首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Equid digestion is often conceptualized as a high‐throughput/low‐efficiency system, in particular compared with ruminants. It is commonly assumed that ruminants have an advantage when resources are limited; the effect of low food intake on digestive physiology of horses has, however, not been explored to our knowledge. We used four adult ponies [initial body mass (BM) 288 ± 65 kg] in two subsequent trials with grass hay‐only diets [in dry matter (DM): hay1, mid‐early cut, crude protein (CP) 10.5%, neutral detergent fibre (NDF) 67.6%; hay2, late cut, CP 5.8%, NDF 69.5%], each fed subsequently at four different dry matter intake (DMI) levels: ad libitum and at 75, 55 and 30 g/kg0.75/day. We particularly expected digesta mean retention times (MRT) to increase, and hence fibre digestibility to increase, with decreasing DMI. Ponies maintained BM on the first, but lost BM and body condition on DMI55 and DMI30. MRTs were negatively correlated to DMI and ranged (for particles <2 mm) from 23/31 h (hay1/2) on the ad libitum to 38/48 h on DMI30. Digestibilities of DM, nutrients and fibre components decreased from DMI75 to DMI30; apparent digestibilities of organic matter and NDF (hay1/2) dropped from 47/43% and 42/37%, respectively, on the ad libitum DMI to 35/35% and 30/28% on DMI30. Additional differences evident between the two hays included a higher estimated ‘true’ protein digestibility for hay1 and finer faecal particles on hay2; there were no differences in faecal particle size between intake levels. The results suggest that below a certain food intake threshold, the major digestive constraint is not fermentation time but nutrient supply to gut bacteria. The threshold for such an effect probably varies between feeds and might differ between ruminants and equids.  相似文献   

2.
To evaluate the influence of mass of ruminal contents on voluntary intake and ruminal function, five ruminally cannulated steers (550 kg) were fed an orchard grass hay diet ad libitum in a 5 x 5 Latin square experiment. The mass of ruminal contents was altered by adding varying weights of modified tennis balls to the rumen before the initiation of each 15-d experimental period. Treatments consisted of 50 balls with a specific gravity of 1.0, 1.1, 1.2, 1.3, or 1.4; the total weight of the balls was 7.45, 8.50, 9.25, 10.55, and 11.55 kg, respectively. Increasing the specific gravity of the balls added to the rumen decreased DMI and particle passage rate (P < 0.05) in a linear manner. A second experiment was conducted to evaluate the influence of mass of ruminal contents on voluntary intake and ruminal function of both forage and concentrate diets. Five ruminally cannulated steers (580 kg) were fed a 70% concentrate (DM basis) or an orchardgrass hay diet ad libitum in a 5 x 5 Latin square experiment. The mass of ruminal contents was altered as in the first experiment. Treatments consisted of 0 balls added to the rumen of steers fed concentrate diet (control), 75 balls with a specific gravity of 1.1 given to steers fed a concentrate diet, 75 balls with a specific gravity of 1.4 given to steers fed a concentrate diet, 75 balls with a specific gravity of 1.1 given to steers fed a hay diet, and 75 balls with a specific gravity of 1.4 given to steers fed hay diet. The addition of balls to the rumen of steers fed the concentrate diet decreased DMI (P < 0.05) compared with the 0-ball treatment, and increasing specific gravity of balls also decreased DMI (P < 0.01) for both concentrate and hay diets. Adding balls to the rumen of steers fed the concentrate diet decreased particle passage rate (P < 0.05), whereas increasing specific gravity of balls decreased particle passage rate for both concentrate and hay diet. The results of this study suggest that the density of ruminal digesta can have an influence on voluntary intake of both forage and concentrate diets.  相似文献   

3.
Ten ruminally cannulated heifers (BW = 416 kg; SD = 24) were used to test the effect of the form and frequency of supplemental energy on forage DMI and digestibility. Five treatments were arranged in a replicated, 5 x 4 Latin rectangle (n = 8), and included no supplement (control), dry-rolled corn (DRC) fed daily, DRC fed on alternate days (DRC-A), dried distillers grains plus solubles (DDGS) fed daily, and DDGS fed on alternate days (DDGS-A). Supplements fed daily were fed at 0.40% of BW, whereas alternate day-fed supplements were fed at 0.80% of BW every other day. Chopped grass hay (8.2% CP) was fed to allow ad libitum DMI, and the intake pattern was measured. Control heifers had greater (P < 0.01) hay DMI than supplemented heifers (1.88 vs. 1.66% of BW daily, respectively), although total DMI was lower (P < 0.01) for control. Hay DMI did not differ (P = 0.45) between DRC and DDGS, and tended to be lower (P = 0.08) by heifers on DDGS-A and DRC-A than by heifers supplemented daily. Hay intake was lower (P < 0.01) on supplementation days for DDGS-A and DRC-A than on nonsupplemented days. Heifers in alternate-day treatments had fewer (P < 0.01) and larger (P < 0.01) meals and spent less (P < 0.01) time eating than those supplemented daily. Average rumen pH was greater (P = 0.05) for control than supplemented heifers (6.30 vs. 6.19). Control heifers had greater (P = 0.04) rates and extents of NDF disappearance than supplemented heifers. Rate of hay NDF disappearance was lower (P = 0.02) for DRC than for DDGS. Supplementation decreased hay DMI and changed digestion kinetics. Supplementation frequency affected amount and pattern of DMI. Rate of hay NDF disappearance was greater for DDGS than DRC.  相似文献   

