首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 16‐week experiment was conducted to determine the dietary riboflavin requirement of the fingerling Channa punctatus (6.7 ± 0.85 cm; 4.75 ± 0.72 g) by a feeding casein–gelatin‐based (450 g/kg crude protein; 18.39 kJ/g gross energy) purified diet containing graded levels of riboflavin (0, 2, 4, 6, 8, 10 and 12 mg/kg diet) to triplicate groups of fish near to satiation at 09:30 and 16:30 hr. Absolute weight gain (AWG), protein efficiency ratio (PER), specific growth rate (SGR, % per day), protein retention efficiency (PRE%) and RNA/DNA ratio were positively affected by increasing concentrations of dietary riboflavin to 6 mg riboflavin per kg diet. Feed conversion ratio (FCR) decreased up to 6 mg riboflavin per kg diet but did not decrease further with higher riboflavin supplementation. Hepatic thiobarbituric acid‐reactive substance (TBARS) concentration also supported the pattern of FCR, whereas superoxide dismutase and catalase activities increased with increasing concentrations of dietary riboflavin from 0 to 6 mg/kg. Liver riboflavin concentrations increased with increasing levels of riboflavin up to 8 mg/kg diet. Broken‐line regression analysis of AWG, PRE and liver riboflavin concentrations of fingerling C. punctatus with dietary riboflavin level indicated optimum growth and liver riboflavin saturation at 5.7, 6.1 and 7.7 mg riboflavin per kg diet, respectively.  相似文献   

2.
Dietary thiamin requirement of fingerling Channa punctatus was quantified by feeding casein/gelatin‐based diets (450 g/kg CP; 18.39 kJ/g GE) with seven graded levels of thiamin (0, 0.5, 1, 1.5, 2, 2.5 and 5 mg/kg diet) to triplicate groups of fish (6.9 ± 0.93 cm; 4.91 ± 0.62 g) for 16 weeks. Fish fed diet with 2.5 mg/kg thiamin reflected highest absolute weight gain (AWG), protein gain (PG), RNA/DNA ratio and lowest feed conversion ratio. Similarly, highest liver thiamin concentration was also recorded in fish fed 2.5 mg/kg thiamin diet. Hepatic thiobarbituric acid reactive substance (TBARS) concentration responded negatively with increasing concentrations of dietary thiamin up to 2.5 mg/kg, whereas superoxide dismutase and catalase activities were found to improve with the increasing levels of dietary thiamin from 0 to 2.5 mg/kg. Transketolase activity also improved as the thiamin concentrations increased up to 2.5 mg/kg. Broken‐line regression analysis of AWG, PG, RNA/DNA ratio, liver thiamin concentrations, transketolase and TBARS activities exhibited the thiamin requirement in the range of 2.34–2.59 mg/kg diet. Data generated during this study would be useful in formulating thiamin‐balanced feeds for the intensive culture of this fish.  相似文献   

3.
An 8‐week feeding trial was conducted to quantify the dietary valine requirement of cultured juvenile Nile tilapia, Oreochromis niloticus. Six isonitrogenous (280 g/kg crude protein) and isoenergetic (16.06 MJ/kg gross energy) diets with graded levels of valine (amounting to 4.1, 7.2, 9.9, 12.7, 15.6 and 18.8 g/kg of dry diet) were formulated. Each diet was randomly assigned to triplicate groups of 20 fish (6.48 ± 0.06 g). Results showed that the weight gain, specific growth rate, protein efficiency ratio and protein retention efficiency all increased with an increasing level of dietary valine up to 12.7 g/kg, but remained relatively constant for fish fed higher levels of dietary valine. In addition, the total protein concentration and aspirate aminotransferase activity in plasma, hepatic lysozyme and catalase activities were all significantly (< .05) improved by dietary valine supplementation. Based on the broken‐line regression analysis of weight gain and protein retention efficiency, the optimal dietary valine requirement for juvenile Nile tilapia occurred between a level of 11.5 g/kg of diet (equivalent to 41.1 g/kg of dietary protein) and 12.7 g/kg of diet (equivalent to 45.3 g/kg of dietary protein).  相似文献   

