首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A total of 720 nursery pigs in three experiments were used to evaluate the effects of blood meal with different pH (a result of predrying storage time) and irradiation of spray-dried blood meal in nursery pig diets. In Exp. 1, 240 barrows and gilts (17 +/- 2 d of age at weaning) were used to determine the effects of blood meal pH (7.4 to 5.9) in diets fed from d 10 to 31 postweaning (7.0 to 16.3 kg of BW). Different lots of dried blood meal were sampled to provide a range in pH. Overall (d 0 to 21), pigs fed diets containing blood meal had greater ADG (P < 0.05) and ADFI (P < 0.05) than pigs fed diets without blood meal. Ammonia concentrations in blood meal rose as pH decreased. However, blood meal pH did not influence (P > 0.16) ADG, ADFI, or gain:feed (G:F). In Exp. 2, 180 barrows (17 +/- 2 d of age at weaning) were used to determine the effects of post drying pH (7.6 to 5.9) and irradiation (gamma ray, 9.5 kGy) of blood meal on growth performance of nursery pigs from d 5 to 19 postweaning (6.8 to 10.1 kg of BW). One lot of whole blood was isolated with 25% of the total lot dried on d 0, 3, 8, and 12 after collection to create a range in pH. Overall, pigs fed blood meal had improved G:F (P < 0.01) compared to pigs fed the control diet. Similar to Exp. 1, the ammonia concentration of blood meal increased with decreasing pH. Blood meal pH did not influence ADG, ADFI, or G:F (P > 0.21), but pigs fed irradiated blood meal (pH 5.9) had greater ADG and G:F (P < 0.05) than pigs fed nonirradiated blood meal (pH 5.9). In Exp. 3, 300 barrows (17 +/- 6 d of age at weaning) were used to determine the effects of blood meal irradiation source (gamma ray vs. electron beam) and dosage (2.5 to 20.0 kGy) on growth performance of nursery pigs from d 4 to 18 postweaning (8.7 to 13.2 kg of BW). Overall, the mean of all pigs fed blood meal did not differ in ADG, ADFI, or G:F (P > 0.26) compared to pigs fed the control diet without blood meal. Pigs fed irradiated blood meal had a tendency (P < 0.10) for increased G:F compared with pigs fed nonirradiated blood meal. No differences in growth performance were detected between pigs fed blood meal irradiated by either gamma ray or electron beam sources (P > 0.26) or dosage levels (P > 0.11). These studies suggest that pH alone as an indicator of blood meal quality is not effective and irradiation of blood meal improved growth performance in nursery pigs.  相似文献   

2.
A total of 1,210 nursery pigs was used in two experiments to evaluate the effects of irradiation of typical nursery diet ingredients, specialty protein products, and the whole diet on nursery pig performance. In Exp. 1, 880 barrows and gilts (15 +/- 2 d of age at weaning) were used in two growth trials (14 d and 12 d for Trials 1 and 2, respectively) to determine the effects of individual ingredient and whole-diet irradiation on nursery pig performance. Overall (d 0 to 14 of Trial 1 and d 0 to 12 of Trial 2), ADG was greater (P < 0.05) for pigs fed irradiated animal plasma compared with pigs fed the control, the diet containing irradiated microingredients, and the diet that was manufactured and irradiated. Also, pigs fed irradiated soybean meal had greater (P < 0.05) ADFI compared with pigs fed the manufactured diet that was irradiated. Pigs fed the diet containing irradiated animal plasma had improved feed efficiency (G:F; P < 0.05) compared with those fed the diet with irradiated microingredients and when all ingredients were irradiated before manufacturing of complete feed. Finally, pigs fed irradiated corn, whey, fishmeal, soybean oil, microingredients, or if all ingredients or the whole diet were irradiated, had similar ADG, ADFI, and G:F (P > 0.12) to control pigs. In Exp. 2, 330 nursery pigs (20 +/- 2 d of age at weaning) were used to determine the effects of irradiation of commercially available specialty protein products in diets for nursery pigs. Overall, ADG was greater (P < 0.05) when pigs were fed diets containing nonirradiated spray-dried animal plasma and egg combination (SDAPE) and dried porcine digest (DPD) compared with pigs fed the control diet containing no specialty protein products. In addition, G:F was improved (P < 0.05) when pigs were fed diets containing nonirradiated SDAPE, DPD, spray-dried beef muscle (SDBM), and spray-dried whole egg (SDWE) compared with pigs fed the control diet. Pigs fed irradiated SDAPE and SDBM had greater (P < 0.05) ADG than pigs fed the nonirradiated forms. Pigs fed irradiated SDBM had improved (P < 0.05) G:F compared with pigs fed the nonirradiated form. In Exp. 1 and 2, an irradiation treatment level of 8.5 kGy was effective in reducing the total bacterial concentration of all ingredients evaluated, as well as the whole diet in Exp.1. Irradiation of certain ingredients, but not the complete diet, increased growth performance of nursery pigs.  相似文献   

3.
Weanling pigs (total of 560) were used in two experiments to determine the effects of poultry meal in nursery diets on pig performance. In Exp. 1,210 barrows and gilts (initially 7.4 kg and 21 +/- 2 d of age) were fed one of five diets, which included a control diet with no specialty protein products or (as-fed basis) the control with 2.5 or 5.0% fish meal, or 2.9 or 5.9% poultry meal (11.8% ash). Poultry meal replaced fish meal on an equal lysine basis. Overall (d 0 to 28), pigs fed diets containing fish meal had greater (P < 0.01) ADG than pigs fed poultry meal. Increasing fish meal tended to have increased (quadratic, P < 0.07) ADG, with the greatest improvement observed in pigs fed the diet containing 2.5% fish meal. Pigs fed diets containing fish meal had improved (P < 0.01) G:F compared with pigs fed diets containing poultry meal. In Exp. 2, a total of 350 barrows and gilts (initially 8.9 kg and 22 +/- 2 d of age) were fed one of seven experimental diets, which included a control diet with no specialty protein products, or the control with 2.5 or 5.0% fish meal, 2.9 or 5.8% low-ash (10.9%) poultry meal, and 3.1 or 6.2% high-ash (13.5%) poultry meal. Poultry meal replaced fish meal on an equal lysine basis. Overall (d 0 to 15), there were no differences in ADG and ADFI (P = 0.14); however, pigs fed diets containing fish meal or poultry meal had improved (linear, P < 0.01) G:F compared with pigs fed the control diet. Pigs fed diets containing low-ash poultry meal had greater (P < 0.01) G:F compared with pigs fed diets containing high-ash poultry meal. Based on these data, quality control specifications, such as ash content, need to be considered when using poultry meal as an animal protein replacement in diets for nursery pigs.  相似文献   