4.
A digestion and N balance trial was conducted to compare effects of traditional endophyte-infected (E+), endophyte-free (E-), and nontoxic endophyte infected (NE; MaxQ; Pennington Seed, Inc., Madison, GA) Jesup tall fescue (Festuca arundinacea Schreb.) hay on digestion and N retention in steers. Hay composition (DM basis) was as follows: E+ (10.8% CP, 59.9% NDF, and 29.4% ADF), E- (11.8% CP, 58.5% NDF, and 28.4% ADF), and NE (11.6% CP, 58.6% NDF, and 28.3% ADF). Eight Polled Hereford steers (initial BW 240 +/- 9 kg) were used in a replicated, 3 x 3 Latin square design, with an extra steer allotted to each square. Steers were fed ad libitum for 14 d, followed by a 9-d adaptation to restricted intake (based on the animal with the lowest ad libitum intake for the square) and a 5-d fecal and urine collection. Water intake (20.2 L/d) and urine output (7.40 L/d) did not differ (P > 0.10) during the collection period. Plasma prolactin concentration was less (P < 0.05) for steers on the E+ hay (8.83 ng/mL) than for those on the E- hay (18.03 ng/mL) and intermediate for steers on the NE hay (12.65 ng/mL). Endophyte-infected hay differed (P < 0.05) from E- and NE in ad libitum DMI (5.02 vs. 5.62 and 5.61 kg/d, respectively) and ad libitum DMI as a percentage of BW (1.86 vs. 2.06 and 2.06%, respectively). Restricted DMI during the fecal and urine collection was lower (P < 0.05) for E+ hay than for E- (5.04 vs. 5.24 kg/d), and NE was intermediate (5.19 kg/d). Dry matter digestibility was lower (P < 0.05) for E+ compared with E- and NE (62.3 vs. 67.0 and 65.9%, respectively). Digestibility of ADF was lower (P < 0.05) for E+ than for E-, and was intermediate for NE (61.5, 66.0, and 63.9%, respectively). There were no differences for NDF, cellulose, or hemicellulose digestibilities among hay types. Crude protein digestibility was higher (P < 0.05) for E- and NE than for E+ (54.3 and 52.5 vs. 48.1%, respectively). Nitrogen retention was lower (P < 0.01) for E+ than for E- or NE (15.6 vs. 22.7 or 23.0 g/d, respectively). Hay type did not influence plasma urea N, urine urea N output, or urine urea N as a percentage of urinary N. Results from this study indicate that E+ tall fescue hay was lower in ad libitum DMI, DM digestibility, and N retention than NE or E- hays with similar chemical composition. Hay from NE and E- fescue had nearly identical composition, and did not differ for any variable measured.  相似文献   

5.
A 4?×?3 factorial experiment was carried out to evaluate the effects of age at entry to feedlot (AEF) and levels of concentrate feeding (LCF) on body weight gain, feed utilization and killing out characteristics of Tanzanian long-fat-tailed castrate sheep. The AEF points were 9, 12, 15 and 18 months, designated as AEF9, AEF12, AEF15 and AEF18, and the LCF were 50, 75 and 100 % of ad libitum concentrate intake designated as LCF50, LCF75 and LCF100, the last representing ad libitum concentrate intake with 10 % refusal rate. Grass hay as basal diet was offered ad libitum to each sheep. Daily feed intake and weekly live weight were recorded for a period of 84 days. Animals were slaughtered and carcass and non-carcass parameters were recorded. Dry matter intake (DMI) of hay decreased while DMI of concentrate increased (p?<?0.01) with increasing LCF. Daily gain in high level (LCF100) was 93.1 g/day, almost twofold higher than that in low level (LCF50) of feeding (39 g/day). Overall dressing percentage ranged from 40.7 to 46.5 % and increased with increasing AEF. The proportion of carcass bone decreased (p?<?0.05) with increasing AEF while that of fat increased (p?<?0.05) with increasing LCF. Age at entry × level of concentrate feeding interaction was detected for DMI, feed conversion ratio (FCR), slaughter body weight (SBW), muscle/bone ratio and bone (as % cold carcass weight (CCW)), but the effect was not regular. Entering fattening at 18th month seems too late, hence to get in the shortest time the highest output slaughter and carcass weights, fattening should start latest at 15 month.  相似文献   