4.
The objective of this study was to determine the minimum dietary requirements of the branched‐chain amino acids (BCAAs: leucine [Leu], isoleucine [Ile] and valine [Val]) for juvenile red drum, Sciaenops ocellatus. This was accomplished by conducting three independent 49‐day feeding trials with juvenile red drum. Experimental diets were prepared by supplementing a basal diet containing 370 g/kg crude protein from red drum muscle and crystalline amino acids with incremental levels of Leu (9.0, 13.0, 17.0, 21.0, 25.0 and 29.0 g/kg of dry diet), Ile (5.0, 8.0, 11.0, 14.0, 17.0 and 20.0 g/kg of dry diet) and Val (6.8, 8.0, 9.2, 10.4, 11.6, 12.8 and 14.0 g/kg of dry diet). Fish were fed to apparent satiation twice daily in each trial, after which growth performance parameters were calculated and body composition and concentrations of BCAAs in plasma were analysed. Incremental levels of dietary Leu, Ile and Val significantly affected weight gain, feed efficiency and protein retention. Analyses of the weight gain data using a broken‐line regression model estimated the minimum Leu, Ile and Val requirements for maximum growth of juvenile red drum to be 15.7 ± 1.7 g/kg (±95% confidence interval), 11.1 ± 2.3 g/kg and 12.4 ± 0.6 g/kg of dry diet, respectively.  相似文献   

5.
An 8‐week feeding trial was conducted to determine the dietary leucine requirement for juvenile swimming crabs reared in cement pools. Six isonitrogenous and isolipidic practical diets (430 g/kg crude protein and 70 g/kg crude lipid) were formulated to contain graded leucine levels which ranged from 16.7 to 26.7 g/kg (dry weight). Each diet was randomly assigned to triplicate groups of 60 juvenile swimming crabs (initial average weight 3.75 ± 0.12 g) that were stocked in rectangle plastic baskets. The results of the present study indicated that dietary leucine levels significantly influenced weight gain (WG) and specific growth ratio (SGR) (< .05), crab fed the diet containing 22.7 g/kg leucine had significantly higher WG and SGR than those fed the other diets. Feed efficiency and protein efficiency ratio were not significantly affected by the dietary leucine levels (> .05). Total protein, cholesterol, triglyceride and glucose in serum were significantly affected by the dietary leucine levels. Aspartate aminotransferase (AST) and alanine aminotransferase activities in hemolymph, AST and superoxide dismutase activities in hepatopancreas were significantly affected by dietary leucine levels; moreover, crab fed the 16.7 g/kg leucine diet had higher malondialdehyde in hemolymph and hepatopancreas than those fed the other diets. Crab fed the diet containing 24.9 g/kg leucine had higher phenoloxidase activity in hemolymph than those fed the other diets. Based on two‐slope broken‐line model of SGR against dietary leucine levels, the optimal dietary leucine requirement for growth was estimated to be 22.1 g/kg of the dry diet (corresponding to 51.4 g/kg of dietary protein on a dry weight basis). In summary, findings of this study indicated that dietary leucine could improve growth performance and antioxidant status.  相似文献   

6.
An 8‐week feeding trial was conducted to determine dietary lysine requirement of juvenile Pseudobagrus ussuriensis (initial body weight: 0.60 g). Six isonitrogenous (crude protein, 400 g/kg) and isolipidic (crude lipid, 50 g/kg) diets were formulated to contain graded levels of dietary lysine (12.8, 19.9, 26.5, 34.0, 40.8 and 44.1 g/kg dry diets, respectively). The results indicated that weight gain, specific growth rate, productive protein value and protein efficiency ratio increased, while feed conversion ratio decreased with increasing dietary lysine level up to 34.0 g/kg dry diet and then levelled off. Fish fed diet with 12.8 g/kg lysine had the lowest lysine content (58.6 g/kg dry matter) in muscle, while fish fed diet with 34.0 g/kg lysine had the highest value (61.6 g/kg dry matter; p < .05). Broken‐line analysis on the basis of weight gain showed that the optimal dietary lysine requirement for maximum growth of juvenile Pseudobagras ussuriensis is 33.5 g/kg dry diet (82.4 g/kg dietary protein). Quadratic regression analysis of protein efficiency ratio against dietary lysine levels indicated that the optimal dietary lysine requirement of juvenile Pseudobagras ussuriensis is 36.4 g/kg dry diet (89.5 g/kg dietary protein).  相似文献   

