首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of supplemental feeding with cereals (rye, triticale, maize and the unsupplemental control group) on fat content in flesh of 3‐year‐old common carp (Cyprinus carpio) were the subject of study carried out at four ponds (Czech Republic, Central Europe) during the growing season. The main result was that supplemental feeding with cereals to the same energetic level was associated with varying growth and fat content in the flesh of common carp. At the end of the experiment, the stock of fish supplementally fed with maize was found to have the highest fat content (112.7 ± 15.6 g kg?1), while the lowest value of fat content was found in the control group (56.8 ± 9.4 g kg?1). The carps supplementally fed with rye were found to have a higher fat content (90.1 ± 19.0) than those supplementally fed with triticale (84.3 ± 15.7 g kg?1). Established average fat content values (except for maize) were at the level that indicate a high sensory quality of carp flesh during the whole growing season.  相似文献   

2.
Three case studies of ammonia autointoxication of the common carp (Cyprinus carpio L.) are described. In the first case, carp yearlings with a full digestive tract were transferred during the growing period from pond water (22°C) to tap water (17°C). In the second case, marketable carp were transferred from the fishing ground of a pond (18°C) to a storage pond (10–12°C). Harvest was performed in late September when the fish were still ingesting natural feed. In the third case, marketable carp after storage for 1 month were transferred to storage ponds with markedly lower water temperature. Stress because of harvest and handling also occurred in this case. In all cases, highly increased concentrations of ammonia were found in the blood plasma of the fish (mean ± SD 1760 ± 350 μmol L−1 in the first case, 870 ± 540 μmol L−1 in the second case, and 880 ± 150 μmol L−1 in the third case). Highly congested, dark-red coloured, oedematous gills were observed for all specimens. We can avoid similar cases of ammonia autointoxication by protection of fish from sudden changes of temperature during rearing, harvesting, and handling.  相似文献   

3.
Abstract

Coho salmon (Oncorhynchus kisutch) fillets were processed using five different methods (smoking, canning, freezing, acidifying, and salting) to evaluate the effect of preservation choice on the quality of polyunsaturated fatty acids (PUFA). Salmon preserved by smoking, canning, or freezing retained higher values of total fatty acids, including n-3 PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Salting and acidifying (pickling) treatments resulted in a significant decrease in PUFAs. The results of this study are intended to provide direction for handling and storage of salmon to retain the maximum levels of high-value n-3 PUFAs.  相似文献   

4.
Nile tilapia juveniles (8.35 ± 0.80 g) were fed on four levels (0.0%; 0.5%; 1.0%; 2.0%, 4.0%) of Aurantiochytrium sp. meal (ALL‐G‐RICH?), a source of docosahexaenoic acid (DHA). The 1% Aurantiochytrium sp. meal diet was compared to a control diet, which contained the same amount of DHA as cod liver oil (CLO) at 1.7% diet. Groups of 25 fish were stocked in 100 L tanks and fed twice daily until apparent satiation, for 57 days, at 28°C. Increasing dietary Aurantiochytrium sp. meal reduced the body retention of DHA and n‐3 polyunsaturated fatty acids (n‐3 PUFA) but increased the body retention of alpha‐linolenic (α‐LNA), linoleic (LOA) and n‐6 polyunsaturated fatty acids (n‐6 PUFA). Fatty acid profile in tilapia muscle was affected by increasing dietary inclusions of Aurantiochytrium sp. meal, with an increase in DHA, α‐LNA, n‐3 PUFA and n‐3 long chain‐polyunsaturated fatty acids (n‐3 LC‐PUFA) but a decrease in monounsaturated fatty acids (MUFA), n‐6 PUFA and n‐6 long‐chain polyunsaturated fatty acids (n‐6 LC‐PUFA). There was a larger body retention of DHA, α‐LNA, LOA, n‐3 PUFA and n‐6 PUFA fatty acids and a higher percentage of DHA, n‐3 PUFA and n‐3 LC‐PUFA in muscle fatty acid profile in fish fed on CLO diets than in those fed on 1% Aurantiochytrium sp. Therefore, Aurantiochytrium sp. meal is an alternative source of DHA for Nile tilapia diets.  相似文献   