4.
Five experiments were conducted to determine the effects of different wheat gluten (WG) sources (Source 1 = enzymatically hydrolyzed, Source 2 = nonmodified ring-dried, Source 3 = spray-dried, and Source 4 = flash-dried) on growth performance of nursery pigs compared with soybean meal (SBM), spray-dried animal plasma (SDAP), or other specialty protein sources. In Exp. 1, pigs (n = 220, initially 6.1 +/- 2.5 kg) were fed a control diet containing (as-fed basis) 6% SDAP or WG Source 1 or 2. The WG and l-lysine*HCl replaced 50 or 100% of the SDAP. From d 0 to 21, increasing WG (either source) decreased ADG and ADFI (linear, P < 0.01), but improved (linear, P < 0.02) G:F. In Exp. 2, pigs (n = 252, initially 6.2 +/- 3.0 kg) were fed a negative control diet containing no SDAP or WG, diets containing (as-fed basis) 9% WG Source 1 or 5% SDAP, or combinations of WG and SDAP where WG and l-lysine*HCl replaced 25, 50, or 75% of SDAP. From d 0 to 14, pigs fed increasing WG had decreased ADG (linear, P < 0.05). In Exp. 3, pigs (n = 240, initially 7.0 +/- 2.5 kg) were fed a negative control diet, a diet containing (as-fed basis) either 3, 6, 9, or 12% WG Source 3, or a positive control diet containing 5% SDAP. The diets containing 9% WG and 5% SDAP had the same amount of SBM. From d 0 to 7, pigs fed 5% SDAP had greater (P < 0.04) ADG than pigs fed the diet containing 9% WG. From d 0 to 14, increasing WG had no effect on ADG, ADFI, or G:F. In Exp. 4, pigs (n = 200, initially 6.0 +/- 2.4 kg) were fed a negative control diet, the control diet with (as-fed basis) 4.5 or 9.0% WG Source 1, or the control diet with 2.5 or 5.0% SDAP. Diets containing WG and SDAP had similar SBM levels. From d 0 to 7 and 0 to 14, increasing SDAP tended to improve (linear, P < 0.06) ADG, but increasing WG had no effect. In Exp. 5, 170 barrows and gilts (initially 7.5 +/- 2.8 kg) were used to determine the effects of WG Source 1 and 4 compared with select Menhaden fish meal or spray-dried blood cells and a negative control diet (SBM) on the growth performance of nursery pigs from d 5 to 26 postweaning (d 0 to 21 of experiment). No differences were found in ADG or G:F, but pigs fed the diet containing (as-fed basis) 2.5% spray-dried blood cells had greater ADFI than pigs fed the negative control from d 0 to 21. Wheat gluten source had no effect on ADG, ADFI, or G:F. The results of these studies suggest that increasing WG in diets fed immediately after weaning did not improve growth performance relative to SBM or SDAP.  相似文献   

5.
Four experiments with 1,040 weanling pigs (17 +/- 2 d of age at weaning) were conducted to evaluate the effects of spray-dried animal plasma source, drying technique, and methods of bacterial reduction on nursery pig performance. In Exp. 1, 180 barrows and gilts (initial BW 5.9 +/- 1.8 kg) were used to compare effects of animal plasma, animal plasma source, drying technique (spray-dried or freeze-dried), and plasma irradiation in nursery pig diets. From d 0 to 10, pigs fed diets containing irradiated spray-dried animal plasma had increased ADG and ADFI (P < 0.05) compared with pigs fed diets containing nonirradiated spray-dried animal plasma. Pigs fed irradiated animal plasma Sources 1 and 2 were similar in ADG and ADFI, but pigs fed animal plasma Source 1 had greater ADG (P < 0.05) than pigs fed animal plasma Source 2 and pigs not fed plasma. Pigs fed freeze-dried animal plasma had growth performance similar (P > 0.36) to pigs fed spray-dried animal plasma. Overall (d 0 to 24), pigs fed irradiated spray-dried animal plasma were heavier (P < 0.05) than pigs fed no animal plasma, whereas pigs fed nonirradiated spray-dried plasma were intermediate. In Exp. 2, 325 barrows and gilts (initial BW 5.8 +/- 1.7 kg) were used to compare the effects of irradiation or formaldehyde treatment of animal plasma and formaldehyde treatment of the whole diet. Pigs fed diets containing irradiated animal plasma had greater ADG (P < 0.05) than pigs fed nonirradiated plasma. Pigs fed formaldehyde-treated plasma had greater ADG and ADFI (P < 0.05) than pigs fed diets with either nonirradiated plasma or whole diet treated with formaldehyde. In Exp. 3 (360 barrows and gilts; initial BW 6.3 +/- 2.7 kg) and Exp. 4 (175 barrows and gilts; initial BW 6.1 +/- 1.7 kg), the irradiation of feed (high bacteria) and food-grade (low bacteria) animal plasma in nursery pig diets was examined. Pigs fed irradiated feed-grade plasma Product 2 had increased ADG (P < 0.05) compared with pigs fed nonirradiated plasma Product 2 and pigs fed the control diet without plasma. In Exp. 3 and 4, pigs fed irradiated food-grade plasma had growth performance similar to pigs fed nonirradiated food-grade plasma (P > 0.12). These studies indicate that bacterial reduction of feed-grade, but not food-grade animal plasma, improves nursery pig performance.  相似文献   

