首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil erosion is a serious issue in the sandy-hilly region of Shanxi Province, Northwest China. There has been gradual improvement due to vegetation restoration, but soil microbial community characteristics in different vegetation plantation types have not been widely investigated. To address this, we analyzed soil bacterial and fungal community structures, diversity, and microbial and soil environmental factors in Caragana korshinskii Kom., Populus tomentosa Carr., Populus simonii Carr., Salix matsudana Koidz, and Pinus tabulaeformis Carr. forests. There were no significant differences in the dominant bacterial community compositions among the five forest types. The alpha diversity of the bacteria and fungi communities showed that ACE (abundance-based coverage estimator), Chao1, and Shannon indices in C. korshinskii forest were significantly higher than those in the other four forest types (P<0.05). Soil organic matter, total nitrogen, and urease had a greater impact on bacterial community composition, while total nitrogen, β-glucosidase, and urease had a greater impact on fungal community composition. The relative abundance of beneficial and pathogenic microorganisms was similar across all forest types. Based on microbial community composition, diversity, and soil fertility, we ranked the plantations from most to least suitable as follows: C. korshinskii, S. matsudana, P. tabulaeformis, P. tomentosa, and P. simonii.  相似文献   

2.
ZHANG Yu 《干旱区科学》2022,14(6):653-672
Caragana korshinskii Kom. and Tamarix ramosissima Ledeb. are pioneer shrubs for water and soil conservation, and for windbreak and sand fixation in arid and semi-arid areas. Understanding the water use characteristics of different pioneer shrubs at different ages is of great importance for their survival when extreme rainfall occurs. In recent years, the stable isotope tracing technique has been used in exploring the water use strategies of plants. However, the widespread δ2H offsets of stem water from its potential sources result in conflicting interpretations of water utilization of plants in arid and semi-arid areas. In this study, we used three sets of hydrogen and oxygen stable isotope data (δ2H and δ18O, corrected δ2H_c1 based on SW-excess and δ18O, and corrected δ2H_c2 based on -8.1‰ and δ18O) as inputs for the MixSIAR model to explore the water use characteristics of C. korshinskii and T. ramosissima at different ages and in response to rainfall. The results showed that δ2H_c1 and δ18O have the best performance, and the contribution rate of deep soil water was underestimated because of δ2H offset. During the dry periods, C. korshinskii and T. ramosissima at different ages both obtained mostly water from deeper soil layers. After rainfall, the proportions of surface (0-10 cm) and shallow (10-40 cm) soil water for C. korshinskii and T. ramosissima at different ages both increased. Nevertheless, there were different response mechanisms of these two plants for rainfall. In addition, C. korshinskii absorbed various potential water sources, while T. ramosissima only used deep water. These flexible water use characteristics of C. korshinskii and T. ramosissima might facilitate the coexistence of plants once extreme rainfall occurs. Thus, reasonable allocation of different plants may be a good vegetation restoration program in western Chinese Loess Plateau.  相似文献   

3.
本文比较分析了桑树青枯病发病和健康植株根际土壤肥力以及微生物(细菌和真菌)群落结构特征差异,旨在挖掘和利用丰富微生物资源的有益功能,为构建桑树青枯病生物防治技术体系奠定基础。结果表明,桑树青枯病发病植株根际土壤中指示土壤肥力与健康状况的生物学性状指标β-葡糖苷酶和磷酸酶的活性显著降低,微生物生物量碳、磷显著下降;细菌门分类水平上,发病植株根际土壤中酸杆菌门、放线菌门和疣微菌门等优势细菌相对丰度降低,变形菌门、绿弯菌门、粘球菌门、厚壁菌门、拟杆菌门等优势细菌相对丰度增加;细菌属分类水平上,发病植株根际土壤富集了硝化螺菌属和放线菌属等特有细菌属,缺失了诸如链霉菌属等具有分泌抗生素功能的优势细菌属。真菌门分类水平上,发病植株根际土壤中子囊菌门和担子菌门真菌相对丰度增加,unclassified_k_Fungi和霉菌门真菌相对丰度降低;真菌属分类水平上,发病植株根际土壤富集了地霉菌属、腐质霉属和丝孢菌属等腐生真菌,缺失了被孢霉属、枝顶孢属和曲霉属等具有产抑菌化合物功能的优势真菌。研究表明,桑树青枯病与根际土壤β-葡糖苷酶、磷酸酶活性,微生物生物量碳、磷以及微生物群落结构都具有一定的相关性。链霉菌属细菌以及被孢霉属、枝顶孢属和曲霉属真菌有望作为生物防控青枯病的有效备选菌属。  相似文献   