5.
An eight-week feeding trial has been conducted to determine the optimum ration for Indian major carp, Labeo rohita, fingerling (4.10 ± 0.30 cm, 0.55 ± 0.16 g) by feeding a purified diet (40% CP; 3.61 kcal g−1 GE) at six levels, 2, 4, 6, 8, 10, and 12% of body weight per day, at 0800 and 1600 h, in triplicate, to 20 fish per trough fitted with a water flow-through system. Highest weight gain, best feed conversion ratio (FCR), best specific growth rate (SGR%), and highest protein efficiency ratio (PER) were evident for rations of 6–8% body weight. Second-degree polynomial regression analysis for FCR, PER, protein, and energy retention data indicated the break-points occurred at 6.55, 6.75, 6.80, and 6.95% bw per day, respectively. Significant (P < 0.05) differences between body composition were observed for fish fed different rations. Maximum body protein content was recorded for 6% and 8% rations. A linear increase in body fat content was evident with increasing ration. Body moisture and ash content remained non-significantly (P > 0.05) low for higher rations, however. On the basis of these results it is recommended that feeding in the range 6.5–7.0% bw per day corresponding to 2.6–2.8 g protein and 23.49–25.31 kcal energy per 100 g of the diet per day is optimum for growth and efficient feed utilization of Labeo rohita. Results for 2–4% rations (0.8–1.6 g protein and 7.23–14.46 kcal energy) suggest these amounts approximate to the maintenance requirement of this fish.  相似文献   

6.
The mollusc-eating black carp (Mylopharyngodon piceus) has economic and health-care potential for biological control of nuisance aquatic molluscs. The present study investigates the production of gynogenetic-monosex and triploid-sterile populations of black carp. The goal was to provide a method which would eliminate unwanted biological and environmental impacts of introducing this exotic species into areas with nuisance mollusc infestation. Meiotic gynogenesis was induced by inseminating black carp eggs with UV-irradiated (800 Jm−2) sperm of common carp (Cyprinus carpio) or Japanese ornamental (koi) carp. Diploidy was restored through retention of the second polar body (2PB), by shocking activated eggs at 1–8 min post-fertilization (embryological age of 0.07–0.57τ0, a parameter defined by the cell cycle duration) at 1 min intervals, with heat-shocks (41.0±1.0 °C for 1 min) or pressure-shocks (7500–7600 psi for 1.5 min). Highest survival was found when embryos were heat-shocked 1.5–4.5 min post-fertilization (0.10–0.25τ0). The highest survival of free-swimming larvae from pressure-shocked eggs, was achieved at 7500 psi at 1–2 min post-fertilization (0.08–0.16τ0). Triploidy was induced by retention of 2PB following normal fertilization. Batches of 30 000 eggs were fertilized with intact sperm and pressure-shocked (6000–8500 psi for 1.5 min) 2 min post-fertilization (0.15–0.16τ0). The highest survival of triploid swim-up larvae was 5.1% in eggs shocked with 7500 psi. In random samples of individual larvae taken from each treatment, triploidy was analysed by cytofluorometry of the cellular DNA content. In DNA analysis performed in fingerlings (N≥15), 50% of the fish were triploids.  相似文献   

7.
Nile tilapia (Oreochromis niloticus) juveniles were fed diets containing 13 g/kg total polyunsaturated fatty acids (PUFAs) at different n‐3/n‐6 dietary ratios (0.2, 0.5, 0.8, 1.3 and 2.9) for 56 days, at 28°C. Subsequently, fish were submitted to a winter‐onset simulation (22°C) for 33 days. PUFA n‐3/n‐6 dietary ratios did not affect fish growth at either temperature. At 28°C, tilapia body fat composition increased with decreasing dietary PUFA n‐3/n‐6. Winter‐onset simulation significantly changed feed intake. The lowest dietary n‐3/n‐6 ratio resulted in the highest feed intake. At both temperatures, body concentrations of α‐linolenic acid, docosahexaenoic acid, eicosatrienoic acid and docosapentaenoic acid decreased as dietary n‐3/n‐6 decreased. Body concentrations of eicosapentaenoic acid (EPA, 20:5 n‐3) increased with decreasing concentrations of dietary EPA. The n‐6 fatty acids with the highest concentrations in tilapia bodies were linoleic acid and arachidonic acid (ARA, 20:4 n‐6). At 28°C, SREBP1 gene expression was upregulated in tilapia fed the lowest n‐3/n‐6 diet compared to tilapia fed the highest n‐3/n‐6 ratio diet. Our results demonstrate that a dietary PUFA of 13 g/kg, regardless of the n‐3/n‐6 ratio, can promote weight gains of 2.65 g/fish per day at 28°C and 2.35 g/fish per day at 22°C.  相似文献   