6.
Five experiments were conducted to evaluate the effects of a high-protein, whey protein product (WPP; 73% CP, 6.8% lysine, 12.8% fat, and 5% lactose) and spray-dried animal plasma (SDAP) on growth performance of weanling pigs. In all experiments, pigs were fed experimental diets from d 0 to 14 after weaning in a pelleted form and then a common diet in meal form for the remainder of the experiment. Dietary treatments were established by substituting WPP or SDAP for dried skim milk (Exp. 1) or soybean meal (Exp. 2, 3, 4, and 5) in the control diet. In Exp. 1, we maintained a constant level of lactose in all diets by adjusting the amount of added crystalline lactose. The amount of lactose in diets used in Exp. 2 through 5 varied slightly by the addition of WPP. In Exp. 1 and 2, 180 weanling pigs (initially 5.8 kg and 19 +/- 1 d of age or 5.5 kg and 17 +/- 1 d of age, respectively) were used. Treatment diets contained SDAP (2.5 and 5%) or WPP (2.7 and 5.4% in Exp.1, and 2.5 or 5.0% in Exp. 2). In Exp. 1, from d 0 to 7 after weaning, ADG and ADFI increased with increasing SDAP (linear, P < .01). No other treatment effects were observed during the d 0 to 14 period. In Exp. 2, from d 0 to 14 after weaning, ADG and G:F increased (linear, P < .04) with increasing SDAP or WWP. In Exp. 3, 305 weanling pigs (initially 4.1 kg and 12 +/- 1 d of age) were used. The control diet contained 2.5% SDAP. The experimental diets were similar to the control diet but contained an additional 2.5 or 5.0% SDAP or 2.5 or 5.0% WPP. From d 0 to 14 after weaning, ADG, ADFI, and G:F increased (quadratic, P < .05) with increasing SDAP up to 5.0%. Increasing WPP increased ADG (quadratic, P < .07) and ADFI (linear, P < .09). In Exp. 4 and 5, 329 and 756 weanling pigs (initially 4.1 kg and 12 +/- 1 d of age and 5.2 kg and 18 +/- 1 d of age, respectively) were fed diets in which WPP was substituted for 0, 25, 50, 75, and 100% (Exp. 4) or 0, 50, and 100% (Exp. 5) of the SDAP in the control diet. In Exp. 4 and 5, from d 0 to 14 after weaning, pigs fed a 1:1 blend of each protein source had better ADG (quadratic, P < .04) than those only fed SDAP. In conclusion, WPP can be used in combination with or as a total replacement for SDAP in diets for weanling pigs without reducing performance.  相似文献   

7.
Two experiments were conducted to evaluate the effects of providing a water-soluble globulin in the drinking water on growth performance of weanling pigs. In Exp. 1, 360 weanling pigs (5.0 +/- 1.2 kg; 17 +/- 3 d of age; PIC) were blocked by initial weight and allotted to one of six treatments in a 2 x 3 factorial arrangement. Treatments included three diet complexity regimens with or without water-soluble globulin (3 and 1.5% solutions; d 0 to 7 and d 0 to 14, respectively) provided in the drinking water. The 35-d study was divided into three phases (d 0 to 7, 7 to 14, and 14 to 35) with corresponding lysine levels of 1.6, 1.5, and 1.35%. Soybean meal replaced specialty protein and lactose sources to provide three different complexity regimens. From d 0 to 7, a water-soluble globulin x diet complexity interaction (P < 0.05) was observed for average daily gain (ADG) and gain:feed (G/F). Increasing diet complexity increased ADG and G/F for pigs provided water, whereas the medium diet complexity regimen optimized performance for pigs offered water-soluble globulin. From d 0 to 14, pigs fed the two more complex regimens had greater ADG and G/F (P < 0.01) than the pigs fed the least complex regimen. Pigs offered water-soluble globulin had decreased (P < 0.01) ADFI, but increased (P < 0.001) G/F from d 0 to 14. For overall performance (d 0 to 35), increasing diet complexity increased (P < 0.03) ADG and ADFI, whereas water-soluble globulin offered from d 0 to 14 had no effect. In Exp. 2, 360 weanling pigs (5.2 +/- 1.6 kg; 19 +/- 4 d of age) were used in a 21-d growth assay. The trial was arranged as a 2 x 3 factorial with pigs fed the low- or medium-complexity diets (Exp. 1) with water or a 3% solution of water-soluble globulin offered for 4 or 8 d after weaning. From d 0 to 4, pigs offered water-soluble globulin had increased (P < 0.001) ADG and G/F compared with pigs provided water, whereas from d 4 to 8, pigs provided water had increased (P < 0.05) ADG and G/F compared with pigs offered water-soluble globulin. Pigs fed the medium-complexity diet had increased ADG and G/F (d 4 to 8 and d 8 to 12) compared with pigs fed the low-complexity diet. From d 0 to 8 and d 0 to 21, pigs provided water-soluble globulin for 4 or 8 d after weaning had improved G/F compared with pigs provided water. Results demonstrate that providing water-soluble globulin through the water source of weanling pigs improves ADG and G/F immediately after weaning.  相似文献   