7.
A 16‐week feeding trial was conducted to determine the dietary pantothenic acid requirement of fingerling Channa punctatus. Six casein–gelatin‐based diets (450 g/kg CP; 18.39 kJ/g GE) with graded levels of pantothenic acid (0, 10, 20, 30, 40 and 50 mg/kg diet) were fed to triplicate groups of fish (6.2 ± 0.71 cm; 4.26 ± 0.37 g) near to apparent satiation. The growth evaluation in terms of absolute weight gain (AWG), feed conversion ratio (FCR) and protein retention efficiency (PRE) indicated the best performance (p < .05) in fish fed diet containing 30 mg/kg pantothenic acid. Highest haemoglobin, haematocrit and RBCs counts were also obtained in fish fed diet with 30 mg/kg pantothenic acid. Mean cell haemoglobin and mean cell volume were found to be lowest in fish fed pantothenic acid‐free diet indicating the anaemia in this group of fish. Superoxidase dismutase and catalase activities of liver tissue were found to improve (p < .05) with the increasing levels of dietary pantothenic acid from 0 to 30 mg/kg. However, liver pantothenic acid concentration responded positively with the increasing levels of pantothenic acid up to 40 mg/kg diet and then stagnation in liver pantothenic acid concentration with the further inclusion of pantothenic acid was recorded. Second‐degree polynomial regression analysis of AWG, FCR and PRE exhibited the pantothenic acid requirement at 36.4, 32.8 and 34.7 mg/kg diet, respectively. Data generated during this study would be useful in formulating pantothenic acid‐balanced commercial feeds for the intensive culture of this fish.  相似文献   

8.
A 12‐week feeding trial was conducted to determine the dietary phosphorus requirement of Heteropneustes fossilis fingerlings (7.7 ± 0.04 g). Fish were fed casein–gelatine‐based purified diets in triplicate groups near satiation with seven different levels of dietary phosphorus (3.2, 5.2, 7.2, 9.2, 11.2, 13.2 and 15.2 g/kg dry diet). All diets were formulated to be isoproteic (400 g/kg) and isoenergetic (17.89 kJ/g). Highest absolute weight gain (68.38 g/fish), best feed conversion ratio (1.48), protein retention efficiency (30.74%), protein gain (12.44 g/fish), haemoglobin (11.19 g/dL), RBCs (3.12 x106/mm3), haematocrit (33.44%) and serum phosphate (2.82 mg/L) were found at 9.2 g/kg phosphorus. Hepatic superoxide dismutase and catalase activity were also significantly influenced by the dietary phosphorus levels. Whole body and vertebrae phosphorus concentrations increased significantly as the amount of dietary phosphorus increased from 3.2 to 11.2 g/kg dry diet and then plateaued. More accurate information on dietary phosphorus requirement was obtained by subjecting the AWG, FCR, vertebrae phosphorus and whole body phosphorus concentrations data against various levels of dietary phosphorus to broken‐line analysis, which yielded the requirement in the range of 9.0–11.0 g/kg for optimum growth and mineralization of H. fossilis.  相似文献   

9.
A 9‐week feeding trial was conducted to estimate the dietary isoleucine requirement of juvenile blunt snout bream. Six isonitrogenous and isoenergetic experimental diets were formulated to contain graded isoleucine levels ranging from 5.3 to 20.1 g kg?1 dry diet. At the end of the experiment, weight gain (WG), specific growth rate (SGR), feed efficiency ratio (FER) and protein efficiency ratio (PER) increased with increasing dietary isoleucine level up to 11.1 g kg?1 dry diet, and dietary isoleucine level above 14.2 g kg?1 dry diet declined these performances. Dietary isoleucine levels (14.2 and 17.3 g kg?1 dry diet) significantly improved whole‐body protein content, but decreased whole‐body lipid, plasma triglyceride and cholesterol contents. Significantly lower visceral fat index (VFI) in fish fed with 14.2 g kg?1 dietary isoleucine was observed compared to those fed with deficient or excessive isoleucine. Dietary isoleucine supplementation significantly increased plasma isoleucine concentration, while plasma valine and leucine concentrations showed a reversed trend. Dietary isoleucine levels regulated the target of rapamycin (TOR) gene expression and improved plasma superoxide dismutase (SOD) activity in juvenile blunt snout bream. Based on second‐order polynomial regression model analysis of SGR and FER, the optimum dietary isoleucine requirement was estimated to be 13.8 g kg?1 dry diet (40.6 g kg?1 dietary protein) and 14.0 g kg?1 dry diet (41.2 g kg?1 dietary protein), respectively.  相似文献   