4.
CHEN Juan 《干旱区科学》2022,14(9):1038-1054
Water is a limiting factor in the restoration and construction of desert steppe. Exploring plant water sources is necessary to understand soil-plant interactions and species coexistence; however, water sources of major plant communities within the desert steppe of Ningxia Hui Autonomous Region, China remain poorly understood. In this study, we analyzed the water uptake of plants in four typical communities: Agropyron mongolicum Keng.; Sophora alopecuroids Linn.; Stipa breviflora Griseb., and Achnatherum splendens (Trin.) Nevski communities. Stable isotopes δD and δ18O in the xylem of plant and soil water at different soil depths were analyzed. An IsoSource model was used to determine the soil depths from which plants obtained water. Results showed that A. mongolicum community obtained water predominantly from 0-20 and 40-80 cm depth, S. alopecuroids community from 0-20 cm depth, S. breviflora community from 0-40 cm depth, and A. splendens community from 0-20 and 80-140 cm depths. S. alopecuroides had a wider range of soil depths for water extraction, i.e., utilizing different water sources depending on habitat, and the plasticity of its water uptake pattern determined its role in different communities. Water source of plants relayed heavily on the distribution of their roots. Competition for soil water exists between different plant life forms in the sierozem habitat (A. mongolicum, S. alopecuroids, and S. breviflora communities), and in the sandy soil habitat (A. splendens community). The use of soil water by A. splendens community is more spatially differentiated, and shrubs and herbs can coexist stably. Under the pattern of extended drought period in the future, sierozem habitat may be more favorable for the formation of a dominant monoculture community type of perennial fibrous plants. In aeolian sandy soil habitat, A. splendens had a strong competitive advantage, and the growth of shallow-rooted plants was easily suppressed.  相似文献   

5.
不同时期的柑橘果实中真菌种类分析   总被引:1,自引:0,他引:1  
柑橘采后真菌病害发生普遍,对柑橘产业造成了极大的威胁。柑橘体内存在丰富的真菌类群,为了了解柑橘成熟和衰老过程中果实内生真菌的多样性和变化动态,本论文通过MiSeq技术解读真菌ITS区域序列,分别对生长期、成熟期和贮藏期的晚蜜一号果实的果皮和果肉的内生真菌种类进行了分析。发现相比于果肉,果皮中真菌在目和属水平的多样性更为丰富,而成熟期果肉中真菌种类多于果皮。不同生长阶段的两种组织中优势的真菌属也不同,果皮在生长期以Medicopsis和刺盘孢属(Colletotrichum)占绝对优势,成熟期为刺盘孢属,贮藏期以葡萄孢属(Botrytis)、Erythrobasidium和Strelitziana较为常见;而果肉中生长期主要为青霉属(Penicillium)和枝孢菌属(Cladosporium),约占1/4,成熟期半数以上为葡萄孢属,及至贮藏期约90%为链格孢属(Alternaria)和青霉属,其中链格孢属约占2/3。常见植物病原真菌如枝孢菌属(Cladosporium)、巨座壳属(Magnaporthe)、核盘菌属(Sclerotinia)、葡萄孢属(Botrytis)、白粉菌属(Erysiphe)、青霉属(Penicillium)、链格孢属(Alternaria)和镰孢霉属(Fusarium)等在果肉中的数量高于果皮。果肉中存在较大数量的常见植物病原真菌,不同属真菌在不同样品中呈不同的变化动态,暗示采后病变是多种真菌交互作用的结果,采后病害的防治可以提前至开花期。  相似文献   

