首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
大豆烘干与储藏综合管理   总被引:2,自引:0,他引:2  
徐元伦 《粮食储藏》1998,27(2):25-29
文章从大豆太仓前的清理,烘干塔参数的控制,合理通风,倒仓,大豆温度和水分的监控,仓内灭菌以及储存期的控制,介绍了应用烘干技术和波纹钢板仓储藏技术对大豆进行综合管理。  相似文献   

2.
大豆是黑龙江省汤原县种植面积比较大的主要农作物之一,虽然《农作物种子检验规程》规定了大豆种子水分测定的方法,但是南于103±2℃烘干8h烘干时间太长,为了在春季种子质量监督抽查过程中,找出更快更好又比较准确的测定方法,我们进行了不同测定方法的对比试验。  相似文献   

3.
粮食水分快速烘干测定法   总被引:1,自引:0,他引:1  
粮油水分测定是粮食储藏企业的一项重要检测指标,本试验利用烘干失重法测定水分准确度高的特点,设定14组烘干条件,寻找高温与短时间的最佳组合,以达到准确快速检测水分的目的。试验表明:在160℃温度条件下烘干10min所得水分含量与130℃定温定时法对玉米、水稻、小麦和大豆水分含量结果在95%的置信区间内有F相似文献   

4.
本文分析了在储干燥的必要性,总结了在储干燥的优越性和不足之处。在储干燥稻谷的品质优于机械烘干的稻谷品质,与机械烘干单位烘干费用相比,在储干燥更经济。  相似文献   

5.
干燥过程对玉米质量指标的影响   总被引:1,自引:0,他引:1  
我国大部分产粮区都建有粮食烘干塔,它对实现粮食流通现代化,降低粮食流通成本,提高粮食流通效率,保障国家粮食安全都具有十分重要的意义。  相似文献   

6.
韩德志 《作物杂志》2022,38(1):84-543
大豆炸荚表型易受环境影响,炸荚相关研究的关键在于如何获得精准的表型。以遗传背景较近且炸荚表型差异较大的2份栽培大豆为材料,利用烘箱对2个品种完熟期不同部位的豆荚进行炸荚率检测,烘干温度和持续时间各设置5个处理。结果表明,不同处理下大豆各部位的炸荚率无显著差异,炸荚率与烘干温度及持续时间呈显著正相关;不同品种大豆炸荚率在60℃、11h后的处理均存在显著性差异,综合炸荚检测的便利、安全及种子发芽率的影响,最终确定烘干温度60℃、持续时间11~13h为最佳检测条件。  相似文献   

7.
高水分大豆静态通风干燥储藏技术研究   总被引:1,自引:0,他引:1  
本试验选择含水量15.5%左右的大豆三十万公斤,散存于地槽式机械通风仓内,以自然空气为介质,采用压入、吸出双向通风工艺,使大豆干燥到12.5%左右,并安全度夏.试验证实,在典型的温带海洋性气候地区,大豆静态通风干燥可以摆脱搬翻日晒的传统笨重方法,干燥品质和经济效益优于热力烘干,既节约了能源、劳力、费用,又能保持大豆原始品质.  相似文献   

8.
包衣大豆种子贮藏方法的研究   总被引:2,自引:1,他引:2  
芦春斌  黄上志  傅家瑞 《种子》2001,(3):6-7,34
“皖豆13号”大豆包衣种子,分别经日晒和烘干两种方法处理,水分降至10%以下,密封贮藏于0-5℃低温下12个月,种子的萌发均不受影响,烘干处理种子的活力指数无显著变化,日晒处理种子的活力指数极显著提高。根据本研究结果,认为包衣大豆种子经适度降水后低温贮藏。可以保持种用价值,降水方法以日晒为宜,低温(0-5℃)贮藏的最佳水分为10%左右。  相似文献   

9.
以玉米杂交种隆平206为材料,研究果穗不同烘干温度对玉米杂交种隆平206种子活力的影响,分析不同发芽条件下的种子活力差异,以探索该品种果穗的最佳烘干温度.结果表明,在标准发芽试验条件和人工老化条件下,隆平206种子保持活力最适宜的果穗烘干温度为35~41℃.在低温发芽条件下,果穗烘干温度为37~39℃,以保持幼苗健壮生...  相似文献   

10.
将新鲜黄花菜采用自然晾干、干燥箱烘干(60、70、75、80 ℃)和真空冷冻干燥(75 ℃)进行干燥处理,分析干燥过程中黄花菜质量的变化,计算含水量、干基含水率和干燥速率,绘制相应的曲线图,对比干燥结果。结果表明:晾干工艺依赖天气情况,晴天时室内外高温低湿环境会加速黄花菜的干燥速率,雨天时室内外低温高湿环境会降低黄花菜的干燥速率,但干黄花菜的品质最佳;真空冷冻干燥技术效率最高、干黄花菜颜色较好,但能耗大,投资成本高;干燥箱烘干效率随温度的升高而提高,烘干效率由低到高依次是60、70、75、80 ℃,但80 ℃高温烘干会导致黄花菜褐色加深。综合考虑在保障黄花菜的品质、降低预算的情况下,推荐75 ℃干燥箱烘干为黄花菜的适宜烘干工艺。  相似文献   

