首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 359 毫秒
1.
四川省夏玉米机械粒收适宜品种筛选与影响因素分析   总被引:5,自引:1,他引:5  
为筛选适宜四川机械粒收夏玉米品种,明确玉米机械粒收质量影响因素,2017—2019年在四川省中江县开展了夏玉米机械粒收品种筛选试验研究,对参试28个玉米品种、98个品次机械粒收质量、籽粒含水率和产量数据进行分析。结果表明,玉米籽粒破碎率和落穗损失率高是四川夏玉米机械粒收存在的主要问题。夏玉米机械粒收籽粒破碎率平均为5.63%,杂质率平均为2.39%,落穗损失率平均为4.12%,籽粒总损失率平均为4.76%,其中落穗损失占籽粒总损失的86.55%。籽粒含水率与籽粒破碎率、杂质率、落粒损失率呈显著正相关,而与落穗损失率、籽粒总损失率相关不显著。收获时较高的籽粒含水率是导致籽粒破碎率高的主要原因,适当推迟收获时间可有效降低籽粒含水率,进而降低机械粒收籽粒破碎率。种植行距与收获机械行距不匹配导致错行收获是落穗损失率高的主要原因,保证收获机对行收获可显著降低落穗损失率,进而降低籽粒总损失率。本研究以玉米产量和机收时籽粒含水率为指标,筛选出产量高、籽粒含水率低的‘仲玉3号’‘渝单30’‘正红6号’‘延科288’ 4个玉米品种,可作为四川省夏玉米适宜机械粒收的品种。  相似文献   

2.
收获时期对四川春玉米机械粒收质量的影响   总被引:5,自引:2,他引:3  
开展收获时期对玉米机械粒收质量影响的研究,对确定玉米适宜机械粒收时期和粒收技术的推广应用具有重要意义。本文以四川4个主栽玉米品种为材料,研究不同收获时期(7月31日、8月7日、8月13日、8月19日、8月25日、8月31日)对四川春玉米机械粒收质量的影响,并分析籽粒含水率与机械粒收质量之间的关系。结果表明:随收获日期推迟,玉米籽粒含水率逐渐降低,破碎率先快速降低后略有升高,杂质率快速降低并趋于稳定,而落穗损失率显著增加,落粒损失率变化规律不明显。机械粒收损失主要为落穗损失,占总损失率的比例平均为76.34%。随收获日期推迟籽粒破碎率和杂质率在品种间的差异逐渐减小,而落穗损失和总损失率在品种间的差异逐渐增大。籽粒含水率是影响机械粒收质量的关键因素,破碎率与籽粒含水率拟合方程为y=0.032 9x2-1.332 8x+15.529(R2=0.55**),含水率为10.76%~29.76%,破碎率低于5%;杂质率与籽粒含水率拟合方程为y=0.031 8e0.118 5x (R2=0.71**),含水率低于38.37%,杂质率低于3%;落穗损失率与籽粒含水率拟合方程为y=2 083.3/x2.135(R2=0.68**);籽粒总损失率与籽粒含水率拟合方程为y=911.02/x1.769(R2=0.68**),含水率高于18.96%,籽粒总损失率低于5%。推迟收获有利于降低籽粒破碎率和杂质率,但增加落穗风险和籽粒总损失率。本试验播期条件下,玉米适宜机械粒收的籽粒含水率范围为18.96%~29.76%,适宜机械粒收时间在8月7—19日,较传统收获日期推迟10~15 d。  相似文献   

3.
水稻控制灌溉对稻麦轮作农田N_2O排放的调控效应   总被引:1,自引:1,他引:1  
为了揭示水稻控制灌溉对稻麦轮作农田N2O排放的调控效应,该文对稻麦轮作农田N2O排放进行原位观测,分析稻麦轮作农田N2O排放对水稻控制灌溉水分调控的动态响应。结果表明,水稻灌溉模式对后茬冬小麦田N2O排放产生了显著的后效性影响,控制灌溉稻季农田N2O排放总量较常规灌溉稻季农田平均增加了136.9%(P0.05),而稻季采用控制灌溉的麦季农田N2O排放总量较稻季采用常规灌溉的麦季农田平均减少47.1%(P0.05);稻季采用控制灌溉的稻麦轮作农田全年N2O排放总量平均为761.50 mg/m2,较稻季采用常规灌溉的轮作农田平均减少了1.0%,差异很小(P0.05)。稻季采用控制灌溉的稻麦轮作农田N2O-N损失率为1.01%,稻季采用常规灌溉的轮作农田N2O-N损失率为0.98%。麦季N2O排放通量的峰值一般出现在施肥后伴随降雨时,降雨后7~10 d是麦季N2O剧烈排放的关键时期。水稻控制灌溉较常规灌溉没有增加稻麦轮作农田的N2O排放。研究结果为准确估算中国农田N2O排放量及制定N2O减排措施提供参考。  相似文献   