8.
Two experiments were conducted to determine the effects of dietary supplementation of exogenous enzymes on growth performance, apparent total tract digestibility (ATTD) of energy and nutrients, blood metabolites, fecal VFA, and fecal ammonia-N in growing pigs (Sus scrofa) fed a corn (Zea mays L.)- and soybean [Glycine max (L.) Merr.] meal (SBM)-based diet. In Exp. 1, 240 growing barrows (initial BW: 55.6 ± 0.9 kg) were randomly allotted to 5 treatments on the basis of BW. There were 4 replicates in each treatment with 12 pigs per replicate. The 5 treatments consisted of a corn-SBM-based control diet and 4 additional diets were similar to the control diet, with the exception that 0.05% β-mannanase (M), α-amylase + β-mannanase (AM), β-mannanase + protease (MPr), or α-amylase + β-mannanase + protease (AMP) was added to the diets, which were fed for 28 d. Pigs fed the AM, MPr, or AMP diet had greater (P < 0.05) ADG than pigs fed the control diet. Pigs fed the AMP diet also had greater (P < 0.05) ADG than pigs fed the M, AM, or MPr diet. Pigs fed the AMP diet had greater (P < 0.05) G:F than pigs fed the control diet. The G:F of the pigs fed the M, AM, or MPr diet were not different (P > 0.05) from the G:F in pigs fed the AMP or control diet. The ADFI, ATTD of nutrients, blood metabolites, and fecal VFA and ammonia-N concentrations were not different among treatments. In Exp. 2, 192 growing barrows (initial BW: 56.9 ± 1.0 kg) were allotted to 4 treatments. There were 4 replicates in each treatment with 12 pigs per replicate. Pigs were fed a corn-SBM-based diet (CSD) or a complex diet (CD) that contained corn, SBM, 3% rapeseed (Brassica napus L.) meal, 3% copra (Cocos nucifera L.) meal, and 3% palm (Elaeis guineensis Jacq.) kernel meal. Each diet was prepared without exogenous enzymes or with 0.05% AMP and all diets were fed for 28 d. The ADG and G:F of pigs fed the CSD were greater (P < 0.05) than pigs fed the CD. However, the type of diet had no effect on the ATTD of nutrients, blood metabolites, or fecal VFA and ammonia-N, and there was no diet × enzyme interaction for any of the measured variables. Supplementation of diets with exogenous enzymes resulted in greater (P < 0.05) ADG, G:F, ATTD of DM, GE, and CP, and blood urea nitrogen (BUN) concentration. These results indicate that supplementation of 0.05% of AMP enzymes to a corn-SBM diet or a complex diet may improve the performance of growing pigs.  相似文献   

9.
Four experiments were conducted to examine the effect of porcine circovirus type 2 (PCV2) vaccination on the response of growing and finishing pigs (PIC 337 × 1050) to increasing dietary Lys. Experiments 1 and 2 evaluated 38- to 65-kg gilts and barrows, respectively, and Exp. 3 and 4 evaluated 100- to 120-kg gilts and barrows, respectively. Gilts and barrows were housed separately in different barns. Treatments were allotted in a completely randomized design into 2 × 4 factorials with 2 PCV2 treatments (PCV2-vaccinated and nonvaccinated) and 4 standardized ileal digestible (SID) Lys:ME ratios (2.24, 2.61, 2.99, and 3.36 g/Mcal in Exp. 1 and 2 and 1.49, 1.86, 2.23, and 2.61 g/Mcal in Exp. 3 and 4) within each experiment. There were 5 pens per treatment. At the start of Exp. 1 and 2, there were more pigs per pen (P < 0.001) in vaccinated pens because vaccinated pigs had a greater survival rate than nonvaccinated pigs, and this increase was maintained throughout the experiments. Removal rate approached 30% in nonvaccinated barrows and more than 20% in nonvaccinated gilts. Observation suggested that the removals were largely due to PCV2-associated disease. No PCV2 vaccination × SID Lys:ME ratio interactions (P > 0.10) were observed in any of the 4 studies. In Exp. 1 and 2, PCV2-vaccinated pigs had increased (P < 0.001) ADG compared with nonvaccinated pigs. The growth response was primarily due to increases in ADFI, which suggests that vaccinated pigs have a greater Lys requirement (g/d) than nonvaccinated pigs. In Exp. 1, increasing the SID Lys:ME ratio increased (quadratic; P < 0.04) ADG and G:F, with pigs fed the 2.99 g/Mcal ratio having the greatest ADG and G:F. In Exp. 2, increasing the SID Lys:ME ratio improved (linear; P < 0.001) G:F. In Exp. 3, ADG and G:F increased (P < 0.05) in a quadratic manner as the SID Lys:ME ratio fed increased. In Exp. 4, increasing the SID Lys:ME ratio increased ADG (linear; P < 0.001) and G:F (quadratic; P = 0.03). Although PCV2 vaccination improved growth, the corresponding increase in ADFI did not increase the optimal SID Lys:ME ratio for growing and finishing barrows and gilts.  相似文献   

10.
Three experiments were conducted to evaluate spray-dried blood cells (SDBC) and crystalline isoleucine in nursery pigs. In Exp. 1, 120 pigs were used to evaluate 0, 2, 4, and 6% SDBC (as-fed basis) in a sorghum-based diet. There were six replicates of each treatment and five pigs per pen, with treatments imposed at an initial BW of 9.3 kg and continued for 16 d. Increasing SDBC from 0 to 4% had no effect on ADG, ADFI, and G:F. Pigs fed the 6% SDBC diet had decreased ADG (P < 0.01) and G:F (P = 0.06) compared with pigs fed diets containing 0, 2, or 4% SDBC. In Exp. 2, 936 pigs were used to test diets containing 2.5 or 5% SDBC (as-fed basis) vs. two control diets. There were six replicates of each treatment at industry (20 pigs per pen) and university (six pigs per pen) locations. Treatments were imposed at an initial BW of 5.9 and 8.1 kg at the industry and the university locations, respectively, and continued for 16 d. Little effect on pig performance was noted by supplementing 2.5% SDBC, with or without crystalline Ile, in nursery diets. Pigs fed the 5% SDBC diet without crystalline Ile had decreased ADG (P < 0.01), ADFI (P < or = 0.10), and G:F (P < 0.05) compared with pigs fed the control diets. Supplementation of Ile restored ADG, ADFI, and G:F to levels that were not different from that of pigs fed the control diets. In Exp. 3, 1,050 pigs were used to test diets containing 5, 7.5, or 9% SDBC (as-fed basis) vs. a control diet. There were six replicates of each treatment at the industry (20 pigs per pen) location and five replicates at the university (six pigs per pen) locations. Treatments were imposed at an initial BW of 6.3 and 7.0 kg at the industry and university locations, respectively, and continued for 16 d. Supplementation of 5% SDBC without crystalline Ile decreased ADG and G:F (P < 0.01) compared with pigs fed the control diet, but addition of Ile increased ADG (P < 0.01) to a level not different from that of pigs fed the control diet. The decreased ADG, ADFI, and G:F noted in pigs fed the 7.5% SDBC diet was improved by addition of Ile (P < 0.01), such that ADG and ADFI did not differ from those of pigs fed the control diet. Pigs fed diets containing 9.5% SDBC exhibited decreased ADG, ADFI, and G:F (P < 0.01), all of which were improved by Ile addition (P < 0.01); however, ADG (P < 0.05) and G:F (P = 0.09) remained lower than for pigs fed the control diet. These data indicate that SDBC can be supplemented at relatively high levels to nursery diets, provided that Ile requirements are met.  相似文献   

