首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An 18-week study was conducted to examine growth characteristics of the juvenile blue crab (Callinectes sapidus Rathbun) fed various levels of dietary protein. Hatchery raised individuals (157) of identical age (160 days) from the same gravid female were assigned to one of four dietary treatments: adult brine shrimp (Artemia salina Leach) and artificial pelleted diets containing crude protein levels of 23, 37, and 49%.Growth rate, measured as a function of mean weight and mean carapace width, indicated that brine shrimp-fed crabs were larger (P < 0.05) than crabs fed artificial pelleted diets. Also, blue crabs fed either 37 or 49% crude protein were larger than crabs fed the 23% crude protein diet. Molting frequency was greater in the brine shrimp-fed crabs than in those fed the artificial diets. No differences in growth were detected when comparing males vs. females fed the artificial diets. However, females demonstrated greater growth than males within the brine shrimp treatment. Protein concentration of freeze-dried whole blue crab carcasses was greater in brine shrimp-fed crabs than in crabs fed the artificial pelleted diets (P < 0.05).  相似文献   

2.
Dietary Threonine Requirement of Juvenile Red Drum Sciaenops ocellatus   总被引:1,自引:0,他引:1  
Threonine is an indispensable amino acid required by all animals for normal growth and metabolic functions. An experiment was conducted in a brackish water (5 ± 1 ppt) recirculating system to quantify the minimum dietary threonine requirement of juvenile red drum Sciaenops ocellatus . The experimental diets contained 350/0 crude protein from red drum muscle and crystalline amino acids and 3.2 kcal available energy/g diet. Incremental levels of L-threonine were added to the diets and fed to juvenile red drum initially averaging 2.8 g/fish for 8 wk. Weight gain and feed efficiency of fish fed the various diets were significantly ( P < 0.05) affected and increased linearly as dietary threonine increased until plateauing around 0.8% of dry diet. Protein efficiency ratio and protein conversion efficiency values for fish fed the different diets also were significantly affected by threonine level and indicated requirement values of 0.8–0.9% of dry diet. Free threonine in plasma also significantly responded to increasing dietary threonine but indicated a slightly higher requirement value of approximately 1.0% of dry diet. Based on these data, the minimum threonine requirement of juvenile red drum was determined to be approximately 0.8% of dry diet (2.28% of dietary protein). This requirement level is similar to values reported for some other fish species. Based on this information diets may be formulated more precisely for aquacultural production of red drum.  相似文献   

3.
The present experiment was conducted to investigate the effects of dietary protein to carbohydrate ratios on growth and body composition of juvenile yellow catfish, Pelteobagrus fulvidraco . Nine diets were formulated to contain three protein levels (30%, 36% and 42%), each with three carbohydrate levels (24%, 30% and 36%). Each diet was randomly assigned to triplicate groups of 20 fish (initial mean body weight: 8.24±0.20 g) in indoor flow – through fibreglass tanks. The experiment continued for 8 weeks. Weight gain and specific growth rate were similar for the fish fed the 36% and 42% protein diets but higher than that fed the 30% protein diet. At the 36% protein level, carbohydrate contents varying from 24% to 36% ( P / E ratio of 24.0–28.2 mg protein kJ−1) had no significant effects on growth performance and feed utilization ( P >0.05). Protein efficiency ratio tended to increase with dietary carbohydrate level at the same protein level. Dietary treatments significantly influenced body composition ( P <0.05), but not the condition factor, viscerosomatic index, hepatosomatic index and intraperitoneal fat ratio ( P >0.05). Based on these observations, 36% protein and 24–36% carbohydrate with the P / E ratio of 24.0–28.2 mg protein kJ−1 seemed suitable for optimal growth and feed utilization, and carbohydrate could cause protein-sparing effect in diets for juvenile yellow catfish.  相似文献   