4.
黄淮海夏玉米机械化粒收质量及其主要影响因素   总被引:3,自引:0,他引:3  
针对黄淮海夏玉米区机械粒收质量差及其主要影响因素不明确,该研究选择黄淮海夏玉米区2013-2019年机械粒收技术联合试验示范的1 250组测试样本进行籽粒含水率、破碎率、杂质率和损失率等粒收质量统计分析,结果表明,夏玉米机械粒收时籽粒含水率平均为27.38%,破碎率平均为9.29%,杂质率平均为1.68%,损失率平均为3.28%,籽粒含水率和破碎率明显高于全国平均值。从不同年份收获质量看,2018、2019年收获籽粒平均含水率下降至25.45%和25.05%,平均破碎率下降至9.07%和7.88%,虽仍然高出国家玉米机械收获规定的破碎率标准(≤5%)的要求,但收获质量已发生明显改善。破碎率与收获期籽粒含水率之间呈二次曲线关系,破碎率最低时籽粒含水率为21.08%。因此,破碎率高仍然是黄淮海夏玉米机械粒收存在的主要质量问题,而收获期籽粒含水率高是导致破碎率高、制约机械粒收的主要原因。针对黄淮海夏播区热量资源梯度分布差异较大,玉米收获季节窗口期短的特点,选择早熟、脱水快的品种,进行品种脱水与区域气候资源配置,进一步降低收获期籽粒含水率,规范宜机械粒收栽培技术以及收获机操作规程是破解黄淮海夏玉米粒收质量差的关键。  相似文献   

5.
机械收获方式及籽粒含水率对玉米收获质量的影响   总被引:7,自引:4,他引:3  
该文选用13个玉米品种为研究对象,通过田间试验系统研究了常规玉米栽培模式下延缓收获期间玉米含水率的变化规律,分析了果穗收获和籽粒收获2种收获方式对玉米收获损失率、籽粒破碎率和含杂率的影响,初步研究了不同机械收获方式及籽粒含水率对不同品种玉米收获质量的影响,建立了含水率与籽粒含杂率之间的数学函数。结果表明,延缓收获期间不同品种玉米的含水率均有显著的降低(P0.05),但其变化率存在差异。同期进行的果穗收获和籽粒收获2种收获方式的收获总损失率之间没有显著差异(P0.05),机械收获方式仅显著影响落粒率(P0.05)。延缓收获使落粒率和落穗率都显著下降(P0.05)。采用果穗收获方式时,籽粒含水率与各损失率之间不存在显著相关性;而籽粒收获时,籽粒含水率与落粒率、总损失率、破碎率和含杂率之间存在显著相关性。延缓进行籽粒收获后,籽粒含杂率均值为1.32%,总损失率均值为1.74%,均低于国标要求;而平均籽粒破碎率达13.23%,高于国标要求。含杂率与籽粒含水率之间满足线性关系,根据二者之间关系预测可知,籽粒含水率低于32.40%的收获就可以保证含杂率满足国标要求。该研究可为玉米籽粒收获技术的研究与推广提供数据支撑和科学依据。  相似文献   

6.
开展玉米机械粒收质量及其影响因素研究,对推动山西省玉米机械粒收发展,提升玉米产业核心竞争力有重要意义。本文以5个前期试验筛选的适宜机械粒收品种为材料,设置6个收获时期,在同一地块采用同一台机械与同一位农机手操作收获,研究不同收获期对机械粒收质量与产量的影响。研究表明,籽粒含水率随着收获时期的延迟降低;籽粒破碎率与机收落粒率随着收获时期延迟前期快速降低后期趋于稳定略有升高;杂质率随着收获时期的延迟逐步降低最后趋于稳定;落穗损失率随着收获时期的延迟升高。10月15日收获比9月24日收获平均增产11.9%。高的籽粒破碎率是限制山西省春玉米机械粒收的主要因素。籽粒含水率与破碎率模型为y=0.03x~2-1.224x+16.78 (R~2=0.802**)。当籽粒含水率为20.4%时,籽粒破碎率最低。籽粒含水率在15.6%~25.2%区间收获,破碎率能够达到≤5%的国家标准。在山西省春玉米区选择适宜机械粒收品种,收获时间推迟到10月15日,可达到理想粒收质量并增产。‘长单511’‘迪卡159’和‘长单716’在粒收质量与产量方面均表现优秀,可作为山西省春玉米区机械粒收品种推广应用。  相似文献   