6.
WANG Kun 《干旱区科学》2022,14(5):561-575
Robinia pseudoacacia L. (RP) restoration has increased vegetation cover in semi-arid regions on the Loess Plateau of China, but ecological problems have also occurred due to RP restoration, such as reduced soil moisture. Further, it is still uncertain how microbial diversity, composition and assembly processes change with RP restoration in semi-arid regions. Therefore, amplicon sequencing of small subunit ribosomal ribonucleic acid (16S rRNA) and internal transcribed spacer (ITS) genes was performed to study soil bacterial and fungal diversity, composition and assembly processes at four study sites with different stand ages of RP plantations (Y10, RP plantation with stand ages less than 10 a; Y15, RP plantation with stand ages approximately 15 a; Y25, RP plantation with stand ages approximately 25 a; and Y40, RP plantation with stand ages approximately 40 a) along a 40-a chronosequence on the Loess Plateau. The diversity of soil bacteria and fungi increased significantly during the restoration period from 10 to 15 a (P<0.05). However, compared with Y15, bacterial diversity was lower at Y25 and Y40, and fungal diversity remained stable during the restoration period between 25 and 40 a. The relative abundances of Proteobacteria and Ascomycota increased during the restoration period from 10 to 15 a. Conversely, after 15 a of restoration, they both decreased, whereas the relative abundances of Actinomycetes, Acidobacteria and Basidiomycota gradually increased. The variations in soil bacterial communities were mainly related to changes in soil total nitrogen, nitrate nitrogen and moisture contents, while soil fungal communities were mainly shaped by soil organic carbon and nitrate nitrogen contents. Bacterial communities were structured by the heterogeneous selection and stochastic process, while fungal communities were structured primarily by the stochastic process. The RP restoration induced an increase in the relative importance of heterogeneous selection on bacterial communities. Overall, this study reveals the changes in microbial diversity, community composition and assembly processes with RP restoration on the Loess Plateau and provides a new perspective on the effects of vegetation restoration on soil microbial communities in semi-arid regions.  相似文献   

7.
Caragana microphylla Lam., a leguminous shrub species, plays an important role in revegetation in the degraded ecosystems of the Horqin Sandy Land, Northeastern China. Large areas planted with this shrub have been artificially established as sand binders for soil protection, which might change the composition of soil bacterial communities with the development of sand dune stabilization. In this paper, we investigated the diversity and composition of native soil bacterial communities in the C. microphylla plantation for sand fixation using polymerase chain reaction with denaturing gradient gel electrophoresis(PCR-DGGE) to understand the influence of this plantation on sandy soil ecosystem development. We collected soil samples from plantations with an age sequence of 0, 9, 16, and 26 years, as well as from the natural community, to identify the differences among soil bacterial communities. The result showed that bacterial abundance and community composition in the sandy land were affected by the age of the C. microphylla plantation. Moreover, bacterial diversity decreased with increasing plantation age, and the composition of the bacterial community in the 26-year plantation was similar to that in the natural community. Phylogenetic analysis of bands excised from the DGGE gels showed that members of alpha Proteobacterium, gamma Proteobacterium, Gemmatimonadetes and Chloroflexi were dominant in the sandy land. The stabilization of moving sand dune and development of sand-fixed plantation resulted in an increase of soil fertility, which could drive the structural evolvement of soil bacterial community, and it needs over 20 years for the soil bacterial community to form a stable structure, similar to the case for the natural vegetation.  相似文献   