4.
An experiment was conducted to determine the dietary protein requirement by different analysis methods and to study the effects of dietary protein levels on growth performance and body composition in Japanese flounder Paralichthys olivaceus fed white fish meal and casein-based diets for 8 wk. After a 1-wk conditioning period, one of six isocaloric diets containing 30, 36, 42, 48, 54, and 60% crude protein (CP) was fed to fish at approximately 4–5% of wet body weight on a dry matter basis to triplicate groups of 15 fish averaging 13.3 ± 0.06 g (mean ± SD). After 8 wk of the feeding trial, weight gain (WG) and feed efficiency (FE) from fish fed 48% CP diet were similar to those from fish fed 42% and 54% CP diets, and were significantly higher than those from fish fed 30, 36 and 60% CP diets ( P < 0.05). Fish fed 48 and 54% CP diets had a significant higher specific growth rate (SGR) than did fish fed 30 and 36% CP diets ( P 0.05). Protein efficiency ratio (PER) was inversely related to the dietary protein level. No significant differences existed in hematocrit (PCV) and survival rate among the dietary treatments. Broken-line model analysis indicated that the optimum dietary protein level could be 44.0 ± 3.0% for maximum WG in Japanese flounder. Polynomial regression analysis of the dose-response showed that maximum WG occurred at 50.2% ( R2 = 0.94) based on WG, and the second-order polynomial regression analysis with 95% confidence limits revealed that the range of minimum protein requirement was between 38.9% and 40.3% based on WG. Therefore, these findings suggest that the optimum dietary protein requirement for maximum growth of Japanese flounder is greater than 40%, but less than 44% CP in the fish meal and casein-based diets containing 17.0 kJ/g of energy.  相似文献   

5.
An 8-week feeding trial was conducted to determine the threonine requirement of juvenile Pacific white shrimp Litopenaeus vannamei (Boone) in low-salinity water (0.50–1.50 g L−1). Diets 1–6 were formulated to contain 360 g kg−1 crude protein with fish meal, wheat gluten and pre-coated crystalline amino acids with six graded levels of l -threonine (9.9–19.0 g kg−1 dry diet). Diet 7, which was served as a reference, contained only intact proteins (fish meal and wheat gluten). Each diet was randomly assigned to triplicate groups of 30 shrimps (0.48±0.01 g), each four times daily. Shrimps fed the reference diet had similar growth performance and feed utilization efficiency compared with shrimps fed the diets containing 13.3 g kg−1 or higher threonine. Maximum specific growth rate (SGR) and protein efficiency ratio were obtained at 14.6 g kg−1 dietary threonine, and increasing threonine beyond this level did not result in a better performance. Body compositions, triacyglycerol and total protein concentrations in haemolymph were significantly affected by the threonine level; however, the threonine contents in muscle, aspartate aminotransferase and alanine aminotransferase activities in haemolymph were not influenced by the dietary threonine levels. Broken-line regression analysis on SGR indicated that optimal dietary threonine requirement for L. vannamei was 13.6 g kg−1 dry diet (37.8 g kg−1 dietary protein).  相似文献   

6.
Juvenile yellow perch Perca flavescens were fed semipurified diets with varying protein to metabolizable energy ratios (PME, g protein MJ−1 metabolizable energy) and nutrient densities in three experiments to determine recommended dietary protein and energy concentrations. Experiment 1 fish (18.6 g) were fed diets containing 450 g crude protein kg−1 dry diet and 14.5–18.8 MJ ME kg−1 dry diet for 10 weeks. No differences were found in the growth of experiment 1 fish fed the different diets. Experiment 2 fish (21.9 g) were fed diets containing 15.7 MJ ME kg−1 dry diet and 210–420 g crude protein kg−1 dry diet for 8 weeks. Fish fed the diet containing 340 g kg−1 protein (diet PME = 22) exhibited the greatest weight gain. Experiment 3 fish (27.1 g) were fed diets with a PME of 22 and varying nutrient density (yielding 205–380 g crude protein kg−1 dry diet) for 8 weeks. No differences were found in the growth of experiment 3 fish. Yellow perch fed the semipurified diets exhibited increased liver fat content, liver size and degree of liver discoloration compared with fish fed a commercial fish meal-based diet. Liver changes may have resulted from high dietary carbohydrate levels. We conclude that a protein level of 210–270 g kg−1 dry diet is suitable for juvenile yellow perch provided that the dietary amino acid profile and carbohydrate content are appropriate for yellow perch.  相似文献   