6.
Three experiments were conducted to determine effects of restricting intake of the final finishing diet as a means of dietary adaptation compared with diets increasing in grain over a period of 20 to 22 d on overall cattle performance, carcass characteristics, digestibility, digesta kinetics, and ruminal metabolism. In Exp. 1, 84 Angus x Hereford yearling steers (initial BW = 418 +/- 29.0 kg) were fed for 70 d. Restricting intake during adaptation had no effect (P > 0.10) on overall ADG:DMI, but decreased (P < 0.05) DMI compared with ad libitum access to adaptation diets, which resulted from differences during the initial 28 d of the experiment. In Exp. 2, 150 mixed crossbred steer calves (initial BW = 289 +/- 22.9 kg) were fed for an average of 173 d. Restricting intake decreased (P < 0.01) overall daily gain (1.51 vs 1.65 kg/d) and DMI (8.68 vs 9.15 kg/d) compared with ad libitum fed steers; however, ADG:DMI was not influenced (P > 0.10) by adaptation method. Experiment three used eight ruminally and duodenally fistulated steers (initial BW = 336 +/- 20 kg) in a completely random design. Total tract digestibility, digesta kinetics and ruminal metabolism were determined. Restricting intake reduced (P < 0.10) daily DMI variation from d 1 through 7, 8 through 14, and 22 through 28 compared with ad libitum feeding of three adaptation diets. Restricted steers had reduced (adaptation method x period interaction, P < 0.05) intakes and fecal excretions of ADF and greater OM digestibilities on d 4 through 7, 11 through 14, and 18 through 21. Digesta kinetics and ruminal metabolism were generally not affected (P > 0.10) by adaptation method. Our results suggest that restricted-feeding of the final diet as a means of dietary adaptation can be used in finishing cattle with few problems from acidosis or related intake variation. In light-weight steers (Exp. 2), disruptions in intake during the adaptation period might have resulted in restriction for an extended period, which decreased (P < 0.01) hot carcass weight compared with calves fed ad libitum. Effects of limit feeding during the initial 28 d of the feeding period on site and extent of digestion, digesta kinetics, and ruminal metabolism were minimal, supporting few differences in performance across the finishing period for yearling cattle.  相似文献   

7.
Rabbits (Oryctolagus cuniculus) are often presented suffering from urolithiasis. A high water intake is important in the prophylaxis of uroliths. We investigated the influence factors for water intake using 12 rabbits subjected to different feed and water regimes with practical relevance: Hay, fresh parsley, a seed mix and two different pelleted feed were offered in diverse combinations. Water was provided either by open dish or nipple drinker. Water was accessible ad libitum except for four treatments with 6 h or 12 h water access. Under the different feeding regimes, the drinker had no influence on water intake, but faecal dry matter content was significantly higher with nipple drinkers [60.0 ± 2.1 vs. 57.2 ± 2.1% of wet weight (mean ± 95% confidence interval), p = 0.003]. Dry food led to a higher drinking water intake but total water intake was still lower than with addition of 'fresh' food. With restricted water access, rabbits exhibited a significantly higher water intake with open dishes compared with nipple drinkers (54.9 ± 9.8 vs. 48.1 ± 8.2 g/kg(0.75) /day (mean ± 95% confidence interval), p = 0.04). High proportions of fresh parsley or hay in the diet enhanced total water intake and urine output, and led to lower urinary dry matter content and lower urinary calcium concentrations. Restricted access to drinkers led to a decreased total daily water intake and increased dry matter content of urine and faeces. For optimal water provision and urolith prophylaxis, we recommend a diet with a high 'fresh food' proportion as well as additionally hay ad libitum with free water access, offered in an open bowl.  相似文献   