11.
Three experiments were conducted to evaluate pet food by-product (PFB) as a component of nursery starter diets and its effects on pig performance. The PFB used in these studies was a pelleted dog food that contained (as-fed basis) 21% CP, 1.25% total lysine, and 8.3% ether extract. In Exp. 1, 288 early-weaned pigs (5.2 kg at 14 d) were used to determine the effects of replacing animal protein and energy sources with PFB at 0, 10, 30, and 50% (as-fed basis) inclusion levels in phase I (d 0 to 7 after weaning) and phase II (d 7 to 21 after weaning) diets. Phase I diets contained 27.5% whey, 18.75% soybean meal, 1.50% lysine, 0.90% Ca, and 0.80% P, with PFB substituted for corn, fat, plasma protein, fish meal, limestone, and dicalcium phosphate. Phase II diets had a constant 10% whey, 1.35% lysine, and PFB was substituted for blood cells, a portion of the soybean meal, and other ingredients as in phase I diets. In phase I, growth performance by pigs fed PFB-containing diets was similar to that of the control diet. In phase II, ADG (linear; P < 0.05 and quadratic, P < 0.005), ADFI (linear and quadratic, P < 0.01), and G:F (quadratic, P < 0.01) were increased with increasing PFB inclusion. In Exp. 2, 80 weaned pigs (6.7 kg at 21 d) were fed a common phase I diet for 1 wk and used to further evaluate the effect of PFB in phase II diets (same as Exp 1; initial BW = 8.1 kg) on growth performance and apparent total tract nutrient digestibility. There were no differences in ADG, ADFI, or G:F across treatments. Dry matter and energy digestibility did not differ among diets; however, digestibilities of CP (P < 0.05) and the essential AA, arginine (P < 0.02), histidine (P < 0.01), lysine (P < 0.001), threonine (P < 0.01), and valine (P < 0.01), were greater as PFB was increased in the diet. In Exp. 3, the performance by pigs (n = 1 70; 5.5 kg; 21 d of age) fed diets with 0 or 30% PFB in both phases I and II was examined. Growth performance was similar in both diets. These studies demonstrate that pet food by-product can effectively be used as a partial replacement for animal protein sources and grain energy sources in the diets of young nursery pigs.  相似文献   

12.
We conducted two experiments to study the effects of pelleting and pellet conditioning temperature on weanling pig performance. In Exp. 1, 252 weanling pigs (PIC, L326 x C22) averaging 6.0 +/- 1.3 kg and 21 +/- 3 d of age were used to evaluate six corn-soybean meal-based diets containing 15% dried whey and formulated to contain 1.4% lysine. Treatments consisted of a control diet without spray-dried animal protein (SDAP) fed in meal form, a diet with 5% SDAP fed in meal form, and four diets with 5% SDAP that were conditioned at 60, 66, 71, or 77 degrees C for 10 s prior to pelleting. Pellets had a 3.97-mm diameter. The experimental diets were fed from d 0 to 14 after weaning, and all pigs were fed a common diet in meal form from d 14 to 28 after weaning. From d 0 to 7 after weaning, pigs fed diets containing SDAP had greater ADG, gain/feed (P < 0.001), and ADFI (P < 0.05) than pigs fed the control diet. No differences (P > 0.10) were observed between pigs fed the pelleted diets and those fed the SDAP diet in meal form. Conditioning temperature had no effect (P > 0.10) on weanling pig performance from d 0 to 14, and the diet fed from d 0 to 14 had no effect on overall performance (d 0 to 28). In Exp. 2, 252 weanling pigs (6.3 +/- 1.5 kg and 22 +/- 4 d of age) were used to evaluate diets with same composition as in Exp. 1, but treatments consisted of diets with or without SDAP conditioned at 60 degrees C before pelleting, and four diets containing 5% SDAP that were conditioned at 68, 77, 85, and 93 degrees C before pelleting. As in Exp. 1, conditioning lasted 10 s, pellets were 3.97 in mm diameter, and experimental diets were fed for the first 14 d of the 28-d experiment. From d 0 to 7, pigs fed the SDAP diet conditioned at 60 degrees C had greater ADFI (P < 0.05) and tended (P = 0.12) to have greater ADG than pigs fed the diet without SDAP and conditioned at 60 degrees C. From d 0 to 7, ADG (quadratic effect, P < 0.03) and ADFI (linear effect, P < 0.002) decreased as conditioning temperature increased, with the largest decrease observed above 77 degrees C. From d 0 to 14 and 0 to 28, ADG was not affected (P > 0.10) by pellet conditioning temperature or SDAP fed from d 0 to 14. The results of these studies suggest that conditioning diets containing 5% SDAP at temperatures above 77 degrees C decreases weanling pig growth performance.  相似文献   