8.
为研究感染青枯病后烟株根际土壤与茎秆真菌群落结构与多样性的变化,对健康和感染青枯病烟株的根际土壤、病株茎秆发病组织和健株茎秆健康组织等样品中真菌ITS区的rDNA进行了PCR扩增、用Illumina MiSeq测序技术对扩增DNA片段进行高通量测序,并分析不同样品的真菌群落组成与多样性。结果表明,所有烟株根际土壤中优势门为子囊菌门Ascomycota和接合菌门Zygomycota;所有茎秆样品中优势门为担子菌门Basidiomycota和子囊菌门。在属水平,被孢霉属Mortierella、镰刀菌属Fusarium和隐球菌属Cryptococcus为所有土壤中的主要菌属,Boeremia主要存在于发病烟株根际土壤中,而木霉属Trichoderma主要存在于健康烟株根际土壤。发病茎秆病害组织中优势属为小画线壳属Monographella、隐球菌属、鬼伞属Coprinopsis和赤霉属Gibberella;发病茎秆病健交界处组织中优势属为隐球菌属、红酵母属Rhodotorula和小画线壳属。健康烟株茎秆组织中优势属为隐球菌属、链格孢属Alternaria和红酵母属;健康烟株中与发病茎秆病健交界处组织等高茎秆中优势属为镰刀菌属、隐球菌属、链格孢属和Gibellulopsis。青枯菌侵染烟株后根际土壤、发病茎秆病害组织和发病茎秆病健交界处组织的真菌群落中物种丰富度与多样性均显著提高,且发病茎秆病害组织与发病茎秆病健交界处组织真菌群落的变化大于根际土壤。研究结果为烟草青枯病的生物防治提供了参考。  相似文献   

9.
为阐明辣椒疫病生防菌黄柄曲霉ASD的土壤微生态调控机理,本研究利用化学方法与Illumina HiSeq平台分析了ASD菌液对罹病辣椒根际土壤特性及真菌多样性的影响。结果表明,ASD菌液的施入可以明显提高罹病土壤硝态氮与有效钾含量,降低铵态氮含量与N-乙酰基-β-D-氨基葡糖苷酶活性。ASD菌液增加了罹病辣椒根际土壤真菌多样性与丰度,从而改变了辣椒根际优势真菌群落构成。优势种群与发病率相关分析结果表明,丰度上升的嗜热链球菌属与嗜热毁丝霉属等9个物种与发病率呈负相关,丰度降低的斜盖伞属及近地伞属与发病率呈正相关。与环境因子相关性分析表明,有效钾、硝态氮的含量与ASD处理的土壤真菌多样性呈正相关,并正向影响锥盖伞属等10个物种,铵态氮含量及N-乙酰基-β-D-氨基葡糖苷酶活性则反之。综上所述,黄柄曲霉ASD可以增加辣椒疫病根际土壤真菌多样性,改变土壤营养状况与优势真菌种群结构,从而降低辣椒疫病的发病率。结果可为菌株ASD应用于生产实践提供理论基础。  相似文献   

10.
LIU Yabin 《干旱区科学》2022,14(7):811-823
Roots exert pullout resistance under pullout force, allowing plants to resist uprooting. However, the pullout resistance characteristics of taproot-type shrub species of different ages remain unclear. In this study, in order to improve our knowledge of pullout resistance characteristics of taproot systems of shrub species, we selected the shrub species Caragana korshinskii Kom. in different growth periods as the research plant and conducted in situ root pullout test. The relationships among the maximum pullout resistance, peak root displacement, shrub growth period, and aboveground growth indices (plant height and plant crown breadth) were analyzed, as well as the mechanical process of uprooting. Pullout resistance of 4-15 year-old C. korshinskii ranged from 2.49 (±0.25) to 14.71 (±4.96) kN, and the peak displacement ranged from 11.77 (±8.61) to 26.50 (±16.09) cm. The maximum pullout resistance and the peak displacement of roots increased as a power function (R2=0.9038) and a linear function (R2=0.8242) with increasing age, respectively. The maximum pullout resistance and the peak displacement increased with increasing plant height; however, this relationship was not significant. The maximum pullout resistance increased exponentially (R2=0.5522) as the crown breadth increased. There was no significant relationship between the peak displacement and crown breadth. The pullout resistance and displacement curve were divided into three stages: the initial nonlinear growth, linear growth, and nonlinear stages. Two modes of failure of a single root occurred when the roots were subjected to vertical loading forces: the synchronous breakage mode and the periderm preferential breakage mode. These findings provide a foundation for further investigation of the soil reinforcement and slope protection mechanisms of this shrub species in the loess area of northeastern Qinghai-Tibet Plateau, China.  相似文献   