8.
The diet composition and fish preference of piscivorous Eurasian otters (Lutra lutra) were studied in two fish farm systems in Hungary using spraint (otter faeces) analysis during two wintering periods. The primary food source of otters in both fish farms was fish (97–99% of biomass). The main fish prey was small-sized, below 100 g in weight (96% in both areas), while fish prey above 500 g comprised only 0.1–0.4% of the diet. The bulk of the otters’ diet consisted of less-valued species, especially non-native Prussian carp (Carassius auratus gibelio). Consumption of commercial fish species ranged between 15 and 31% of the total diet. Otters preferred fish below 100 g in weight (Ivlev’s electivity index, E i = 0.65–0.70), and showed a lesser preference for (or avoided) fish above 100 g in weight (E i = −0.37–1.00). With regard to species distribution, otters preferred small (below 100 g) grass carp (Ctenopharyngodon idella), zander (Sander lucioperca), pike (Esox lucius), Prussian carp, topmouth gudgeon (Pseudorasbora parva), while they consumed common carp (Cyprinus carpio), the most important commercial species, proportionally to its abundance in the environment (E i = −0.18–0.29).  相似文献   

9.
This study investigated effects of linseed or fish oil–enriched finishing diets on the polyunsaturated fatty acids (PUFA) composition in dorsal muscle tissues of pond‐cultured common carp (Cyprinus carpio). After 180 days of dietary exposure to cereal diet containing vegetable oil (1%), carp were exposed to 7% linseed (LO) or 7% fish oil–enriched (FO) finishing diets for 30 days. FO supplied 17 and 20 mg fish?1 day?1, respectively, of the long‐chain n‐3 fatty acids eicosapentaenoic and docosahexaenoic acid for 30 days and doubled long‐chain PUFA concentrations in carp of the FO pond. The increased supply of short‐chain PUFA in LO resulted in higher short chain, but not long‐chain PUFA, showing that there was very little PUFA conversion. Thus, dietary short‐chain PUFA could not compensate for the low levels of dietary long‐chain PUFA in LO. However, moderate supply of dietary long‐chain PUFA in finishing diets for 30 days is very efficient in increasing nutritionally important long‐chain PUFA concentrations in carp.  相似文献   

10.
We explored how currently manufactured feeds, under real‐world conditions and across geographically distinct locations, promoted flesh n‐3 long‐chain polyunsaturated fatty acid (LC‐PUFA, i.e. 20:5n‐3 + 22:6n‐3) levels in various life stages of farmed Atlantic Salmon (Salmo salar). Potential effects on flesh LC‐PUFA included: (1) diet and fish weight at one Canadian east coast farm, (2) diet and farm location across six east coast farms, and (3) diet and farm location between east and west coast farms. For objectives 1 and 2, salmon were fed a currently manufactured feed (labelled as feeds A, B or C) and harvested at 1, 3 and 5 kg. LC‐PUFA levels in 5 kg (harvest size) fish were then compared to previously published values for west coast farmed Atlantic Salmon (Obj. 3). Combined results revealed that variability in LC‐PUFA levels was better explained by diet than by fish weight or farm location. Fish size, however, was also important for two reasons. First, feeding a high LC‐PUFA diet early in life appeared important for ensuring high LC‐PUFA levels at harvest size. Second, salmon flesh LC‐PUFA levels increased with fish size, but only when dietary LC‐PUFA was provided above an apparent threshold value (~3000 mg per 100 g or 10% of total fatty acids) that likely promoted LC‐PUFA incorporation and storage. Overall, our comparison makes new recommendations for feed manufacturers and demonstrates that farmed Atlantic Salmon reared under real‐world conditions on currently available salmon feeds were good sources of n‐3 LC‐PUFA to consumers.  相似文献   

11.
Goldfish were used as a model for the evaluation of canola oil as a lipid source in the feeds of larval and juvenile cyprinids. Goldfish larvae were raised from hatching until 24 weeks of age on diets containing cod liver oil. canola oil or a mixture of the two oils as the lipid source. Survival, weight gain and weight-length relationship did not differ among groups of fish fed the three diets. Carcass fatty acid profiles largely reflected those of the diets except that carcasses of fish fed canola oil contained long chain (n-3) and (n-6) polyunsaturated fatty acids (PUFA) that are not found in canola oil. This indicates that goldfish are capable of producing these fatty acids from 18-carbon precursors. The flesh of fish fed canola oil would be inferior for human nutrition to that offish fed marine oils, due to lower (n-3) PUFA levels. However, the results do indicate that canola oil has good potential as a lipid source in larval cyprinid diets.  相似文献   