13.
We conducted three experiments to determine the apparent ileal digestibility of amino acids (Exp. 1), metabolizable and digestible energy (Exp. 2), and feeding value (Exp. 3) of dry extruded-expelled soybean meal with (DEH) or without (DENH) hulls compared with solvent-extracted soybean meal with hulls removed (SBMNH). Soybeans used to produce DEH were unadulterated prior to extrusion, but those used for DENH were dehulled prior to extrusion. In Exp. 1, six nonlittermate barrows (initially 39 kg) were fitted with ileal T-cannulas and used in a replicated 3 x 3 Latin square design digestion trial. Experimental diets (0.80% total lysine) were cornstarch-based and contained soybean meal from one of the three different sources as the sole source of lysine. Apparent ileal digestibilies of nutrients were similar (P > 0.10) for DEH and DENH. Apparent ileal digestibilies of CP, Lys, Ile, Leu, Arg, Phe, and Val were greater (P < 0.05) for DEH and DENH than for SBMNH. In Exp. 2, six barrows (initially 41 kg) were fed three corn-based diets containing 25% of one of the three soybean meal sources. A fourth diet was fed at the end of the trial containing all ingredients except soybean meal, so that energy values of the soybean meal could be determined by difference. Digestible energy and ME contents were similar (P > 0.10) for DEH and DENH and both had greater (P < 0.05) DE and ME contents than SBMNH. In Exp. 3, pigs (n = 216, initially 10.6 +/- 1.3 kg and 35 +/- 3 d of age) were blocked by weight and allotted to six dietary treatments. Corn-soybean meal-based diets (0.95% digestible lysine and 3.44 kcal/g ME) containing DEH or DENH were compared with similar diets containing SBMNH or solvent-extracted soybean meal with hulls (SBMH). In addition, a diet containing a second expelled soybean meal with hulls (ESBM) was compared with a diet containing SBMH and soy oil. Growth performance of pigs fed diets containing DEH or DENH was not different (P > 0.10) than that of pigs fed corresponding diets containing SMBH or SBMNH. Pigs fed ESBM had lower (P < 0.05) ADG and G/F compared with its corresponding SBMH and soy oil diet. In conclusion, DEH and DENH are more digestible than conventional soybean meal and can be successfully used in swine diets.  相似文献   

14.
Five experiments utilizing 3,628 pigs were conducted to determine the true ileal digestible (TID) Lys requirement for 11- to 27-kg pigs fed corn-soybean meal diets. In Exp. 1, 216 barrows (initial BW = 11.5 kg) were used, with dietary TID Lys levels from 1.05 to 1.40% TID Lys (0.07% increments). All diets were isocaloric (3.42 Mcal of ME) and contained the same inclusion of soybean meal (33.1%). Dietary Lys content was increased by adding graded levels of L-Lys.HCl (0.0 to 0.445%), with other crystalline AA supplied to meet minimum AA-to-Lys ratios. For the 21-d period, ADG and G:F increased linearly (P < 0.001) with increasing Lys levels. Experiments 2 through 5 were each conducted in different commercial research facilities. In Exp. 2, a 5-point titration (1.05 to 1.41% TID Lys; 0.09% increments) was used containing the same level of soybean meal (34.3%), with graded levels of L-Lys.HCl addition as in Exp. 1 for a 16-d period. Exp. 3 used similar diets, but was a 28-d period from 11.8 to 28 kg. There were linear increases in ADG (P < 0.01) and G:F (P < 0.01) with increasing dietary Lys in both experiments. On the basis of these results, 2 additional 28-d experiments were conducted with similar diets, except for 1 additional level at 1.50% TID Lys. In Exp. 4, linear increases (P < 0.01) in ADG and G:F were observed from d 0 to 14. From d 14 to 28, there were quadratic increases (P < 0.04) in ADG and G:F, which resulted in quadratic increases (P < 0.01) in ADG and G:F with increasing dietary Lys for the entire 28-d period. Similarly, in Exp. 5, there were linear increases (P < 0.01) in growth performance from d 0 to 14, but there were quadratic increases in G:F (P < 0.001) with increasing dietary Lys for the overall period. Data from all 5 experiments yielded a single-slope, broken-line response, with requirement estimates for TID Lys of 1.33 and 1.35% for 11- to 19-kg pigs. The 5 experiments gave requirement estimates of 1.30% TID Lys (3.80 g of TID Lys/Mcal of ME) for 11- to 27-kg pigs, equivalent to 19 g of TID Lys/kg of gain.  相似文献   

15.
Two experiments, each with 36 barrows with high-lean-gain potential, were conducted to evaluate apparent nutrient digestibilities and performance and plasma metabolites of pigs fed corn-soybean meal diets (CONTROL) and low-protein diets. The low-protein diets were supplemented with crystalline lysine, threonine, tryptophan, and methionine either on an ideal protein basis (IDEAL) or in a pattern similar to that of the control diet (AACON). Amino acids were added on a true ileally digestible basis. The initial and final BW were, respectively, 31.5 and 82.3 kg in Exp. 1 and 32.7 and 57.1 kg in Exp. 2. In Exp. 1, the CONTROL and IDEAL diets were offered on an ad libitum basis or by feeding 90 or 80% of ad libitum intake. Pigs were fed for 55 d. In Exp. 2, the CONTROL, IDEAL, and AACON diets were offered on an ad libitum basis or by feeding 80% of the ad libitum intake. Pigs were fed for 27 d. Pigs fed the CONTROL diet had greater (P < 0.05) ADG and feed efficiency (G/F) than pigs fed the IDEAL (Exp. 1 and 2) and AACON diets (Exp. 2). As the level of feed intake decreased, ADG decreased (P < 0.05), but G/F tended to improve (P < 0.10) for pigs fed 90% of ad libitum in Exp. 1 and for pigs fed 80% of ad libitum in Exp. 2. In Exp. 1, the apparent total tract digestibilities of DM and energy were greater (P < 0.01) for pigs fed the IDEAL diet than for pigs fed the CONTROL diet. In Exp. 2, the apparent total tract digestibility of protein was greatest in pigs fed the CONTROL diet (P < 0.05) and was greater (P < 0.05) in pigs fed the AACON diet than in pigs fed the IDEAL diet. Plasma urea concentrations were lower in pigs fed the IDEAL diet than in pigs fed the CONTROL diet, regardless of feeding level. For pigs fed the CONTROL diet, plasma urea concentrations were lower when feed intake was 80% of ad libitum (diet level, P < 0.01). In summary, pigs fed the IDEAL and the AACON diets gained less and had lower plasma urea concentrations than pigs fed the CONTROL diet. Based on these data, it seems that the growth potential of pigs fed the IDEAL and AACON diets may have been limited by a deficiency of lysine, threonine, and(or) tryptophan and that the amino acid pattern(s) used was not ideal for these pigs.  相似文献   