11.
KE Zengming 《干旱区科学》2021,13(12):1201-1214
Soil physical properties (SPP) are considered to be important indices that reflect soil structure, hydrological conditions and soil quality. It is of substantial interest to study the spatial distribution of SPP owing to the high spatial variability caused by land consolidation under various land restoration modes in excavated farmland in the loess hilly area of China. In our study, three land restoration modes were selected including natural restoration land (NR), alfalfa land (AL) and maize land (ML). Soil texture composition, including the contents of clay, silt and sand, field capacity (FC), saturated conductivity (Ks) and bulk density (BD) were determined using a multifractal analysis. SPP were found to possess variable characteristics, although land consolidation destroyed the soil structure and decreased the spatial autocorrelation. Furthermore, SPP varied with land restoration and could be illustrated by the multifractal parameters of D1, ∆D, ∆α and ∆f in different modes of land restoration. Owing to multiple compaction from large machinery in the surface soil, soil particles were fine-grained and increased the spatial variability in soil texture composition under all the land restoration modes. Plough numbers and vegetative root characteristics had the most significant impacts on the improvement in SPP, which resulted in the best spatial distribution characteristics of SPP found in ML compared with those in AL and NR. In addition, compared with ML, ∆α values of NR and AL were 4.9- and 3.0-fold that of FC, respectively, and ∆α values of NR and AL were 2.3- and 1.5-fold higher than those of Ks, respectively. These results indicate that SPP can be rapidly improved by increasing plough numbers and planting vegetation types after land consolidation. Thus, we conclude that ML is an optimal land restoration mode that results in favorable conditions to rapidly improve SPP.  相似文献   

12.
 为探究施用烯酰吗啉后不同葡萄叶际微生物群落变化,以田间‘红地球’品种葡萄为研究对象,连续施用农药烯酰吗啉,采集不同组别样品,利用 Illumina Hiseq 高通量测序技术分析葡萄叶际真菌、细菌群落结构变化。基于可操作分类单元(operational taxonomic units, OTUs)的物种分类分析,共得到葡萄叶际微生物真菌群落共计6个门,23个纲,60个目,131个科,212个属,296个种;细菌群落共计42个门,91个纲,222个目,398个科,846个属,1 469个种。在云南农业大学砂壤土质、篱架式栽培的‘红地球’葡萄基地中发现:(1)葡萄叶际优势真菌有枝孢菌属(Cladosporium)、白粉菌属(Erysiphe)、unclassified -k_-Fungi属和Symmetrospora属;优势细菌有乳杆菌属(Lactobacillus)、双歧杆菌属(Bifidobacterium)、拟杆菌属(Bacteroides)、肠球菌属(Enterococcus)、毛螺菌属(unclassified-f-Lachnospiraceae)、norank-f-Muribaculaceae属、芽孢杆属(Bacillus)、Blautia属和肠杆菌属(Kosakonia)。(2)经烯酰吗啉处理后,在健康葡萄叶片中其叶际真菌群落丰富度略降低,多样性显著增加,叶际细菌群落丰富度增加,多样性增加,但零星发病叶片中,叶际真菌、细菌群落丰富度和多样性则显著降低。(3)在零星发病葡萄叶片中,相对健康叶片,葡萄叶际真菌群落之间的差异被增大,而葡萄叶际细菌群落的差异被减小。(4)在健康及发病叶片中,相对丰度均上调的真菌为白粉菌属(Erysiphe)、球腔菌属(Mycosphaerella)、线黑粉酵母属(Filobasidium)、黑孢霉属(Nigrospora)、赤霉属(Gibberella)、被孢霉菌(Mortierella)和镰刀菌属(Fusarium),细菌为巨单胞菌属(Megamonas)、链球菌属(Streptococcus)、葡萄球菌属(Staphylococcus)和弯曲杆菌属(Campylobacter);相对丰度均下调的真菌为枝孢属(Cladosporium)、壳针孢属(Septoria)、链格孢属(Alternaria)和担孢酵母属(Erythrobasidium);细菌为短小杆菌属(Kosakonia)鞘脂单胞菌属(Sphingomonas);推断这些菌对烯酰吗啉较为敏感。(5)施用烯酰吗啉农药对葡萄叶际微生物的影响在健康叶片与零星发病叶片中有差异,且有新的优势菌属出现。  相似文献   