8.
The objective of this study was to evaluate the relationships between chewing behavior, digestibility, and digesta passage kinetics in steers fed oat hay at restricted and ad libitum intakes. Four Hereford steers, with an initial average BW of 136 kg, were used in an experiment conducted as a balanced 4 × 4 Latin square with 4 treatments (levels of intake) and 4 periods. Animals were fed lopsided oat hay (Avena strigosa Schreb.) at 4 levels of intake (as a percentage of BW): 1.5, 2.0, 2.5, and ad libitum. Digestibility, chewing behavior, and digesta passage kinetic measurements were recorded during the experimental period. Chewing rates during eating and ruminating [(chews?min(-1))/g of DMI?kg(-1) of BW?d(-1)] decreased (P = 0.018 and P = 0.032, respectively) with increased DMI (g?kg(-1) of BW?d(-1)), whereas total chewing and total time spent on each chewing activity increased. Calculated total energy expended by the chewing activity was 4.2, 4.4, 5.2, and 5.3% of ME intake for DMI of 1.5, 2.0, and 2.5% of BW and ad libitum, respectively, indicating that adjustments in animal chewing behavior may be a mechanism of reducing energy expenditure when forages are fed at restricted intake. Hay digestibility decreased (P < 0.001) with increased DMI (r = -0.865). Digesta mean retention time (h) was strongly correlated with DMI (r = -0.868) and OM digestibility (r = 0.844). At reduced intake, hay digestibility was enhanced (P < 0.001) by extending digesta retention time and by increasing chewing efficiency, highlighting the relationship between chewing behavior and the digestive process. Fractional outflow rate of particulate matter from the reticulorumen (k(1)) was positively correlated with total chews, emphasizing that the decrease in particle size caused by chewing facilitates particle flow through the digestive tract. Increased hay intake also increased (P < 0.001) k(1), whereas passage rate of the liquid phase, transit time, and rumen fill were not affected (P > 0.05). The latter was correlated with rumen volume (r = 0.803). In conclusion, the results of this study indicate that animals fed at restricted intake increased chewing rate when eating and ruminating, which, along with a longer digesta retention time, contributed to enhance feed digestibility.  相似文献   

9.
In this study, feed intake and sperm morphology were evaluated in Ogaden bucks supplemented with either agro-industrial by-products or khat leftover. Thirty-five bucks at about 1 year of age, and 15 ± 1.5 kg initial body weight, were involved in a 12-week feeding programme that had four diet groups. The control (C) diet comprised grass hay alone, fed ad libitum ; treatment 1 (T1) comprised grass hay ad libitum supplemented with a mix of agro-industrial by-products at 1% of body weight (BW); treatment 2 (T2) comprised grass hay ad libitum supplemented with khat leftovers at 1% of BW; and treatment 3 (T3) comprised khat leftover alone, fed ad libitum . Bucks in T1–T3 consumed the highest (p < 0.001) dry matter (DM), crude protein (CP), organic matter (OM) and gross energy (GE) compared with control. Among the treatment groups, DM, OM and GE intakes were higher (p < 0.05) in T3 and T2, while CP intake was highest (p < 0.05) in T1. T1 and T3 improved (p < 0.001) the percentage of morphologically-normal spermatozoa in comparison with C, with bucks in T3 being best. The proportion of total abnormal sperm head shapes and proximal cytoplasmic droplets was lowest (p < 0.01) in T1 and T3 and highest in C. Although feeding with T1 improved feed intake and sperm morphology, feeding with T3 showed the highest response. Thus, we conclude that T3 and T1 could be utilized as feedstuff to improve sperm morphology in goats under the smallholder farming system in Ethiopia.  相似文献   

10.
Crossbred steers (n = 264, 311 ± 1.6 kg initial BW) were blocked by BW, randomly assigned to one of four treatments (28 pens, 7 pens per treatment), and fed a common 90% concentrate diet to determine the effects of the severity of caloric restriction on animal performance and carcass characteristics. Treatments were 1) ad libitum access to feed for 151 d (AL100); 2) 75% of DMI by AL100 for 65 d, 95% of DMI by AL100 for 65 d, and ad libitum access to feed for 21 d (AL85); 3) 80% of DMI by AL100 for 65 d, 100% of DMI by AL100 for 65 d, and ad libitum access to feed for 21 d (AL90); and 4) 85% of DMI by AL100 for 65 d, 105% of DMI by AL100 for 65 d, and ad libitum access to feed for 21 d (AL95). Feed was offered for AL85, AL90, and AL95 based on DMI by AL100 the previous week. All steers were fed a similar quantity of DM for 4 d prior to initial, interim, and final BW determinations to minimize gastrointestinal fill differences. Overall DMI was greater (P<0.01) for AL100 than for the average of the remaining treatments and decreased linearly (P<0.01) among AL95, AL90, and AL85. Overall ADG (carcass-adjusted) was less (P<0.01) for AL85, AL90, and AL95 than for AL100, whereas overall ADG:DMI (carcass-adjusted) did not differ (P>0.10) between AL100 and the average of the remaining treatments. Overall ADG and ADG:DMI (carcass-adjusted) responded quadratically (P<0.05) with increasing DMI restriction. Hot carcass weight, longissimus area, and kidney, pelvic, and heart fat percentage were greater (P<0.05) for AL100 than for the remaining treatments and responded quadratically (P<0.10) among AL85, AL90, and AL95. Marbling score was greater (P<0.10) for AL100 than for the average of the remaining treatments, and the number of carcasses grading Prime + Choice tended to be higher (P<0.15) for AL100 and AL95. Restricting feed intake of finishing yearling steers to an average of 85 to 95% of ad libitum for 130 d of a 151-d feeding period generally resulted in slower ADG, lesser marbling scores, and carcasses that were lighter and leaner compared with yearling steers allowed ad libitum to feed and harvested after an equal number of days on feed.  相似文献   