7.
不同品种水稻的产量构成因素及其对氮磷吸收的差异研究   总被引:2,自引:0,他引:2  
为筛选出适合江苏地区种植的高产、高效水稻品种,采用盆栽试验,测定了江苏地区常见的11个水稻品种的株高、产量、结实率、总干物质量以及不同部位N、P含量,分析了水稻产量与其构成因素、氮磷积累量、氮磷收获指数间的相关关系。结果表明,水稻平均产量为16.85 g pot~(-1),变化幅度为8.28~25.18 g pot~(-1),品种间产量差异显著(P0.05),其中泰瑞丰5产量最高。水稻各部位氮素含量从大到小依次为:籽粒叶≈根茎谷壳,其中苏秀9籽粒中氮含量显著高于其他品种。磷素在水稻各部位中的含量分布为:籽粒根≈茎叶≈谷壳,籽粒中的磷含量最多的是南粳5055。相关分析表明,水稻的产量与总干物质量、穗粒数、氮磷积累量及氮磷收获指数均存在显著的相关性。不同品种水稻的产量、籽粒氮磷含量存在显著差异,这为高产、高效水稻品种的筛选提供了重要的科学依据。  相似文献   

8.
不同收获方式含水率对油菜收获物流损失的影响   总被引:11,自引:8,他引:3  
收获物流损失是影响油菜生产成本的重要因素,以DMH145油菜品种为对象,在丹麦FOULUM 农业研究中心试验研究了油菜籽粒含水率对油菜分段收获和联合收获中3种主要损失的影响,建立了含水率与3种主要损失及总损失之间的数学函数,另外秸秆含水率对秸秆收获物流损失的影响也进行了研究。结果表明:随着含水率的降低,脱粒损失和清选损失降低,但是过低的含水量会使割台损失增大。总损失与含水率之间存在CUBIC函数关系且关系显著;不同含水率情况下,分段收获和联合收获籽粒平均损失率分别为16.358%和18.771%,分段收获平均高出联合收获2.4%;在三大损失中割台损失最低值0.976%,平均低于脱粒损失和清选损失;秸秆含水率对秸秆收获物流损失影响不显著。  相似文献   

9.
全量稻秸还田小麦播种机秸秆分流还田装置设计   总被引:3,自引:2,他引:1  
针对中国稻麦轮作区水稻收获后播种小麦时,稻秸全量入土还田或全量覆盖还田存在的影响产量问题,提出了稻秸部分入土、部分覆盖技术思路,并基于全量秸秆地洁区机播技术设计了相应的秸秆分流还田装置,通过对比试验优选出最佳分流结构形式,在此基础上以均匀度变异系数和分流偏差率为目标函数,运用Box-Benhnken试验方法对影响全量稻秸还田小麦播种机分流作业质量的参数进行了试验研究,以纵向开口总宽、纵向开口数量和捡拾粉碎装置转速为影响因素进行三因素三水平二次回归正交试验设计。建立了响应面数学模型,分析了各因素对作业质量的影响,利用Design-Expert软件对影响因素进行了综合优化。试验结果表明:各因素对秸秆分流性能有显著影响,均匀度变异系数影响因素显著顺序依次为纵向开口数量、纵向开口总宽、捡拾粉碎装置转速,分流偏差率影响因素显著顺序依次为纵向开口总宽、纵向开口数量、捡拾粉碎装置转速;最优参数组合为纵向开口总宽600 mm,纵向开口数量7个,捡拾粉碎装置转速1 900 r/min,在此参数下测得的均匀度变异系数为19.68%,分流偏差率为0,与优化后理论值的绝对误差分别为0.93个百分点和0.33个百分点。研究结果可为中国稻麦轮作区水稻收获后播种小麦提供参考。  相似文献   