13.
本研究采用Illumina MiSeq高通量测序技术,对河北承德栽培和野生北苍术根区土壤AM真菌群落多样性的差异和群落组成进行了检测,同时解析了土壤养分因子对AM真菌群落多样性的影响。结果显示,北苍术根区土壤中检测的AM-OTU分属于1门1纲5目6科8属AM真菌。野生北苍术AM真菌群落由球囊霉属(77.20%)等组成;栽培北苍术由巨孢囊霉属(34.48%~47.20%)、球囊霉属(30.05%~53.7%)等组成;土壤有机质、pH、有效磷、有效钾与AM真菌多样性指数Shannon、Simpsoneven呈正相关,其中有机质对AM真菌群落多样性影响最大。硼与AM真菌多样性指数Shannon、Simpsoneven、Sobs均呈正相关,铁、铜、锰、锌与之呈负相关。本研究阐明了野生与栽培北苍术根区AM真菌多样性及优势菌群差异,揭示了土壤养分因子与其多样性间的关系,为AM真菌在北苍术仿野生栽培中的应用提供了理论依据。  相似文献   

14.
核盘菌菌核围微生物群落分析及其对盾壳霉重寄生的影响   总被引:1,自引:0,他引:1  
 重寄生真菌盾壳霉(Coniothyrium minitans)是核盘菌的一种生防菌,它通过寄生核盘菌菌核,减少初侵染来源,从而达到防病效果。但在田间自然土壤中,核盘菌菌核围微生物对盾壳霉寄生菌核的影响还不清楚。本研究对核盘菌菌核围微生物进行了分离鉴定,并评估了菌核围细菌对盾壳霉重寄生的影响。结果表明,不同取样时间和不同深度的核盘菌菌核围土壤中,均存在可培养微生物富集的“菌核围效应”,即菌核围土壤中可培养细菌数量和真菌数量均高于非菌核围土壤。从菌核围土壤中共分离获得了253株细菌和180株真菌,并对其中的代表菌株进行了分子鉴定,发现假单胞菌属(Pseudomonas)和芽胞杆菌属(Bacillus)是菌核围细菌的优势种群,青霉属(Penicillium)是菌核围真菌的优势种群。通过平板对峙,从菌核围细菌中筛选到25个菌株对核盘菌有拮抗活性,22个菌株对盾壳霉具有拮抗活性。砂皿寄生菌核试验证实,7株菌核围细菌对盾壳霉寄生菌核有显著的抑制作用。核盘菌菌核围细菌对盾壳霉重寄生的抑制作用,可能是导致盾壳霉田间生防效果不稳定的原因之一。  相似文献   