10.
This experiment was designed to investigate the effects of dietary valine on the growth performance, feed utilization, digestive enzymes, serum antioxidant and immune indices of juvenile Trachinotus ovatus and determine its valine requirement. Six diets with different concentrations of L‐valine (15.0, 16.6, 18.6, 20.7, 23.5 and 25.4 g/kg dry diet, defined as diet Val‐1 to Val‐6.), were formulated to contain 430 g/kg crude protein with fish meal, soybean meal, peanut meal and precoated crystalline amino acids. Each diet was randomly assigned to triplicate treatments of 20 fish (the initial body weight was 5.34 ± 0.03 g) for 8 weeks. The results indicated that the final body weight and percent weight gain (PWG) increased with increasing valine concentration up to 18.6 g/kg (diet Val‐3), whereas the diets containing higher valine concentration reduced the growth performance significantly (p < .05). Moreover, the protein efficiency ratio, body protein deposition (BPD), muscle protein content, intestinal amylase and pepsin activities, serum T‐AOC, LZM activities, IgM, complement 3 and complement 4 concentration had a similar trend with PWG, and the trend of feed conversion ratio, serum AST, ALT activities, urea and MDA content was opposite. Meanwhile, the lipid contents of whole fish and muscle in diet Val‐6 were particularly lower than other diets (p < .05). The survival rate of diet Val‐1 was lowest in this study and was significantly lower than diet Val‐2 (p < .05). The results of polynomial regression based on PWG and BPD indicated that the optimal dietary valine requirement for Trachinotus ovatus reared in seawater‐floating net cages was 19.87–20.17 g/kg valine of dry diet, correspondingly 46.22–46.91 g/kg of dietary protein.  相似文献   

11.
A 95‐day feeding trial was conducted to quantify the methionine + cystine requirement for finishing lambari, Astyanax altiparanae (6.10 ± 0.11 g). Six extruded isoproteic (310.14 g/kg crude protein) and isoenergetic (19.76 MJ/kg gross energy) diets were prepared to contain 6.71, 8.31, 11.31, 13.12, 15.59 and 19.74 g/kg dry diet of methionine + cystine. Quadruplicate groups of female lambari were randomly assigned to 24 aquaria (70 L each) and fed to apparent satiety six times daily. The methionine + cystine requirement was determined by quadratic regression analysis of growth performance, whole body composition, muscle development, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activity against dietary methionine + cystine concentrations, at 5% significance. Fish fed 6.71–11.31 g/kg dry diet of methionine + cystine showed increased weight gain, per cent weight gain, specific growth rate and protein efficiency ratio. There were no significant differences in whole body composition, muscle growth and activity of AST and ALT in fish fed the dietary treatments. In conclusion, according to the second‐order polynomial analysis of weight gain, the optimum dietary methionine + cystine requirements for finishing lambari were estimated to be 13.66 g/kg dry diet (4.40% dietary protein).  相似文献   

12.
The dietary folic acid requirement of fingerling Catla catla (3.4 ± 0.17 g; 7.6 ± 0.41 cm) was evaluated by feeding casein–gelatin‐based isonitrogenous (350 g/kg crude protein) and isocaloric (16.72 kJ/g GE) diets containing different concentrations of folic acid (0, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0 mg/kg) to triplicate groups to apparent satiation at 08:00, 12:30 and 17:30 hr for 16 weeks. Absolute weight gain (AWG; 40.07 g/fish), specific growth rate (SGR; 2.25%), feed conversion ratio (FCR; 1.53), protein retention efficiency (PRE; 31.42%) and protein gain (PG; 6.74) improved significantly (p < .05) with increasing folic acid levels up to 0.4 mg/kg diet and then reached a plateau. However, maximum liver folic acid concentration increased up to 0.6 mg/kg diet. Dietary folic acid levels also significantly affected (p < .05) body composition of fish. No significant change (p > .05) in haematological parameters except in fish fed folic acid‐free diet was noted. Antioxidant and immune parameters increased with increasing concentration of dietary folic acid up to 0.4 mg/kg diet. Broken‐line regression analysis of AWG, FCR, PRE, PG, HCT and liver folic acid concentrations of fingerling C. catla against dietary folic acid levels indicated optimum growth, FCR, PRE, PG, HCT and liver folic acid saturation ranging between 0.22 and 0.56 mg/kg diet, respectively.  相似文献   