12.
The effect of prebiotic xylooligosaccharides (XOS) on the growth performance and digestive enzyme activities of the allogynogenetic crucian carp, Carassius auratus gibelio, was investigated. XOS was added to fish basal semi-purified diets at three concentrations by dry feed weight: diet 1, 50 mg kg−1; diet 2, 100 mg kg−1; diet 3, 200 mg kg−1, respectively. Twelve aquaria (n = 20) with three replicates for each treatment group (diets 1–3) and control treated without XOS were used. Weights of all collected carp from each aquarium were determined at the initial phase and at the end of the experiment, and the carp survival was also determined by counting the individuals in each aquarium. After 45 days, there were significant differences (P < 0.05) in the relative gain rate (RGR), and daily weight gain (DWG) of diets 1–3 were compared with the control. However, the survival rate was not affected (P > 0.05) by the dietary treatments. For enzymatic analysis, dissection produced a crude mixture of intestine and hepatopancreas of each segment to measure. The protease activity in the intestine and hepatopancreas content of fish in diet 2 (487.37 ± 20.58 U g−1 and 20.52 ± 1.93 U g−1) were significantly different (P < 0.05) from that in the control (428.13 ± 23.26 U g−1 and 12.81 ± 1.52 U g−1) and diet 3 (428.00 ± 23.78 U g−1 and 14.04 ± 1.59 U g−1). Amylase activity in the intestine was significantly higher for diet 2 compared to diet 1 and the control. As for amylase in the hepatopancreas, assays showed higher activity in diet 2 (P < 0.05) compared to the rest.  相似文献   

13.
Like marine fish freshwater fish are an important source of essential fatty acids for human nutrition. However, the fatty acid composition of pond fish can vary considerably and strongly depends on that of the ingested food. Investigations on the fatty acid composition of common carp (Cyprinus carpio) and tench (Tinca tinca) have shown that different methods of rearing and feeding cause substantial variations in the proportions of the n-6 and n-3 polyunsaturated fatty acids of these fish species. Carp reared on the basis of natural food in ponds exhibit high contents of n-6 as well as n-3 fatty acids in their muscle triacylglycerols. On the other hand carp fed supplementary wheat in ponds resulted in somewhat lower levels of these essential fatty acids. High amounts of n-3 fatty acids can be found in carp fed high-energy diets containing high levels of fish oil. Analogous results were obtained in experiments with tench reared under different nutritional conditions. While rearing on the basis of only natural food in ponds as well as feeding supplementary wheat yielded in similar levels of n-3 and n-6 polyunsaturated fatty acids, higher contents of n-3 fatty acids were recorded in tench fed pellets. High levels of n-3 polyunsaturated fatty acids in foodstuffs have positive effects on human health. Experiments with different cultured fish species proved that the fatty acid composition of the edible parts can be influenced by the diet. Therefore, a finishing diet with a suitable fatty acid profile can be used to improve the nutritional quality of fish products of farmed origin.  相似文献   

14.
杜仲对草鱼生长、肌肉品质和胶原蛋白基因表达的影响   总被引:1,自引:1,他引:0  
为研究杜仲对草鱼生长性能、肌肉品质及胶原蛋白基因COL1A1和COL1A2表达的影响,实验采用初始体质量为(215.0±0.4)g的草鱼120尾,随机分为2处理组(每组3重复,每重复20尾鱼),分别饲喂基础饲料(对照组)和添加2%杜仲的实验饲料(杜仲组),养殖时间为8周。结果显示,与对照组相比,添加2%杜仲对草鱼生长性能无显著影响,但能显著增加肌肉、皮肤和肝脏胶原蛋白水平,增加肌肉总必需氨基酸(TEAA)、总氨基酸(TAA)水平。2%杜仲可显著降低草鱼肌肉的冷冻失水率、离心失水率,但对肌纤维密度和肌纤维直径无显著影响。在胶原蛋白基因表达方面,2%杜仲显著增加了第4周、8周时草鱼的肌肉、皮肤和第8周时的肝脏组织COL1A1、COL1A2基因m RNA表达量。研究表明,饲料中添加2%杜仲可改善大规格草鱼的肌肉品质。  相似文献   