10.
不同施肥和秸秆还田措施对稻麦轮作系统碳氮流失的影响   总被引:5,自引:0,他引:5  
过量施肥和秸秆的处理问题一直是制约我国农业生态可持续发展的阻碍,并因此产生了诸多环境问题。采用DNDC模型对减量化施肥和秸秆还田措施下稻麦轮作系统中碳氮的迁移转化过程进行模拟,从而筛选适用于上海地区稻麦轮作系统中的最佳农田管理措施。结果表明:减量化施肥与秸秆还田均能显著影响稻麦轮作系统的氮素流失、温室气体排放和土壤碳储量变化。75%CK+SR处理即减量25%施肥量同时采用秸秆还田是适用于上海地区稻麦轮作系统中的最佳农田管理措施,能够在获得最佳水稻产量的同时有效减少41.67%的氮素流失量和51.85%的N_2O排放量。虽然秸秆还田会增加稻麦轮作系统的CH_4排放量,但同时也能显著增加土壤的碳储量。减量化施肥50%的处理(50%CK和50%CK+SR)则会导致水稻减产3.06%~9.90%。与目前上海地区传统的田间管理措施CK相比,75%CK+SR能够有效改善稻麦轮作系统的生态环境效益。研究结果为我国稻麦轮作系统碳氮流失的控制提供了参考。  相似文献   

11.
双通道喂入式再生稻收获机研制   总被引:3,自引:1,他引:2  
针对再生稻的头季稻机械化收获和低碾压率收获需要,该文设计了一种双通道喂入式再生稻收割机,主要由履带式底盘、割台、2套左右对称布置的脱粒清选装置和秸秆粉碎器、粮箱及动力与传动系统等组成。基于再生稻头季稻机械收获稻茬碾压模型确定其割幅为3000 mm,底盘轨距1500 mm,履带宽度400 mm,履带接地长度1800 mm。对双通道割台、秸秆粉碎器等关键部件进行设计分析,确定搅龙中部2个螺旋叶片起始位置的周向夹角为180°、秸秆粉碎器排草尾板外侧板倾角为8.2°、内侧板倾角为6°、上盖板与垂直方向夹角为63°。田间试验结果表明:该机作业速度可达0.8 m/s,喂入量4.6 kg/s,总损失率2.1%,含杂率0.4%,破碎率0.2%。直行碾压率26.7%,作业性能稳定,作业过程顺畅,尾部秸秆粉碎器可将碎秸导入履带碾压区。与现有常规收割机相比,该机可使再生稻头季稻的直行碾压率降低16.2%,可使再生季每公顷增产23.9%。该研究可为长江中下游地区再生稻机械化收获技术与装备研究及推广提供参考。  相似文献   

12.
轴流式和切流式机械脱粒对稻谷损伤及加工品质的影响   总被引:5,自引:3,他引:2  
为确定不同机械脱粒滚筒收获方式对收获后稻谷品质性状的影响,以手工收获方式稻谷为对照组,对轴流式和切流式脱粒滚筒收获方式收获稻谷的品质性状进行研究,检测不同收获方式稻谷的裂纹率、裂颖率、发芽率、幼苗生长、腹部与背部作为承压面糙米的三点弯曲破碎力、加工品质指标等。测试结果表明:机械脱粒方式收获稻谷与手工收获方式相比,裂颖率增加,发芽和幼苗生长、三点弯曲破碎力和加工品质降低,其中裂颖率最大增加约35.6%,发芽率降低最大达53%,茎秆长度最大降低15 mm,根数量最大降低2.4个,腹部和背部三点弯曲破碎力减小最大值为4.5和3.8 N,整精米率最大降低12.11%;而切流式脱粒滚筒收获方式收获稻谷与轴流式相比,裂颖率较大,发芽率降低达34%~51%,茎杆长度降低最大达12.6 mm,根数量降低最大达1.8个,腹部和背部三点弯曲破碎力差异较小,整精米率降低10.38%。总体来说不同机械脱粒收获方式对稻谷的品质性状影响具有差异性,轴流式脱粒收获方式对稻谷的机械损伤小于切流式脱粒收获方式,机械脱粒损伤稻谷品质性状的评价应该根据稻谷具体使用目的进行客观全面的评价。  相似文献   