11.
A 5 x 5 Latin square design was used to determine the effects of restricted and ad libitum intake of diets containing wheat middlings on the site and extent of digestion compared to ad libitum intake of a corn-based diet and ad libitum intake of chopped alfalfa hay. Five ruminally and duodenally cannulated Angus steers (519 +/- 41.5 kg BW) were used to compare five dietary treatments. The five treatments were as follows: ad libitum access to a corn-based finishing diet (control), the control diet with 25 percentage units of the corn and soybean meal replaced with wheat middlings offered ad libitum (WM), the WM diet restricted to 75% of predicted ad libitum intake (RWM), the RWM diet with wheat middlings replaced with ammoniated wheat middlings (RNWM), and ad libitum access to a chopped alfalfa hay diet. Although RWM steers were fed to consume 75% of ad libitum intake, RWM steers consumed 15.5% less DM than WM. Steers fed ad libitum hay consumed 28.6, 31.7, and 37.2% less (P < 0.01) DM, OM, and nitrogen than RWM steers. No differences in apparent or true ruminal digestibility were observed among steers fed the control vs WM, WM vs RWM, RWM vs RNWM, or RWM vs hay diets. However, the steers fed the hay diet had 32.5, 33.4, and 36.9% lower (P < 0.01) apparent total tract digestibilities of DM, OM, and N than those fed the RWM diet. Average ruminal pH was lower (P < 0.01) for control steers than those fed the WM diet and for those fed RWM compared to the hay diet. The acetate:propionate ratio was higher for cattle fed hay vs the RWM diet. Microbial DM and OM flow to the small intestine was higher (P < 0.02) for steers fed the RWM diet than those fed the hay diet. In addition, bacterial N flow to the small intestine was higher (P < 0.01) for cattle receiving the RWM diet than the hay diet. Feeding diets containing 25 percentage units of wheat middlings at 75% ad libitum intake had no effect on ruminal digestibility.  相似文献   

12.
Four ruminally and duodenally cannulated steers (703.4 +/- 41 kg initial BW) were used in a 4 x 4 Latin square to evaluate the effects of field pea inclusion level on intake and site of digestion in beef steers fed medium-concentrate diets. Steers were offered feed ad libitum at 0700 and 1900 daily and were allowed free access to water. Diets consisted of 45% grass hay and 55% by-products based concentrate mixture and were formulated to contain a minimum of 12% CP (DM basis). Treatments consisted of (DM basis) 1) control, no pea; 2) 15% pea; 3) 30% pea; and 4) 45% pea in the total diet, with pea replacing wheat middlings, soybean hulls, and barley malt sprouts in the concentrate mixture. Experimental periods consisted of a 9-d dietary adjustment period followed by a 5-d collection period. Grass hay was incubated in situ, beginning on d 10, for 0, 2, 5, 9, 14, 24, 36, 72, and 98 h; and field pea and soybean hulls for 0, 2, 5, 9, 14, 24, 36, 48, and 72 h. Total DMI (15.0, 13.5, 14.1, 13.5 +/- 0.65 kg/d) and OM intake (13.4, 12.0, 12.6, 12.0 +/- 0.58 kg/d) decreased linearly (P = 0.10) with field pea inclusion. Apparent ruminal (17.5, 12.0, 0.6, 6.5 +/- 4.31%) and true ruminal CP digestibility (53.5, 48.7, 37.8, 46.2 +/- 3.83) decreased linearly (P < 0.10) with increasing field pea. Neutral detergent fiber intake (8.9, 7.9, 7.8, 7.0 +/- 0.3 kg/d) and fecal NDF output (3.1, 2.9, 2.6, 2.3 +/- 0.2 k/d) decreased linearly (P < 0.03) with increasing field pea. No effects were observed for microbial efficiency or total-tract digestibility of OM, CP, NDF, and ADF (P > or = 0.16). In situ DM and NDF disappearance rates of grass hay and soybean hulls decreased linearly (P < 0.05) with increasing field pea. Field pea in situ DM disappearance rate responded quadratically (P < 0.01; 5.9, 8.4, 5.5, and 4.9 +/- 0.52%/h, for 0, 15, 30, and 45% field pea level, respectively). Rate of in situ CP disappearance of grass hay decreased linearly (P < 0.01) with increasing field pea level. Field pea is a suitable ingredient for beef cattle consuming medium-concentrate diets, and the inclusion of up to 45% pea in by-products-based medium-concentrate growing diets decreased DMI, increased dietary UIP, and did not alter OM, NDF, or ADF digestibility.  相似文献   