15.
Carp undergo temperature acclimation of respiratory function by altering mitochondrial ATP synthase (FoF1-ATPase) both quantitatively and qualitatively (Itoi et al. 2003). To address such acclimation temperature-dependent changes of FoF1-ATPase activity, we investigated in this study the correlation between the fatty acid composition and FoF1-ATPase activity in fast muscle of thermally acclimated carp. The quantities of saturated fatty acids of mitochondria from carp acclimated to 10 °C were significantly lower than those of carp acclimated to 30 °C. While mono- and poly-unsaturated fatty acids tended to increase with cold acclimation of carp, the molar concentration of 16:0 aldehyde in mitochondria from the 10 °C-acclimated carp were less than those from the 30 °C-acclimated fish. The specific activities of FoF1-ATPase in the 10 °C- and 30 °C-acclimated fish mitochondria were calculated to be 167±22 and 56±10 nmol/min ⋅ mg mitochondrial protein, respectively, the difference being significant at P<0.005. Taken together, the increase in FoF1-ATPase activity in fast muscle mitochondria of carp after cold temperature acclimation may be closely related to the increase of unsaturated fatty acids in mitochondria. Abbreviations: BSA - bovine serum albumin; DHA - docosahexaenoic acid; EGTA - ethyleneglycol bis(2-aminoethylether)tetraacetic acid; EPA - eicosapentaenoic acid; FoF1-ATPase - mitochondrial ATP synthase; α-F1-ATPase - FoF1-ATPase α-subunit; β-F1-ATPase - FoF1-ATPase β-subunit; HEPES - 2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid; SDS - sodium dodecyl sulfate; SDS-PAGE - SDS-polyacrylamide gel electrophoresis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Climate-induced shifts in plankton blooms may alter fish recruitment by affecting the fatty acid composition of early-life diets and corresponding performance. Early-life nutrition may immediately affect survival but may also have a lingering influence on size and growth via experiential legacies. We explored the short- and longer-term performance consequences of different concentrations of polyunsaturated fatty acids (PUFA) for juvenile Walleye (Sander vitreus, Mitchill 1818). For the first 10 days of feeding, juveniles were provided Artemia enriched with: oleic acid (low PUFA), high docosahexaenoic acid and high eicosapentaenoic acid (high PUFA), or high PUFA and a form of vitamin E (high PUFA + E). After 10 days, all fish were fed a high-quality diet and reared for an additional 27 days. Juveniles fed either high PUFA diet were 1.15-fold larger (PUFA mean ± SD = 20.0 ± 3.3 mg; PUFA + E = 19.8 ± 3.3 mg) than those fed the low PUFA (17.3 ± 2.8 mg) diet after 10 days of feeding. After 27 days, juveniles initially fed the high PUFA diet were still 1.10- to 1.20-fold larger (PUFA = 407.0 ± 61.6 mg; PUFA + E = 422.7 ± 58.7 mg) than those initially fed the low PUFA diet (356.5.0 ± 39.5 mg). Our findings demonstrate that fatty acid composition of juvenile Walleye diets has immediate and lingering size effects. As changes in climate continue to alter lower trophic levels, fish management and conservation may need to consider short- and long-term effects of temporal or spatial differences in early-life diet quality.  相似文献   