13.
To determine dietary lysine requirement of dusky kob, Argyrosomus japonicus, six isonitrogenous and isoenergetic diets (431 g/kg crude protein, 141 g/kg lipid and 20 kJ/kg) were formulated with graded levels of crystalline L‐lysine (18–42 g/kg of the dry diet). The protein source in the basal diet comprised fishmeal and soya, where a combination of L‐aspartic and L‐glutamic acids was maintained at a ratio of 1:1, and all diets were supplemented with a mixture of crystalline essential amino acids to simulate the amino acid profile in dusky kob. Dietary treatments were randomly assigned to triplicate groups of 12 fish (4.5 ± 0.2 g, mean weight; 66.5 ± 1.1 mm, total length ± SD), which were fed to apparent satiation three times daily for 12 weeks. The fish fed dietary L‐lysine at 21, 29 and 33 g/kg dry diet showed the highest specific growth rates (SGR) and the lowest feed conversion ratio. For most amino acids, retention in the body of the fish increased with an increase in dietary lysine from 18 to 21 g/kg, and it reached a maximum somewhere between 21 and 33 g/kg, where after amino acid retention decreased with increasing dietary lysine. Based on SGR and using segmented broken‐line analysis, the dietary L‐lysine requirement of juvenile dusky kob was estimated at 31.7 ± 1.6 g/kg dry diet corresponding to 73.5 g lysine per kg protein.  相似文献   

14.
A feeding trial was conducted to investigate the effects of partial replacement of soybean meal (SBM) with fermented soybean residue (FSR) on growth performance, body composition and plasma biochemical parameters of largemouth bass, Micropterus salmoides. Soybean residue was fermented with a mixture of microorganisms (Bacillus subtilis, Lactobacillus spp. and Molasses yeast) using the solid‐state fermentation. Four isonitrogenous (crude protein 430 g/kg) and isoenergetic (gross energy 18 MJ/kg) diets were formulated by replacing 0 (the control), 20, 40 and 60g/kg of protein from SBM with FSR (FSR0, FSR20, FSR40 and FSR60, respectively). Each diet was fed to four replicate groups of fish (initial body weight: 17.1 ± 0.19 g) for 12 weeks. Results showed that dietary FSR substitution significantly improved growth of juvenile largemouth bass. The weight gain, specific growth rate and protein efficiency ratio were all significantly improved by dietary FSR level up to 40g/kg substitution level (< .05) and then levelled off beyond this level. Fish fed the diet with 40g/kg and 60g/kg protein from FSR had lower feed conversion ratio than the control group (< .05). The hepatosomatic index, viscera ratio and liver lipid content significantly decreased with increasing dietary FSR level. Total protein content, superoxide dismutase and alkaline phosphates activities in plasma were lower in fish fed the control diet (< .05) than the other groups. However, both alanine aminotransferase and aspartate transaminase were higher in fish fed the control diet (< .05) compared to the other treatments. The plasma catalase activity significantly increased with increasing dietary FSR level, while plasma triglyceride, total cholesterol, glucose and malondialdehyde contents significantly reduced. No significant difference was observed in the glutathione peroxidase activity among dietary treatments. These findings demonstrated that replacing dietary SBM with FSR has beneficial effects on growth of M. salmoides, and the best growth performance was obtained at 40g/kg replacement for SBM protein. In addition, there is a great potential to apply FSR to improve lipid metabolism and antioxidant capacity of M. salmoides.  相似文献   