13.
Twelve ruminally cannulated Jersey steers (BW = 534 kg) were used in an incomplete Latin square design experiment with a 2 x 2 factorial arrangement of treatments to determine the effects of wet corn gluten feed (WCGF) and total DMI level on diet digestibility and ruminal passage rate. Treatments consisted of diets formulated to contain (DM basis) steam-flaked corn, 20% coarsely ground alfalfa hay, and either 0 or 40% WCGF offered once daily for ad libitum consumption or limited to 1.6% of BW (DM basis). Two consecutive 24-d periods were used, each consisting of 18 d for adaptation, 4 d for collection, and a 2-d in situ period. Rumens of all steers were evacuated once daily at 0, 4, 8, and 12 h after feeding. Chromic oxide (10 g/[steer*d]) was fed as a digestibility marker, and steers were pulse-dosed with Yb-labeled alfalfa hay to measure ruminal particulate passage rate. Dacron bags containing 5 g of steam-flaked corn, WCGF, or ground (2-mm screen) alfalfa hay were placed into the rumens of all steers and removed after 3, 6, 12, or 48 h. Wet corn gluten feed increased percent apparent total-tract digestion of OM (P < 0.01), NDF (P < 0.01), and starch (P < 0.03), decreased (P < 0.01) ruminal total VFA concentration, increased (P < 0.01) ruminal NH3 concentration, and increased (P < 0.01) ruminal pH. Wet corn gluten feed also increased (P < 0.01) ruminal passage rate of Yb. Limit feeding decreased (P < 0.01) percent apparent total-tract digestion of both OM and NDF, ruminal total VFA concentration (P < 0.01), and ruminal fill (P < 0.01), but increased (P < 0.01) ruminal NH3 concentration. Apparent total-tract digestion of starch was not affected (P = 0.70) by level of DMI. A DMI level x hour interaction (P < 0.01) occurred for ruminal pH. Limit feeding increased ruminal pH before and 12 h after feeding, but decreased ruminal pH 4 h after feeding compared with diets offered ad libitum. A diet x DMI level interaction (P < 0.02) occurred for in situ degradation of alfalfa hay, with dietary addition of WCGF increasing (P < 0.02) the extent of in situ alfalfa hay degradation in steers fed for ad libitum consumption. This study suggests that WCGF increases OM and NDF digestion, and that limit feeding diets once daily might depress OM and NDF digestion, possibly due to decreased stability of the ruminal environment.  相似文献   

14.
Eight mature horses were used in a 4 × 4 Latin square design to determine the effect of restricted pasture access on dry matter intake rate (DMIR), energy intake, and fecal pH. Horses were randomly assigned to one of four groups (HGRPs), each containing two horses. HGRPs were randomly assigned to one of four treatments consisting of 3, 6, 9, or 24 hours of pasture access, for a period of 7 days. Treatments were switched every 7 days. The 3- and 6-hour groups were fed free choice mature grass hay while not grazing. Daily pasture dry matter intake (DMI) for each HGRP was estimated by calculating the difference between initial herbage mass of the grazing cell before grazing and residual herbage mass after 7 days of grazing. Total dry matter intake was the sum of pasture and hay DMI for the 3- and 6-hour treatments. Fecal pH was measured on day 7 of each period. Response variables were analyzed using analysis of variance for Latin square design. Restricting pasture access decreased mean pasture DMI (P = .02), pasture dietary energy (DE) (P = .02), and fecal pH (P < .001), but increased DMIR (P = .02). Mean total dry matter intake was not different (P = .16) among treatments. In conclusion, restricting pasture access accelerates pasture DMIR and decreases fecal pH, and although restricting pasture access decreases DE intake from pasture, it did not result in a decrease in total DE intake for horses having ad libitum access to hay.  相似文献   