17.
Retentions of total n-3 and n-6 essential fatty acids (EFAs) were assessed in Atlantic salmon (Salmo salar L.) parr held at 8 °C and 2 °C until they increased in weight from ca. 19 g to 38 g. Feeds contained sandeel oil or a rapeseed:linseed oil blend at 21 and 34% dietary fat. EFA retention efficiencies [(g EFA gained g EFA ingested-1) × 100] were estimated by the 'mass balance method' from measurements of feed intake, changes in biomass for each tank of fish, and fatty acid compositions of the feeds and fish. The n-3 EFA retentions were higher (overall mean 71%) across feed treatments and temperatures than the n-6 EFA retentions (overall mean 63%). Retentions of the n-3 fatty acids were higher in the fish given the feeds with the lower fat content (77% vs. 65%), implying improved retention with reduced n-3 EFA availability. n-3 EFA retention tended to be higher at 2 °C than at 8 °C, although this was not consistent across feeds. At low temperature there was very high retention of the n-3 EFAs in feeds containing sandeel oil (80%). Such high retention may represent an adaptation response to low temperature. Lower n-6 EFA retentions imply that more n-6 fatty acids were metabolized than n-3 EFAs. Feed oil influenced retention of the n-6 fatty acids, retention being lower for the salmon parr given the feeds containing sandeel oil (56% vs. 71%). This could indicate a higher tissue deposition of n-6 fatty acids when they are freely available via the diet. Abbreviations: AA – arachidonic acid (C20:4 n-6); DHA – docosahexaenoic acid (C22:6 n-3); EFA – essential fatty acid; EPA – eicosapentaenoic acid (C20:5 n-3); HUFA – highly-unsaturated fatty acid (\ge4 double bonds); MUFA – monounsaturated fatty acid (1 double bond); PL – phospholipid; PUFA – poly-unsaturated fatty acids (\ge2 double bonds); SFA – saturated fatty acid (no double bond); TAG – triacylglycerol. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The effect of dietary n−3 and n−6 polyunsaturated fatty acids (PUFAs) on juvenile Arctic charr Salvelinus alpinus (L.) were investigated with respect to essential fatty acid (EFA) deficiency and lipid metabolism using one commercial and 12 casein-based test diets. Arctic charr with mean weight of 1.6g were fed test diets for 12 weeks at 10°C. At the end of the feeding, blood, liver, muscle and whole fish were sampled to determine haematocrit, haemoglobin, water content, lipid and fatty acid composition. Charr fed diets containing 0–1.0% n−3 PUFAs showed typical EFA deficiency signs: fatty liver or elevated water content in whole body or substantial accumulation of 20:3n−9 in liver polar lipids. These signs were less apparent or disappeared when charr were fed diets containing ≥ 2.0% 18:3n−3. No correlation was found between dietary PUFAs and haematocrit or haemoglobin values. Significant changes in fatty acid composition of liver polar lipids in charr fed dietary PUFAs indicate that charr can convert 18:3n−3, 18:2n−6 and 20:5n−3 into long-chain PUFAs. While charr had a direct incorporation of dietary 22:6n−3 into liver and muscle there appears to be preferential utilization of n−3 PUFAs for elongation and desaturation. The conversion of 18:4n−3 was less in muscle than in livers. These findings, combined with data on growth and feed efficiency reported previously by Yang and Dick (1993), indicate that charr require 1−2% dietary 18:3n−3 (dry weight). Small amounts of dietary 18:2n−6 (up to 0.7%) did not have detrimental effects on charr.  相似文献   

19.
The effective implementation of a finishing strategy (wash‐out) following a grow‐out phase on a vegetable oil‐based diet requires a period of several weeks. However, fish performance during this final stage has received little attention. As such, in the present study the growth performance during both, the initial grow‐out and the final wash‐out phases, were evaluated in Murray cod (Maccullochella peelii peelii). Prior to finishing on a fish oil‐based diet, fish were fed one of three diets that differed in the lipid source: fish oil, a low polyunsaturated fatty acid (PUFA) vegetable oil mix, and a high PUFA vegetable oil mix. At the end of the grow‐out period the fatty acid composition of Murray cod fillets were reflective of the respective diets; whilst, during the finishing period, those differences decreased in degree and occurrence. The restoration of original fatty acid make up was more rapid in fish previously fed with the low PUFA vegetable oil diet. During the final wash‐out period, fish previously fed the vegetable oil‐based diets grew significantly (P < 0.05) faster (1.45 ± 0.03 and 1.43 ± 0.05, specific growth rate, % day−1) than fish continuously fed with the fish oil‐based diet (1.24 ± 0.04). This study suggests that the depauperated levels of highly unsaturated fatty acids in fish previously fed vegetable oil‐based diets can positively stimulate lipid metabolism and general fish metabolism, consequently promoting a growth enhancement in fish when reverted to a fish oil‐based diet. This effect could be termed ‘lipo‐compensatory growth’.  相似文献   

20.
The total lipid profile including the fatty acid composition and amino acid composition in eggs of Hilsa (Tenualosa) ilisha was studied in comparison with its muscle tissue. The eggs contained 30.4% lipid (on dry basis), which was 1.2 times higher than that of the muscle tissue lipid. The major portion of the egg lipid was composed of wax ester (about 47.6%) followed by triacylglycerol (TAG), phospholipid (PL), and cholesterol. The muscle tissue lipid contained TAG as the major fraction (41.8 ± 1.48%). Total amount of polyunsaturated fatty acids (PUFAs) was about 43 ± 0.05% and 32.4 ± 0.24% in egg PL and body tissue PL fractions, respectively. Among fatty alcohols of egg wax ester, 16:0 alcohol is predominant (56.4 ± 3.02%). Both the egg and muscle tissues are rich in all essential amino acids. The results indicate that muscle and eggs from Hilsa are rich in essential amino acids, PUFA, and phospholipids which are essential for human health and membrane development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号