15.
An 8‐week feeding trial was conducted to evaluate the effects of dietary nucleotide (NT)‐rich yeast supplementation on growth, innate immunity and intestinal morphology in Pacific white shrimp (Litopenaeus vannamei). Four isonitrogenous and isolipidic practical diets were formulated to contain 0 (control), 10, 30 and 50 g/kg of NT‐rich yeast, respectively. A total of 480 shrimp with an average initial body weight of 1.86 ± 0.02 g were randomly allocated into four groups, with four replicates per group and 30 shrimp each replicate. The results indicated that shrimp fed the diet containing 50 g/kg NT‐rich yeast had significantly higher weight gain (WG), specific growth rate (SGR) and protein efficiency ratio (PER) than those fed the control diet, and the lowest feed conversion ratio (FCR) was observed in the shrimp fed the 50 g/kg NT‐rich yeast supplemental diet. However, there was no significant difference in survival among all treatments. The crude protein of whole shrimp in the 50 g/kg NT‐rich yeast group was higher than that in the control group. Total protein, triglyceride concentrations, the activities of aspartate aminotransferase and alanine aminotransferase in serum were significantly influenced by the dietary NT‐rich yeast supplementation. The activities of serum phenoloxidase (PO) and lysozyme (LZM) of shrimp fed the diet containing 50 g/kg NT‐rich yeast were higher than those in shrimp fed the other diets. Relative expressions of alp and lzm significantly upregulated in the 30 g/kg NT‐rich yeast group compared to the control group. The intestinal fold height and fold width in the 30 g/kg NT‐rich yeast group were significantly higher than those fed the control diet; and the highest microvillus height occurred in the shrimp fed the 50 g/kg NT‐rich yeast diet. In summary, dietary 30–50 g/kg NT‐rich yeast supplementation promotes growth performance, enhances innate immunity and improves intestinal morphology of Litopenaeus vannamei.  相似文献   

16.
An 8‐week feeding trial was conducted to assess the interaction between dietary protein levels and fish growth, digestibility and activity of immunity‐related enzymes of Plectropomus leopardus. Five diets with different protein levels (400 g/kg, 450 g/kg, 500 g/kg, 550 g/kg and 600 g/kg protein) were designed. P. leopardus fed with 500 g/kg, 550 g/kg and 600 g/kg dietary protein, showed higher weight gain rates than fish fed 400 g/kg and 450 g/kg dietary protein. Ingestion rate in fish fed with 500 g/kg dietary protein was significantly higher than those with other diets. P. leopardus fed with 500 g/kg, 550 g/kg and 600 g/kg dietary protein, showed that feed coefficients were significantly lower than those fed with 400 g/kg and 450 g/kg dietary protein. Net protein utilization was significantly lower in fish fed with 400 g/kg diet than those with other diets. Fish fed with 400 g/kg and 450 g/kg dietary protein had an apparent feed digestibility coefficient for dry matter that was significantly lower than that with other diets. Protease activity was highest in fish fed on 500 g/kg dietary protein. Fish fed with 500 g/kg dietary protein, had the highest superoxide dismutase activity. Fish fed with 600 g/kg dietary protein, had the highest alkaline phosphatase activity. Thus, a diet containing 500 g/kg protein is recommended for P. leopardus aquaculture.  相似文献   

17.
An 8‐week feeding trial was conducted to quantify dietary copper (Cu) requirement of juvenile Siberian sturgeon, Acipenser baerii. Five isonitrogenous diets were formulated to provide actual dietary copper values of 1.8, 5.7, 10.1, 15.9 and 28.3 mg Cu per kg diet. Experimental diets were fed to the Siberian sturgeon (27.57 ± 0.24 g) in triplicate to apparent satiation for 8 weeks. At the end of experiment, weight gain (WG), specific growth rate (SGR) and protein efficiency ratio (PER) were significantly increased with increasing dietary Cu level up to 10.1 mg/kg and then decreased with further increases in dietary Cu level (p < .05). The Cu concentration in the liver and cartilage was positively correlated with the respective concentrations in the diet (p < .05), while muscle and serum Cu concentrations remained significantly unchanged (p > .05). Superoxide dismutase and glutathione peroxidase had the highest activities in serum of fish fed with 15.9 and 28.3 mg Cu per kg diet, respectively. Analysis by the broken‐line regression of SGR, crude protein content and superoxide activity demonstrated that the optimum dietary Cu requirements in juvenile Siberian sturgeon were 9.51, 9.58 and 16.10 mg/kg diet, respectively.  相似文献   