15.
Two experiments were conducted to evaluate digestion kinetics of alfalfa (Medicago sativa L.) substitution for grass hay in beef cattle. In Exp. 1, forage combinations evaluated in situ consisted of 0% alfalfa-100% big bluestem (Andropogon gerardi Vitman), 25% alfalfa-75% big bluestem, 50% alfalfa-50% big bluestem, and 100% alfalfa-0% big bluestem. Nonlinear regression was used to determine the immediately soluble fraction A, the potentially degradable fraction B, the undegraded fraction C, and the disappearance rate of DM and NDF. Dry matter fraction A increased linearly (P = 0.03), and DM and NDF fraction B decreased linearly (P = 0.01) with increasing alfalfa substitution. Rate of DM and NDF disappearance increased linearly (P /= 0.23) on total tract apparent digestibility of all nutrients except CP. Steers fed orchardgrass plus alfalfa had 33% greater (P = 0.01) total tract apparent digestibility for CP than those fed orchardgrass alone. Lag time of DM and NDF disappearance was not affected (P >/= 0.20) by alfalfa supplementation or intake level. Rate of DM and NDF disappearance of orchardgrass was faster (P 相似文献   

16.
Three experiments were performed to examine the effects of high ambient temperature and feed restriction on nitrogen (N) utilization in lactating cows. Experiment 1 investigated N utilization in four cows fed ad libitum in a 2 × 2 crossover design under constant moderate (18°C) or high (28°C) ambient temperatures. The milk N secretion (P < 0.01) and protein concentration (P < 0.05) decreased under high ambient temperature. Experiment 2 investigated N utilization in four cows under constant moderate ambient temperature in a 2 × 2 crossover design with ad libitum or 70% ad libitum feed intake. The milk N secretion and protein concentration both decreased with feed restriction (P < 0.05). Experiment 3 investigated N utilization in four cows fed 70% ad libitum in a 2 × 2 crossover design under constant moderate or high ambient temperatures. The milk protein concentration decreased under high ambient temperature (P < 0.01). The milk N secretion tended to decrease under high ambient temperature (P < 0.10). Therefore, decreased N utilization for milk production at high ambient temperature is mainly caused by a reduced feed intake and the high ambient temperature itself.  相似文献   

17.
Two-hundred sixty-four English-type crossbred cattle (mean initial BW 282 ± 6 kg) were used in a completely randomized design to evaluate the effects of restricted feeding and roughage source in finishing beef cattle diets. Treatments consisted of diets with 7.5% corn silage (DM basis), fed either ad libitum or restricted, and 7.5% (DM basis) corn stalks or millet hay fed ad libitum. Total DM intake was reduced by 4, 11, and 9% by restricting corn silage, corn stalks, and millet hay treatments, respectively. Average daily gain was not affected (P>0.05) by treatment, whereas feed efficiency was improved (P<0.05) for all treatments compared with corn silage diets fed ad libitum. Total feed cost of gain was highest (P<0.05) for the corn silage treatment fed ad libitum. Hot carcass weight, quality grade, and yield grade were not affected by treatment, and cattle fed restricted corn silage had a lower (P<0.05) dressing percentage. Fecal analysis of Cr concentrations indicated no difference (P>0.05) in OM, DM, or N digestibilities. However, restricted corn silage-fed cattle and cattle fed millet hay ad libitum tended to exhibit increased (P>0.05) OM, DM, and N digestibilities compared with the cattle fed corn silage ad libitum. The cattle fed corn stalks ad libitum tended to have decreased (P>0.05) OM, DM, and N digestibilities compared with the steers fed corn silage ad libitum. Fecal output was not different (P>0.05) between treatments. Restricted corn silage rations, corn stalk rations fed ad libitum, and millet hay rations fed ad libitum tended to decrease (P>0.05) fecal output by cattle compared with cattle fed the corn silage ration ad libitum.  相似文献   

18.
Three experiments were performed to examine the effects of high ambient temperature and feed restrictions on urinary 3‐methylhistidine (3MH) excretion and plasma 3MH concentrations as a marker of myofibrillar proteolysis in lactating Holstein cows. In a crossover design, four cows were maintained during two 14‐day treatment periods with ad libitum feed intake under constant moderate (18°C) or high (28°C) ambient temperature (Experiment 1), with ad libitum or 70% ad libitum feed intake under constant moderate temperature (Experiment 2), and with 70% ad libitum feed intake under constant moderate or high ambient temperature (Experiment 3). The total digestible nutrients intake was decreased (P < 0.01) under high ambient temperature (Experiment 1) or feed restriction (Experiment 2). Across experiments, urinary 3MH excretion during days 10–14 of each treatment period was not different among treatments. However, the plasma 3MH concentrations at day 14 of treatment were increased significantly under high ambient temperature with subsequent reduced feeding (P < 0.01) or moderate temperature with feed restriction (P < 0.05), and were increased slightly (P = 0.11) under high ambient temperature alone. These results show that the plasma marker of myofibrillar proteolysis in lactating dairy cows was increased at day 14 of treatments of high ambient temperature with subsequent reduced feeding, moderate temperature with feed restriction, or high ambient temperature alone.  相似文献   