15.
Mazzola M 《Phytopathology》1999,89(10):920-927
ABSTRACT Changes in the composition of soil microbial communities and relative disease-suppressive ability of resident microflora in response to apple cultivation were assessed in orchard soils from a site possessing trees established for 1 to 5 years. The fungal community from roots of apple seedlings grown in noncultivated orchard soil was dominated by isolates from genera commonly considered saprophytic. Plant-pathogenic fungi in the genera Phytophthora, Pythium, and Rhizoctonia constituted an increasing proportion of the fungal community isolated from seedling roots with increasing orchard block age. Bacillus megaterium and Burkholderia cepacia dominated the bacterial communities recovered from noncultivated soil and the rhizosphere of apple seedlings grown in orchard soil, respectively. Populations of the two bacteria in their respective habitats declined dramatically with increasing orchard block age. Lesion nematode populations did not differ among soil and root samples from orchard blocks of different ages. Similar changes in microbial communities were observed in response to planting noncultivated orchard soil to five successive cycles of 'Gala' apple seedlings. Pasteurization of soil had no effect on apple growth in noncultivated soil but significantly enhanced apple growth in third-year orchard block soil. Seedlings grown in pasteurized soil from the third-year orchard block were equal in size to those grown in noncultivated soil, demonstrating that suppression of plant growth resulted from changes in the composition of the soil microbial community. Rhizoctonia solani anastomosis group 5 (AG 5) had no effect on growth of apple trees in noncultivated soil but significantly reduced the growth of apple trees in soil from third-year orchard soil. Changes in the ability of the resident soil microflora to suppress R. solani AG 5 were associated with reductions in the relative populations of Burkholderia cepacia and Pseudomonas putida in the rhizosphere of apple.  相似文献   

16.
为揭示盐碱环境下盐爪爪内生菌群落结构组成及其多样性,以新疆5个典型盐碱地区的盐爪爪为研究对象,采用高通量测序技术分别对其根部和地上部分样品的内生菌进行分析。结果表明:获得的366个细菌操作分类单元(Operational taxonomic units, OTUs)共涉及16个门,70个目,321个属;以变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)、放线菌门(Actinobacteria)为主要菌门。获得的869个真菌OTUs共涉及14个门,86个目,291个属;以子囊菌门(Ascomycota)、担子菌门(Basidiomycota)、油壶菌门(Olpidiomycota)为主要菌门。其中,嗜盐单胞菌属(Halomonas)和链格孢属(Alternaria)占绝对优势。不同地区和不同组织的内生细菌群落和内生真菌群落组成及群落丰富度差异显著。土壤中的钠离子(Na+)、氯离子(Cl-)和电导率(EC)与内生菌主要门的分布呈显著正相关关系,表明不同地区内生群落的构成差异主要与土壤盐碱化相关。研究初步揭示了新疆盐碱地区...  相似文献   

17.
To investigate the community composition and diversity of fungal endophytes in wheat roots and stems from different soil types in Henan Province, tissue isolation method was used to isolate and purify endophytic fungi from wheat plants collected from 22 counties/districts in five soil types, and the identification of the fungal endophytes fungi was based on morphology and internal transcribed spacer (ITS) sequence. The community composition and diversity of endophytic fungi were analyzed. The results showed that 426 endophytic fungi were affiliated with 23 genera, among which Chaetomium spp. had the highest number accounting for 23.2% of the total strain number, followed by Penicillium spp.. Five strains were tested for the antifungal activity against both Rhizoctonia Cerealis and Fusarium pseudograminearums on plate, and their inhibition rates against R. Cerealis ranged from 44.8% to 70.5% (zone widths 2.00~9.67 mm)while from 35.4% to 49.3% (zone widths 3.67~6.67 mm) against F. pseudograminearum. This paper clarifies the major taxa and their diversity of fungal endophytes in the roots and stems of wheat in different soil types in Henan Province, and their inhibitory effects on soil-borne fungi, providing a basis for the biological control of sharp eyespot and crown rot of wheat.  相似文献   

18.
ZHOU Tairan 《干旱区科学》2021,13(10):1015-1025
Soil water content is a key limiting factor for vegetation growth in the semi-arid area of Chinese Loess Plateau and precipitation is the main source of soil water content in this area. To further understand the impact of vegetation types and environmental factors such as precipitation on soil water content, we continuously monitored the seasonal dynamics in soil water content in four plots (natural grassland, Caragana korshinskii, Armeniaca sibirica and Pinus tabulaeformis) in Chinese Loess Plateau. The results show that the amplitude of soil water content fluctuation decreases with an increase in soil depth, showing obvious seasonal variations. Soil water content of artificial vegetation was found to be significantly lower than that of natural grassland, and most precipitation events have difficulty replenishing soil water content below a depth of 40 cm. Spring and autumn are the key seasons for replenishment of soil water by precipitation. Changes in soil water content are affected by precipitation, vegetation types, soil evaporation and other factors. The interception effect of vegetation on precipitation and the demand for water consumption by transpiration are the key factors affecting the efficiency of soil water replenishment by precipitation in this area. Due to artificial vegetation plantation in this area, soil will face a water deficit crisis in the future.  相似文献   