18.
A feeding trial was conducted to determine the dietary threonine requirement of juvenile large yellow croaker (Larmichthys crocea). Six diets were formulated containing 45% crude protein with six graded levels of threonine (0.71–2.46% in about 0.35% increment). Each diet was randomly assigned to triplicate groups of 60 juvenile fish (initial body weight 6.00 ± 0.10 g). Fish were fed twice daily (05:00 and 16:30) to apparent satiation for 8 weeks. The result indicated that significant difference was observed in the weight gain among all treatments. Specific growth rate (SGR), feed efficiency (FE), protein efficiency ratio (PER) and nitrogen retention (NR) increased with increasing levels of threonine up to 1.75% diet (P < 0.05), and thereafter, declined. No significant differences in body dry matter, crude protein, crude lipid or ash content were found among dietary treatments. Theronine contents of fish muscle were significantly affected by dietary threonine levels (P < 0.05). Fish fed the diet with 0.71% threonine showed the lowest threonine content (2.94%) in fish muscle, while fish fed the diet with 1.75% threonine had the highest value (3.16%). Other essential amino acid contents of muscle were not significantly different among the dietary treatments. On the basis of SGR, FE or NR, the optimum dietary threonine requirements of juvenile L. crocea were estimated to be 1.86% of diet (4.13% of dietary protein), 1.90% of diet (4.22% of dietary protein) and 2.06% of diet (4.58% of dietary protein), respectively, using second‐order polynomial regression analysis.  相似文献   

19.
Dietary copper requirement of Heteropneustes fossilis (6.74 ± 0.03 g) was determined by feeding purified diets containing same protein (400 g/kg) and gross energy (17.89 kJ/g) but different levels of copper for 12 weeks. Graded amount of CuSO4.5H2O (0, 1.96, 3.93, 5.89, 7.86, 9.82, 11.79 mg/kg) was supplemented to basal diet to attain desired dietary copper levels (0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 mg/kg). Analysed dietary copper concentrations were 4.28, 4.63, 5.28, 5.70, 6.19 and 6.69 mg/kg. Absolute weight gain, feed conversion ratio and protein gain improved with the increasing levels of dietary copper up to 5.28 mg/kg. Further inclusion of copper at a level of 5.70 mg/kg did not improve the above parameters. Significantly higher (p < .05) plasma ceruloplasmin, liver copper‐zinc superoxide dismutase, catalase activities and lower thiobarbituric acid reactive substances were evident in fish receiving diets with 5.28 and 5.70 mg/kg copper compared to other groups. Whole body and liver copper concentrations increased significantly (p < .05) with increasing dietary copper levels. Quadratic regression analysis of absolute weight gain, feed conversion ratio, protein gain and broken‐line regression analysis of plasma ceruloplasmin activity and liver TBARS value against the variable dietary copper levels depicted the dietary copper requirements for fingerling H. fossilis in the range of 5.24–5.68 mg/kg.  相似文献   

20.
This study was conducted to estimate the effects of dietary protein and lipid levels on the growth, body composition, gonadal development and activity of liver metabolic enzymes of the brown trout Salmo trutta fario broodstock. Ten diets were formulated containing five different protein levels (360, 390, 420, 450 and 480 g/kg) and two different lipid levels (90 and 180 g/kg). The experiment was a completely randomized 5 × 2 factorial design. The fish with an initial body weight of 462.53 ± 45.40 g were cultured in a spring water flow‐through system for 77 days. The growth performance was affected by dietary protein and lipid levels. Increase in the dietary protein and lipid resulted in increase in the body lipid and protein contents. The male gonadosomatic index decreased in the groups treated with relatively high levels of protein (390–480 g/kg). The activities of the hepatic amino acid‐catabolizing enzymes—alanine aminotransferase and aspartate aminotransferase—increased significantly with the increase in the dietary protein level. The activities of the lipogenic enzymes (fatty acid synthetase and glucose‐6‐phosphate dehydrogenase) and gluconeogenic enzyme (fructose‐1,6‐bisphosphatase) increased with the increase in the dietary protein level. Further, an increase in the activities of glycolytic enzyme in liver with an increase in the dietary lipid was observed. The variation in some intermediary metabolizing enzymes due to dietary components supports the high‐metabolic adaptability of this species to dietary protein and lipid levels. A diet with 450 g/kg protein and 90 g/kg lipid with 24.56 mg/kJ protein/energy ratio maximizes the growth, feed efficiency and gonadal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号