13.
寒地超级稻摘脱台设计参数的试验研究   总被引:3,自引:3,他引:0  
为进一步改善寒地超级稻霜前收获摘脱台的性能,降低梳脱损失,通过对影响摘脱台工作性能的主要参数和结构特点的分析,在4ZTL-1800型气吸式割前摘脱稻麦联合收割机研究基础上,设计了一种具有可更换3种滚筒的摘脱台。以摘脱台的总损失为评价指标,对摘脱滚筒线速度、喂入速度、喂入口开度与喂入口风速进行了单因素和多因素正交试验。单因素试验表明:摘脱滚筒线速度、喂入速度和喂入口风速三因素对摘脱损失有显著影响。正交试验表明:最佳组合为滚筒线速度23 m/s,喂入速度1.1 m/s,喂入口开度120 mm,喂入口气流速度14 m/s,此技术条件下摘脱损失不大于1%。所设计的摘脱台满足超级稻收获要求,并为超级稻割前摘脱联合收割机摘脱台的设计提供依据。  相似文献   

14.
针对水稻收获机与转运车双机协同自主作业环节多、粮食转运过程复杂等问题,该研究设计了一种基于有限状态机(FSM,Finite State Machine)的水稻收获机与转运车协同作业策略。分析了水稻收获机与转运车协同作业模式,建立有限状态机模型。首先,基于作业环节设计触发条件、评估方法和执行流程等基础模块;然后,根据双机协同的各项状态建立状态信息矩阵;最后,依据协同触发事件与状态转移的逻辑设计状态转移链。构建协同作业时分复用控制逻辑框架,并运用Stateflow软件进行仿真分析,为验证所设计策略的田间实际作业效果,搭建了履带式水稻收获转运双机协同试验系统,收获速度为0.8 m/s,收割幅宽1.9 m,共28条收获边,协同路径选择在短边的机耕道上,连续协同工作时间大于120 min,采用套圈路径自主收获0.7 hm2水稻,期间共进行6次自动协同转运作业,将所收获的粮食转运到卡车上。试验结果表明,该策略可以实现水稻收获/卸粮转运自主作业,收获效率为0.35 hm2/h,为实现水稻收获双机智能转运协同功能奠定了基础,可为水稻无人农场建设提供技术支持。  相似文献   

15.
为提升机具作业效率和质量、减少土壤碾压等,该研究提出一种同时考虑作物倒伏状态、碾压面积和收获机粮仓容积的路径规划算法( harvester grain bin capacitated arc routing problem,HGBCARP)。该算法由作业信息处理模块和作业路径规划模块组成,作业信息处理模块将农田边界、卸粮点位置、作物倒伏方向及面积、位置等信息转化成可处理的数据形式并传输给路径规划模块,然后由路径规划模块进行作业行方向划分、作业行遍历顺序寻优、转弯方式生成、碾压面积计算等,最终得到最优路径规划结果。采用改进遗传算法,分别以3种再生稻收获机、2种传统水稻收获机和3种不同田块为对象,以行驶路径长度、碾压面积、收获粮食量为评价指标,采用回转式收获路径和HGBCARP式收获路径规划开展对比试验。结果表明,HGBCARP式比回转式收获路径碾压面积减少11.79%~27.20%,可使倒伏的机收头季稻增收1.64%~1.95%;同时在3种不同田块条件下进行仿真试验,HGBCARP式比回转式收获路径可使碾压面积减少7.25%~20.09%。使用电动无人履带式底盘对不同收获路径进行田间模拟收获试验,HGBCARP式收获路径与传统牛耕往复式及回转式收获路径相比,碾压面积减少约11.21%~28.03%,在路径长度减少约6.81%~23.46%,验证了HGBCARP式路径规划方法的有效性,研究结果可为智能化作业路径规划研究提供参考。  相似文献   

16.
基于U-Net模型的含杂水稻籽粒图像分割   总被引:6,自引:5,他引:1  
陈进  韩梦娜  练毅  张帅 《农业工程学报》2020,36(10):174-180
含杂率是水稻联合收获机的重要收获性能指标之一,作业过程中收获籽粒掺杂的杂质包含作物的枝梗和茎秆等,为了探索籽粒含杂率和机器作业参数之间的关联,需要实时获取籽粒含杂率数据。该文基于机器视觉的U-Net模型对联合收获机水稻收获籽粒图像进行分割,针对传统分割算法中存在运算量大、耗时多、图像过分割严重和分割参数依赖人为经验难以应对各种复杂谷物图像等问题,采用深度学习模型多次训练学习各分割类别的像素级图像特征,提出基于U-Net深度学习模型的收获水稻籽粒图像中谷物、枝梗和茎秆的分割方法,采用改进的U-Net网络增加网络深度并加入Batch Normalization层,在小数据集上获得更丰富的语义信息,解决图像训练数据匮乏和训练过拟合问题。选取田间试验采集的50张收获水稻籽粒图像,采用Labelme方式进行标注和增强数据,裁剪1 000张256像素×256像素小样本,其中700张作为训练集,300张作为验证集,建立基于改进U-Net网络的收获水稻籽粒图像分割模型。采用综合评价指标衡量模型的分割准确度,对随机选取的60张8位RGB图像进行验证。试验结果证明,水稻籽粒的分割综合评价指标值为99.42%,枝梗的分割综合评价指标值为88.56%,茎秆的分割综合评价指标值为86.84%。本文提出的基于U-Net模型的收获水稻籽粒图像分割算法能够有效分割水稻籽粒图像中出现的谷物、枝梗和茎秆,时性更强、准确度更高,可为后续收获水稻籽粒图像的进一步识别处理提供技术支撑,为水稻联合收获机含杂率实时监测系统设计提供算法参考。  相似文献   