19.
测定了波尔多液对烟草赤星病菌的毒力,并采用高通量测序与Biolog代谢表型技术分别测定了其对烟叶健康与感病组织叶际微生物群落结构和代谢功能的影响。结果表明:波尔多液对烟草赤星病菌的抑制活性较弱,其抑制菌丝生长和孢子萌发的EC50值分别为450.19和757.17 mg/L。健康与感病烟叶组织叶际细菌均分布于变形菌门 (6.93%和39.07%) 和厚壁菌门 (16.45%和0.65%),优势细菌均有Kosakonia (3.46%和22.38%) 和假单胞菌属 (0.22%和5.95%);真菌均分布于子囊菌门 (63.82%和93.74%) 和担子菌门 (6.82%和2.53%),优势真菌有链格孢属 (36.48%和84.52%) 、Symmetrospora (5.56%和2.27%) 和枝孢霉属 (14.87%和6.66%)。波尔多液1 500 g/hm2处理对健康和感病烟叶叶际细菌和真菌群落结构与代谢功能均有影响,处理5 d时降低了叶际Kosakonia、鞘脂单胞菌属和乳杆菌属的相对丰度,增加了假单胞菌属、劳尔氏菌属等6种细菌菌属的相对丰度;降低了链格孢属、Symmetrospora等6种真菌属的相对丰度,增加了亚隔孢壳属、绿僵菌属等10种真菌属的相对丰度。处理10和15 d时对叶际真菌、细菌的影响逐渐降低。健康与感病烟叶叶际微生物均可高效代谢糖类、氨基酸类、羧酸类、双亲化合物、聚合物和胺/氨基化合物等29种碳源,但对α-丁酮酸的代谢较弱。波尔多液处理对烟叶叶际微生物的代谢抑制活性随时间延长逐渐减弱。研究结果揭示了波尔多液施用不同时期后对烟叶叶际微生物的影响规律,为了解药剂持效期的生态效益提供了参考依据。  相似文献   

20.
 为研究复合微生物菌肥对再植苹果幼树的影响,从再植土壤酶活性、真菌群落结构和功能的方面分析,探究复合微生物菌肥的作用机理。本研究设置了KMM和对照CK两个处理,再植苹果树于春秋两次分别施用复合微生物菌肥(KMM)和有机肥(CK)。通过土壤常规农业化学分析法和Illumma MiSeq高通量测序技术,系统研究了两个处理再植苹果树的生长、根围土壤酶活性以及真菌群落结构和功能的变化。试验结果表明,施用复合微生物菌肥显著提高了再植苹果幼树株高、干径、叶绿素、分枝个数和分枝长度;提高再植土壤酶活性(中性磷酸酶、脲酶、蔗糖酶和过氧化氢酶);降低再植土壤真菌群落丰富度,改变真菌群落结构。相对丰度高于1%的优势真菌属中有21个菌属与再植果树的5项生长参数具有相关性,并且在不同分类水平上具有一定的差异,缝壳菌属(Lophiostoma)、织球壳菌属(Plectosphaerella)、赤壳菌属(Nectria)和维希尼克氏属(Vishniacozyma)显著增加,丝孢菌属(Anguillospora)和假丝酵母菌属(Pseudeurotium) 显著降低。通过对测序片段功能水平的分析,在二级功能水平上显著降低了真菌群落氨基酸、核苷和核苷酸的生物合成、电子转移、发酵、呼吸、CTP生物合成嘧啶脱氧核糖核酸功能序列的丰度值,共6种功能类群均与土壤酶活性呈负相关。施用复合微生物菌肥,改变了真菌群落结构,减弱真菌群落相关代谢的功能,提高土壤酶活性,促进再植苹果幼树的生长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号