筒内的作用时间,提高谷物脱粒质量。其中:辅助滚筒总长为855 mm,导流角为18°,滚筒直径为452 mm,转速为1 350 r/min。性能测试表明:改进后自研一体机在0.27、0.58、0.85 m/s 3种不同工况下行走偏移度分别降低了93.9%、94.4%、93.3%,行走直线稳定性显著提高;小麦和水稻总损失率分别降低20.9%和11.8%,含杂率分别降低45.7%和21.4%。尽管水稻破碎率增加了7.4%,但脱粒的综合质量有较大提高。该研究增进了多功能一体机的适用性,为稻麦秸秆机械化集沟还田提供了参考。  相似文献   

14.
纵轴流联合收割机切流脱粒分离装置的研制与试验   总被引:7,自引:6,他引:1  
为了分析纵轴流联合收割机切流脱粒分离装置的脱粒分离性能,在自行研制的纵轴流脱粒分离清选试验台上,对钉齿和刀形齿切流脱粒分离装置进行了台架试验,测定了切流脱粒滚筒、强制喂入轮以及纵轴流复脱滚筒的功耗,分析切流脱粒分离装置的结构和运动参数对籽粒脱粒性能的影响。试验结果表明,切流脱粒分离装置的籽粒脱净率范围约为67.19%~82.37%,功耗约占脱粒总功耗的20%,刀形齿式切流脱粒滚筒消耗的功率较少,采用切流与纵轴流组合式脱粒分离装置的小麦脱净率均能达到99.90%以上,夹带损失率小于0.25%,配置刀形齿式切流脱粒滚筒的切流与纵轴流脱粒分离装置的总功耗较少,强制喂入轮和纵轴流复脱滚筒的功耗分别约占脱粒总功耗的14%和66%,研究结果对纵轴流联合收割机的研制具有指导意义。  相似文献   

15.
稻麦联合收获机分段式脱粒装置设计与优化   总被引:2,自引:2,他引:0  
针对纵轴流联合收获机在收获稻麦时出现的脱粒不彻底、分离不完全等问题,该研究设计了一种分段式纵轴流脱粒分离装置。该装置主要由锥形脱粒滚筒、脱粒强度可调式凹板筛、360°分离式凹板筛、作业参数电控调节系统等构成。通过单因素试验,分别获得了脱粒强度可调式凹板筛的开关板针对小麦和水稻脱粒的最佳开关状态。为寻求装置作业参数对脱粒效果的影响规律及最优参数组合,进行了多目标优化试验。以滚筒转速、导流板角度、凹板筛脱粒间隙、凹板筛分离间隙及喂入量作为影响因素,以破碎率、损失率、脱出物含杂率为试验指标,建立了破碎率、损失率、脱出物含杂率的数学模型。试验结果表明:各因素对破碎率影响的显著性大小顺序为滚筒转速、凹板筛脱粒间隙、导流板角度、喂入量、凹板筛分离间隙;对脱出物含杂率影响的显著性大小顺序为滚筒转速、导流板角度、凹板筛脱粒间隙、喂入量、凹板筛分离间隙;对损失率影响的显著性大小顺序为滚筒转速、导流板角度、凹板筛脱粒间隙、喂入量、凹板筛分离间隙。通过多目标参数优化分析,确定装置进行小麦脱粒的最优作业参数组合为脱粒滚筒转速905 r/min、导流板角度69°、凹板筛脱粒间隙18 mm、凹板筛分离间隙19 mm、喂入量4 kg/s。在该参数组合条件下进行了田间验证试验,结果表明,与常规纵轴流脱粒装置相比,整机作业破碎率由1.46%降为1.00%,含杂率由1.85%降为1.43%,损失率由1.72%降为1.20%,各指标实测值与模型优化值的相对误差均小于5%,满足国家相关标准要求。该装置有效解决了破碎率高、脱粒不干净、分离不彻底的问题,研究结果可为纵轴流联合收获机脱粒装置的结构改进和作业参数优化提供参考和依据。  相似文献   

16.
针对玉米籽粒直收机收获过程中无法自主调整工作参数,导致极端作业条件下收获后籽粒破碎率偏高的问题,该研究以降低籽粒破碎率为目标,设计了一种玉米籽粒直收低损收获自动控制系统。以4LZ-8型玉米籽粒直收机为研究对象,建立了脱粒滚筒转速、凹板间隙和行车速度控制模型,并基于收获参数对籽粒破碎率的回归模型,设计了低损收获自动控制策略。此外,针对传统PID控制系统存在的响应时滞、超调量大、精度差的问题,设计了基于改进粒子群算法的自动控制系统,利用非线性惯性权重递减算法融合布谷鸟算法的随机游走策略,不断更新粒子群的速度和位置,并对改进粒子群算法进行了性能测试,结果表明该算法有效改善了标准粒子群算法容易陷入局部最优值的问题。对低损收获自动控制系统进行的仿真对比试验和田间验证试验结果表明,改进粒子群算法对脱粒滚筒转速、凹板间隙和行车速度具有较好的控制精度、响应速度和稳定性,超调量和超调时间较小,当脱粒滚筒转速为380 r/min、凹板间隙为42 mm、行车速度为2.5 km/h时,自动控制系统在3 s以内调整籽粒直收机作业参数,将籽粒破碎率最终稳定在3.80%左右,满足标准要求。研究成果可为其他作物生产机...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号