17.
水稻秸秆收集与连续打捆复式作业机设计   总被引:1,自引:1,他引:0  
针对单体打捆机捡拾联合收获后田间滞留的水稻"站秆"及"残茬"收净率较低,以及圆捆打捆机绕线卸捆时需停机导致作业效率低等问题,该文将现有水稻联合收获机的脱粒清选和粮箱等装置与圆捆打捆装置置换,在输送槽出口与打捆装置集料口处设置集料装置作为缓存区,采用自动控制技术控制各功能部件连续作业,最终研发出集切割、捡拾、收集、打捆、集捆等功能于一体的田间水稻秸秆收集与连续打捆复式作业机。田间性能试验表明:在作业档的工况条件下,作业速度越快,成捆效率越高,但圆柱规范度程度越差;经测定,整机以中速档(1.1 m/s)连续作业3.4 h后,其成捆率为98%,生产率为0.4 hm2/h,秸秆收净率为95%。该研究为机械化收获后有效提高秸秆利用率以及实现农业生产中农机具的一机多用提供了参考。  相似文献   

18.
履带式丘陵山地胡麻联合收割机设计与试验   总被引:1,自引:1,他引:0  
针对丘陵山区地块面积小、道路狭窄,大型联合收割机运输难、进地难、转场难、操作难等现状,解决胡麻茎秆易缠绕、易堵塞、难喂入等问题,该研究设计了一种履带式丘陵山地胡麻联合收割机。该机采用防缠绕低损割台、纹杆+杆齿组合式小锥度横轴流脱粒滚筒、组合式窄栅格凹板等结构,可实现胡麻茎秆的防缠绕快速喂入、分段式脱粒与分离、清选等作业。试验结果表明:胡麻籽粒含水率为5.42%时,脱净率为98.76%、含杂率3.61%、破损率0.18%、割台损失率1.07%、夹带损失率0.25%,清选损失率0.81%、飞溅损失率0.26%、总损失率2.36%。作业期间整机运行平稳,作业指标符合胡麻机械化收获标准,满足胡麻机械化收获要求,可以作为丘陵山地胡麻联合收割机使用。  相似文献   

19.
为实现国内大豆大田生产低损收获同时兼顾大豆育种小区收获,该研究设计了4LZ-1.5型大豆联合收获机,针对大豆成熟期易炸荚的特性,分析了大豆拨禾作业过程,建立了拨禾轮结构和运动参数求解模型,并对拨禾轮半径、拨禾速度比、拨禾轮转速等参数进行优化;针对大豆结荚低、收割易铲土的特性,分析了大豆籽粒尺寸参数统计规律,并对割台除土机构进行优化;针对大豆成熟期易脱粒、易破碎特性,对脱粒分离装置、清选装置和气力卸粮装置进行优化;针对育种小区收获要求,建立了清种装置曲柄摇杆机构数字化设计模型,确定了清种装置结构参数。分别进行大田生产和育种小区收获试验,结果表明,大豆大田生产收获的损失率<3.5%,破碎率<1.5%,含杂率<1%;大豆育种小区收获的损失率<3%,破碎率<1.5%,含杂率<1%,混种率<0.2%,清种时间200~270 s,满足大豆大田生产和育种小区收获作业要求。与现有大豆收获机械相比,4LZ-1.5型大豆联合收获机收获损失率降低1.5%~5%、破碎率降低3.5%~6.5%、含杂率降低2%~7%,研究结果可为后续大豆收获机结构改进和作业参数优化提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号