19.
Effects of dried distillers grains plus solubles (DDGS) on ruminal fermentation, degradation kinetics, and feeding behavior of steers offered annual (Eragrostis tef; TEFF) or perennial (Bothriochloa bladhii; OWB) grass hay were evaluated. Ruminally cannulated Angus crossbred steers (n = 6; body weight [BW] = 304 ± 11 kg) were assigned to a 4 × 6 unbalanced Latin square design with four treatments arranged as a 2 × 2 factorial: hay type (OWB or TEFF) and DDGS supplementation (0% or 0.5% BW [dry matter {DM} basis]). Steers had ad libitum access to hay. Periods consisted of a 14-d adaptation followed by 7 d of collection. Residues from the in situ incubations (0, 3, 6, 12, 24, 36, 48, 72, and 96 h post-feeding) were fitted to a first-order kinetics model using the NLIN procedure of SAS. The DDGS decreased (P < 0.01) TEFF DM intake (DMI) by 11.3%, while not affecting DMI of OWB. The greatest DMI was observed for steers supplemented with DDGS, regardless of forage, and least in steers consuming OWB without DDGS (hay type × DDGS; P = 0.03). Non-supplemented steers spent more (P < 0.01) time eating hay. Digestibility of DM tended (P = 0.06) to increase with DDGS supplementation. A hay type × DDGS interaction was observed (P ≤ 0.05) on ruminal effective degradable fractions. The rate of degradation, soluble fraction, and the potentially degradable fraction of organic matter (OM), neutral detergent fiber, and acid detergent fiber (ADF) increased (P ≤ 0.05), while the undegradable fraction of all components decreased (P ≤ 0.01) when steers were offered TEFF compared to OWB. Ruminal DM, OM, and ADF degradation lag-time increased (P ≤ 0.02) in steers offered OWB. Ruminal degradation kinetics were not (P ≥ 0.17) independently affected by DDGS supplementation. Average ruminal pH of steers offered TEFF (P < 0.01) and those offered DDGS (P < 0.01) were lower than OWB and non-supplemented steers. Total concentration of VFA tended (P = 0.09) to increase when DDGS was provided with OWB, while decreasing when TEFF was offered. The acetate:propionate increased (P < 0.01) with DDGS supplementation due to a decrease (P = 0.03) in propionate. Ruminal NH3-N was greater (P = 0.03) in steers offered TEFF compared to OWB, and those supplemented with DDGS (P = 0.03). An annual, in place of a conventional, perennial hay improved intake and digestion of nutrients, without affecting feeding behavior. The supplementation with DDGS appears to affect forage intake, ruminal degradation, and feeding behavior, although not independent of forage quality.  相似文献   

20.
This study examined how different methods of applying a fibrolytic enzyme or ammonia affect the nutritive value of Bermudagrass hay and the performance of beef cattle. Fifty Angus x Brangus crossbred steers (mean initial BW 244 +/- 26 kg) were individually fed for ad libitum intake of a 5-wk regrowth of a mixture of Florakirk and Tifton 44 Bermudagrass [Cynodon dactylon (L.) Pers] hay for 84 d with a concentrate supplement (77% soybean hull pellets, 23% cottonseed meal (DM basis) fed at 1% of BW daily. The Bermudagrass was conserved as hay without treatment (control), with NH(3) (30 g/kg of DM), or with a fibrolytic enzyme (16.5 g/t, air-dry basis) that was applied immediately after cutting (Ec), at baling (Eb), or at feeding. Chromic oxide was dosed to steers for 10 consecutive days, and fecal Cr concentrations from the last 5 d were used to estimate apparent total tract digestibility. In situ ruminal DM degradability was measured by incubating ground (4-mm) hay samples in duplicate in each of 2 ruminally cannulated cows having ad libitum access to Bermudagrass hay and 500 g/d of soybean meal. Unlike the enzyme treatment, ammoniation increased (P < 0.001) the CP concentration and reduced (P < 0.001) NDF, hemicellulose, and lignin concentrations of hay. Total DMI was greater (P < 0.05) for steers fed hays treated with Ec or NH(3) than for those fed control hays. All additive treatments increased (P < 0.05) DM digestibility, and NH(3), Ec, and Eb treatments also increased (P < 0.01) NDF digestibility. The initial and final BW, ADG, BCS, G:F, and hip height of the steers were not affected (P > 0.05) by treatment. The wash loss fractions in hays treated with Ec and Eb were lower than that in the control hay, but the potentially degradable fraction, total degradable fraction, and the effective degradability were increased (P < 0.01) by NH(3) treatment. Application at cutting was the most promising method of enzyme treatment, and this treatment was almost as effective as ammonia for enhancing forage quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号