16.
Four experiments were conducted to evaluate the nutrient contributions and physiological health benefits of spray-dried egg (SDE) containing only unfertilized eggs as a protein source in nursery pig diets. In all experiments, all diets were formulated to the same ME and Lys content, and each pen within a block (by BW) housed the same number of barrows and gilts. In Exp. 1 and 2 (168 and 140 pigs, respectively; 5 kg BW; 16 d old; 14 replicates/experiment), conducted at a university farm, treatments were with or without 5% SDE in a nursery control diet, which included antibiotics and zinc oxide. Pigs were fed for 10 d after weaning to measure ADG, ADFI, and G:F. The SDE increased (P < 0.05) ADG (Exp. 1: 243 vs. 204 g/d; Exp. 2: 204 vs. 181 g/d) and ADFI (Exp. 1: 236 vs. 204 g/d; Exp. 2: 263 vs. 253 g/d) compared with the control diet but did not affect G:F. In Exp. 3 (1,008 pigs; 5.2 kg BW; 20 d old; 12 replicates/treatment), conducted at a commercial farm, treatments were in a factorial arrangement of with or without SDE and high or low spray-dried plasma (SDP) in nursery diets, which included antibiotics and zinc oxide. Pigs were fed for 6 wk using a 4-phase feeding program (phases of 1, 1, 2, and 2 wk, respectively) with declining diet complexity to measure ADG, ADFI, G:F, removal rate (mortality plus morbidity), and frequency of medical treatments per pen and day (MED). The diets with the SDE increased (P < 0.05) ADFI during phase 1 only (180 vs. 164 g/d) compared with the diets without the SDE but did not affect growth performance during any other phases. The diets with SDE reduced MED during phase 1 (0.75% vs. 1.35%; P < 0.05) and the overall period (0.84% vs. 1.01%; P = 0.062) compared with the diets without the SDE but did not affect removal rate. In Exp. 4 (160 pigs; 6.7 kg BW; 21 d old; 10 replicates/treatment), conducted at a university farm to determine whether SDE can replace SDP, treatments were in a factorial arrangement of with or without SDP or SDE in nursery diets, which excluded antibiotics and zinc oxide. Pigs were fed for 6 wk using the same schedule used in Exp. 3 to measure ADG, ADFI, and G:F. The diets with SDE increased (P < 0.05) ADFI during phase 1 only (195 vs. 161 g/d) compared with the diets without SDE but did not affect growth performance during any other periods. In conclusion, SDE can be an efficacious protein and energy source in nursery pig diets and improves health and, in some instances, increases growth rate.  相似文献   

17.
Two experiments were conducted to determine the optimal apparent ileal digestible lysine:ME (Lys:ME) ratio and the effects of lysine and ME levels on N balance (Exp. 1) and growth performance (Exp. 2) in growing pigs. Diets were designed to contain Lys:ME ratios of 0.6, 0.7, 0.8, and 0.9 g/MJ at 13.5 and 14.5 MJ of ME/kg of diet in a 4 x 2 factorial arrangement. In Exp. 1, conventional N balances were determined on 48 crossbred barrows (synthetic line 990, initial BW = 13.1 +/- 0.7 kg) at approximately 15, 20, and 25 kg of BW with six pigs per diet. At 15 kg of BW, an energy density x Lys:ME ratio interaction on daily N retention was observed (P < 0.05). At each BW, N retention improved with an increase in N intake associated with increasing ME concentration. In 15-kg BW pigs, increasing the Lys:ME ratio increased daily N retention at the 13.5 (linear, P < 0.001) and 14.5 MJ of ME level (linear, P < 0.01; quadratic, P < 0.05). In 20-kg BW pigs, N retention (g/d) increased (linear, P < 0.001; quadratic, P < 0.01) and N retention (percentage) increased (linear, P < 0.001) as the Lys:ME ratio increased. At 25 kg of BW, N retention (g/d) increased quadratically (P < 0.05) with an increase in Lys:ME ratio. The Lys:ME ratios that maximized daily N retention at 15 kg of BW were 0.88 and 0.85 g/MJ at the 13.5 and 14.5 MJ of ME levels, respectively and 0.81 and 0.77 g/MJ (for both ME levels) at 20 and 25 kg of BW, respectively. Over the 28-d trial, an energy density x Lys:ME ratio interaction on ADG was observed (P < 0.05). Increasing energy density increased growth performance, whereas increasing the Lys:ME ratio in high-energy diets increased ADG (linear, P < 0.05; quadratic, P < 0.01) and gain:feed ratio (G/F) quadratically (P < 0.01). Average daily gain and G/F ratio were greatest in pigs fed the 14.5 MJ of ME diet and the Lys:ME ratio of 0.82 g/MJ. In Exp. 2, 128 individually housed crossbred barrows and gilts (initial BW = 12.8 +/- 1.6 kg) were used to determine the effect of diets used in Exp. 1 on growth performance in a 4 x 2 x 2 factorial arrangement. The ME level increased ADG and G/F from d 0 to 14 and from d 0 to 28. Increasing the Lys:ME ratio increased ADG from d 0 to 14, whereas growth performance was maximized in pigs fed Lys:ME ratio of 0.82 g/MJ. These results suggest that pigs from 13 to 20 and from 20 to 30 kg of BW fed diets containing 14.5 MJ of ME/kg had maximum N retention and ADG at 0.85 and 0.77 g of apparent ileal digestible lysine/MJ of ME, respectively.  相似文献   