11.
Autotoxicity restricts reseeding of alfalfa (Medicago sativa L.) after alfalfa until autotoxic chemical(s) breaks down or is dispersed into external environments. A series of aqueous extracts from leaves, stems, roots and seeds of alfalfa ‘Vernal’ were bioassayed against alfalfa seedlings of the same cultivar to determine their autotoxicity. The highest inhibition was found in the extracts from the leaves. Extracts at 40 g dry tissue l?1 from alfalfa leaves were 15.4, 17.5 and 28.7 times more toxic to alfalfa root growth than were those from roots, stems and seeds, respectively. A high‐performance liquid chromatography (HPLC) analysis with nine standard compounds showed that the concentrations and compositions of allelopathic compounds depended on the plant parts. In leaf extracts that showed the most inhibitory effect on root growth, the highest amounts of allelochemicals were detected. Among nine phenolic compounds assayed for their phytotoxicity on root growth of alfalfa, coumarin, trans‐cinnamic acid and o‐coumaric acid at 10?3 m were most inhibitory. The type and amount of causative allelochemicals found in alfalfa plant parts were highly correlated with the results of the bioassay, indicating that the autotoxic effects of alfalfa plant parts significantly differed.  相似文献   

12.
Development of onion (Allium cepa L., cv. ‘Early Cream Gold’) seed under cool climate conditions in Tasmania, Australia occurred over a longer duration than previously reported, but similar patterns of change in yield components were recorded. In contrast to previous studies, umbel moisture content declined from 85 to 67 % over 57 days while seed moisture content decreased from 85 to 31 %. Seed yield continued to increase over the duration of crop development, with increasing seed weight compensating for seed loss resulting from capsule dehiscence in the later stages of maturation. Germination percentage was high and did not vary significantly from 53 to 77 days after full bloom (DAF), but mean germination time declined and uniformity of germination increased significantly over the same time period. The percentage abnormal seedlings declined with later harvest date, resulting in highest seed quality at 77 DAF. The results of this study suggest that the decision to harvest cool climate onion seed crops before capsule dehiscence will result in a loss of potential seed yield and quality.  相似文献   

13.
Jens Jensen 《Euphytica》1979,28(1):47-56
Summary The high-lysine gene in Risø mutant 1508 conditions an increased lysine content in the endosperm via a changed protein composition, a decreased seed size, and several other characters of the seed. The designation lys3a, lys3b, and lys3c, is proposed for the allelic high-lysine genes in three Risø mutants, nos 1508, 18, and 19. Linkage studies with translocations locate the lys3 locus in the centromere region of chromosome 7. A linkage study involving the loci lys3 and ddt (resistance to DDT) together with the marker loci fs (fragile stem), s (short rachilla hairs), and r (smooth awn) show that the order of the five loci on chromosome 7 from the long to the short chromosome arm is r, s, fs, lys3, ddt. The distance from locus r to locus ddt is about 100 centimorgans.  相似文献   

14.
[Objectives]This study aimed to establish a QAMS(quantitative analysis of multi-components by single-marker)method for simultaneous determination of four phenol...  相似文献   

15.
[Objectives]To optimize the water extraction process of Chinese Herbal Compound Man Gan Ning and establish a method for its extraction and content determination...  相似文献   

16.
Progress is being made, mainly by ICARDA but also elsewhere, in breeding for resistance to Botrytis, AScochyta, Uromyces, and Orobanche; and some lines have resistance to more than one pathogen. The strategy is to extend multiple resistance but also to seek new and durable forms of resistance. Internationally coordinated programs are needed to maintain the momentum of this work.Tolerance of abiotic stresses leads to types suited to dry or cold environments rather than broad adaptability, but in this cross-pollinated species, the more hybrid vigor expressed by a cultivar, the more it is likely to tolerate various stresses.  相似文献   

17.
T. Visser  E. H. Oost 《Euphytica》1981,30(1):65-70
Summary Apple and pear pollen was irradiated with doses of 0, 50, 100, 250 and 500 krad (gamma rays) and stored at 4°C and 0–10% r.h. From the in-vitro germination percentages an average LD 50 dose of about 220 krad was estimated. For both irradiated and untreated pollen a close and corresponding lineair relationship existed between germination percentage and pollen tube growth.Irradiated pollen was much more sensitive to dry storage conditions than untreated pollen, resulting in less germination and more bursting. Apparently, irradiation caused the pollen cell membrane to lose its flexibility faster than normal. Rehydration of dry-stored, irradiated pollen in water-saturated air restored germination percentages up to their initial levels. The importance of this procedure in germination trials is stressed.  相似文献   