18.
Three experiments were conducted to evaluate pet food-grade poultry by-product meal (PBM) as a replacement protein source for fish meal (FM), blood meal (BM), and spray-dried plasma protein (SDPP) in weanling pig diets. In the first study, 200 crossbred pigs (initial BW = 6.5 kg) were weaned (21 d) and randomly allotted to one of four dietary treatments, which included a control and three test diets where PBM was substituted for FM, blood products, or both. Experimental diets were fed during Phase I (d 0 to 5 postweaning) and Phase II (d 5 to 19), and a common Phase III diet was fed from d 19 to 26. Overall (d 0 to 26), there was no difference in performance of pigs fed PBM in place of the other ingredients. However, during Phase I, BW (P < 0.05), ADG (P < 0.02), and intake (P < 0.001) in pigs fed diets containing SDPP were greater than those fed diets with PBM. In Exp. 2, the performance of pigs (n = 100, initial BW = 6.5 kg) fed diets containing 20% PBM (as-fed basis, replacing SDPP, BM, FM, and a portion of the soybean meal) in all phases of the nursery diet was compared with a group fed conventional diets without PBM. There were no differences in overall performance (d 0 to 26); however, ADG (P < 0.10) and feed intake were higher (P < 0.01) for pigs fed the conventional diet than for pigs fed the 20% PBM diet during Phase I (d 0 to 5). Experiment 3 was a slope-ratio assay to determine the ability of PBM to replace SDPP. A total of 320 pigs (initial BW = 7.32 kg) was weaned (21 d) and allotted to five treatment groups in three trials in a blocked design with product (SDPP or PBM) as the first factor, and lysine level (1.08, 1.28, 1.49%; as-fed basis) as the second factor. Growth rate increased with increasing lysine (P < 0.05), regardless of the source. These results indicate that PBM can be used in nursery diets in place of blood meal and fish meal without affecting performance. Furthermore, although feeding PBM in Phase I diets was not equivalent to SDPP during the first week, there was no overall difference in performance at the end of the nursery phase.  相似文献   

19.
We conducted two experiments to evaluate the effects of dietary energy density and lysine:calorie ratio on the growth performance and carcass characteristics of growing and finishing pigs. In Exp. 1, 80 crossbred barrows (initially 44.5 kg) were fed a control diet or diets containing 1.5, 3.0, 4.5, or 6.0% choice white grease (CWG). All diets contained 3.2 and 2.47 g of lysine/Mcal ME during growing (44.5 to 73 kg) and finishing (73 to 104 kg), respectively. Increasing energy density did not affect overall ADG; however, ADFI decreased and feed efficiency (Gain:feed ratio; G:F) increased (linear, P < .01). Increasing energy density decreased and then increased (quadratic, P < .06) skinned fat depth and lean percentage. In Exp. 2, 120 crossbred gilts (initially 29.2 kg) were used to determine the effects of increasing levels of CWG and lysine:calorie ratio fed during the growing phase on growth performance and subsequent finishing growth. Pigs were fed increasing energy density (3.31, 3.44, or 3.57 Mcal ME/kg) and lysine:calorie ratio (2.75, 3.10, 3.45, or 3.80 g lysine/Mcal ME). No energy density x lysine:calorie ratio interactions were observed (P > .10). Increasing energy density increased ADG and G:F and decreased ADFI of pigs from 29.5 to 72.6 kg (linear, P < .05). Increasing lysine:calorie ratio increased ADG and ADFI (linear, P < .01 and .07, respectively) but had no effect on G:F. From 72.6 to 90.7 kg, all pigs were fed the same diet containing .90% lysine and 2.72 g lysine/Mcal ME. Pigs previously fed with increasing lysine:calorie ratio had decreased (linear, P < .02) ADG and G:F. Also, pigs previously fed increasing CWG had decreased (linear, P < .03) ADG and ADFI. From 90.7 to 107 kg when all pigs were fed a diet containing .70% lysine and 2.1 g lysine/Mcal ME, growth performance was not affected by previous dietary treatment. Carcass characteristics were not affected by CWG or lysine:calorie ratio fed from 29.5 to 72.6 kg. Increasing the dietary energy density and lysine:calorie ratio improved ADG and G:F of growing pigs; however, pigs fed a low-energy diet or a low lysine:calorie ratio from 29 to 72 kg had compensatory growth from 72 to 90 kg.  相似文献   

20.
Two experiments were conducted to evaluate the effect of lysolecithin on performance and nutrient digestibility of nursery pigs and to determine the effects of fat encapsulation by spray drying in diets fed in either meal or pelleted form. In Exp. 1, 108 pigs (21 d of age; 5.96 +/- 0.16 kg BW) were allotted to one of four dietary treatments (as-fed basis): 1) control with no added lard, 2) control with 5% added lard, 3) treatment 2 with 0.02% lysolecithin, and 4) treatment 2 with 0.1% lysolecithin in a 35-d experiment. Added lard decreased ADG (P = 0.02) and ADFI (P < 0.06) during d 15 to 35 and overall. Lysolecithin improved ADG linearly (P = 0.04) during d 15 to 35 and overall, but did not affect ADFI or G:F. Addition of lard decreased the digestibility of DM (P = 0.10) and CP (P = 0.05) and increased (P = 0.001) fat digestibility when measured on d 10. Lysolecithin at 0.02%, but not 0.10%, tended to improve the digestibility of fat (P = 0.10). On d 28, digestibilities of DM, fat, CP, P, (P = 0.001), and GE (P = 0.03) were increased with the addition of lard, and lysolecithin supplementation linearly decreased digestibilities of DM (P = 0.003), GE (P = 0.007), CP, and P (P = 0.001). In Exp. 2, 144 pigs (21 d of age, 6.04 +/- 0.16 kg BW) were allotted to one of six treatments in a 3 x 2 factorial randomized complete block design. Factors included 1) level (as-fed basis) and source of fat (control diet with 1% lard; control diet with 5% additional lard; and control diet with 5% additional lard from encapsulated, spray-dried fat) and 2) diet form (pelleted or meal). Addition of lard decreased feed intake during d 0 to 14 (P = 0.04), d 15 to 35 (P = 0.01), and overall (P = 0.008), and improved G:F for d 15 to 35 (P = 0.04) and overall (P = 0.07). Encapsulated, spray-dried lard increased ADG (P = 0.004) and G:F (P = 0.003) during d 15 to 28 compared with the equivalent amount of fat as unprocessed lard. Pelleting increased ADG (P = 0.006) during d 0 to 14, decreased feed intake during d 15 to 35 (P = 0.01), and overall (P = 0.07), and increased G:F during all periods (P < 0.02). Fat digestibility was increased (P = 0.001) with supplementation of lard, and this effect was greater when diets were fed in meal form (interaction, P = 0.004). Pelleting increased the digestibility of DM, OM, and fat (P < 0.002). Results indicate that growth performance may be improved by lysolecithin supplementation to diets with added lard and by encapsulation of lard through spray drying.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号