18.
[Objectives] To determine the optimum extraction technology for total phenols of leaves in Acanthopanax giraldii Harms.[Methods]The single factor test and ortho...  相似文献   

19.
E. Keep 《Euphytica》1986,35(3):843-855
Summary Cytoplasmic male sterility (cms) is described in the F1 hybrids Ribes × carrierei (R. glutinosum albidum × R. nigrum) and R. sanguineum × R. nigrum. In backcrosses to R. nigrum, progenies with R. glutinosum cytoplasm were either all male sterile, or segregated for full male fertility (F) and complete (S) and partial (I) male sterility. Ratios of F:I+S suggested that two linked genes controlled cms, F plants being dominant for one (Rf 1) and recessive for the other (Rf 2).Segregation for cms in relation to three linded genes, Ce (resistance to the gall mite, Cecidophyopsis ribes), Sph 3(resistance to American gooseberry mildew, Sphaerotheca mors-uvae) and Lf 1(one of two dominant additive genes controlling early season leafing out) indicated that Rf 1and Rf 2were in this linkage group. The gene order and approximate crossover values appeared to be: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% aabaqaciGacaGaamqadaabaeaafaaakeaacaWGdbGaamyzamaamaaa% baGaaiiiaiaacccacaGGWaGaaiOlaiaacgdacaGG0aGaaiiiaiaacc% caaaGaaiiiaiaacccacaGGGaGaamOuaiaadAgaliaaigdakmaamaaa% baGaaiiiaiaacccacaGGGaGaaiiiaiaaccdacaGGUaGaaiOmaiaacs% dacaGGGaGaaiiiaiaacccacaGGGaGaaiiiaaaacaWGsbGaamOzaSGa% aGOmaOWaaWaaaeaacaGGGaGaaiiiaiaacccacaGGGaGaaiiiaiaacc% cacaGGGaGaaiiiaiaacccaaaGaamitaiaadAgaliaaigdakmaamaaa% baGaaiiiaiaacccacaGGGaGaaiiiaiaacccacaGGGaGaaiiiaiaacc% cacaGGGaGaaiiiaiaacccacaGGGaaaaiaadofacaWGWbGaamiAaSGa% aG4maaaa!6E4D!\[Ce\underline { 0.14 } Rf1\underline { 0.24 } Rf2\underline { } Lf1\underline { } Sph3\]. Crossover values of 0.36 for Ce-Lf 1, and 0.15 for Lf 1-Sph 3were estimated from the relative mean differences in season of leafing out between seedlings dominant and recessive for Ce and Sph 3.It is suggested that competitive disadvantage of lf 1-carrying gametes and/or zygotes at low temperatures may be implicated in the almost invariable deficit of plants dominant for the closely linked mildew resistance allele Sph 3. Poor performance of lf 1- (and possibly lf 2-) carrying gametes and young zygotes during periods of low temperature at flowering might also account for the liability of some late season cultivars and selections to premature fruit drop (running off).  相似文献   

20.
Parasitic angiosperms cause great losses in many important crops under different climatic conditions and soil types. The most widespread and important parasitic angiosperms belong to the genera Orobanche, Striga, and Cuscuta. The most important economical hosts belong to the Poaceae, Asteraceae, Solanaceae, Cucurbitaceae, and Fabaceae. Although some resistant cultivars have been identified in several crops, great gaps exist in our knowledge of the parasites and the genetic basis of the resistance, as well as the availability of in vitro screening techniques. Screening techniques are based on reactions of the host root or foliage. In vitro or greenhouse screening methods based on the reaction of root and/or foliar tissues are usually superior to field screenings and can be used with many species. To utilize them in plant breeding, it is necessary to demonstrate a strong correlation between in vitro and field data. The correlation should be calculated for every environment in which selection is practiced. Using biochemical analysis as a screening technique has had limited success. The reason seems to be the complex host-parasite interactions which lead to germination, rhizotropism, infection, and growth of the parasite. Germination results from chemicals produced by the host. Resistance is only available in a small group of crops. Resistance has been found in cultivated, primitive and wild forms, depending on the specific host-parasite system. An additional problem is the existence of pathotypes in the parasites. Inheritance of host resistance is usually polygenic and its transfer is slow and tedious. Molecular techniques have yet to be used to locate resistance to parasitic angiosperms. While intensifying the search for genes that control resistance to specific parasitic angiosperms, the best strategy to screen for resistance is to improve the already existing in vitro or greenhouse screening techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号