7.
Dietary vitamin C requirement of red drum Sciaenops ocellatus   总被引:5,自引:0,他引:5  
A feeding trial was conducted to determine the minimum dietary vitamin C requirement of juvenile red drum and characterize signs of vitamin C deficiency. Semipurified diets containing 400 g crude protein kg–1 from lyophilized red drum muscle and crystalline amino acids were used in the feeding trial. The basal diet without supplemental vitamin C contained ≈ 6 mg vitamin C kg–1 and was fed for a 1-week conditioning period. Red drum, initially averaging ≈ 3.6 g each, were fed diets supplemented with 0, 10, 20, 30, 45, 60, 75, or 150 mg vitamin C kg–1 as ascorbate polyphosphate for a period of 10 weeks. Fish fed the basal diet began to exhibit overt signs of vitamin C deficiency, including reduced weight gain, lordosis, scoliosis and loss of equilibrium after 8 weeks. Total ascorbate was undetectable in liver of fish fed the basal diet while liver ascorbate levels in fish fed the other diets generally reflected dietary supplementation. Regression analysis of weight gain data using the broken-line model resulted in a minimum vitamin C requirement ( ± SE) of 15 ± 3 mg kg–1 diet.  相似文献   

8.
The dietary lysine requirement of juvenile red drum Sciaenops ocellatus was reevaluated in two separate experiments. In the first experiment, lyophilized red drum muscle was combined with an L-form crystalline amino acid premix to yield diets containing approximately 35% protein on a dry-matter basis. Gradations (0.25%) of L-lysine HCl were added to the basal diet containing approximately 1.0% lysine. Each diet was fed to triplicate groups of juvenile red drum initially weighing 6–7 g for 8 weeks. Based on growth and feed efficiency data, the lysine requirement (±SE) was determined to be 1.55% (±0.079%) of dry diet or 4.430% of dietary protein. In a second experiment, the lysine requirement of red drum was investigated with diets containing 35% intact protein from zein and red drum muscle. Each of the zein-based diets containing incremental levels of lysine was fed to triplicate groups of juvenile red drum initially weighing 1–2 g for 8 weeks. A crystalline amino acid test diet serving as a control in this experiment significantly outperformed the zein-based diets, and palatability of those diets was questionable due to an obvious change in feeding behavior of the fish. Due to the inferior performance of the fish fed the zein-based diets, the authors were not successful in determining a requirement with these diets. Thus, a lysine requirement of 1.55% of dry diet (4.43% of dietary protein) as determined in the first experiment is recommended for juvenile red drum.  相似文献   

9.
A 10‐week feeding experiment was conducted to determine the optimum dietary protein requirement of juvenile obscure puffer (Takifugu obscurus). Six isoenergetic (20 MJ kg?1 gross energy) diets were formulated to contain graded levels of 34%, 38%, 42%, 46%, 50% or 54% crude protein (as dry matter basis). The results showed final body weight, weight gain and specific growth rate (SGR) increased significantly with increasing protein levels up to 42% and then decreased thereafer. Second‐order polynomial regression analysis (y = ?0.0024x2 + 0.1788x ? 1.3196, R2 = 0.9032) indicated a maximum SGR at protein level of 37%. Feed conversion ratio (FCR) decreased with increasing levels of dietary protein up to 42% and increased thereafter. Second‐order polynomial regression analysis (y = 0.0054x2 ? 0.4351x + 10.391, R2 = 0.753) indicated a minimum FCR at protein level of 40%. Protein efficiency ratio (PER) of fish fed the 34%, 38% and 42% diets was significantly higher than that of fish fed the 46%, 50% and 54% diets, and broken‐line analysis indicated PER tended to decrease when dietary protein level was higher than 40%. Generally, whole body lipid content, total cholesterol, low‐density lipoprotein cholesterol and triacylglycerol decreased with increasing levels of dietary protein. Fish fed the 42% protein diet showed the highest essential amino acids (histidine, isoleucine, leucine, lysine and threonine) and non‐essential amino acids (aspartic acid and glutamic acid) in muscle. Based on the second‐degree polynomial regression analysis of SGR and FCR and broken‐line analysis of PER, the optimal dietary protein level of obscure puffer is estimated to be between 37% and 40% (% as dry matter basis).  相似文献   

10.
A feeding trial was conducted to determine the optimum dietary protein level of sea cucumber Apostichopus japonicus juvenile focusing on growth performance and non‐specific immune response. Diets with seven crude protein levels (42.0, 108.9, 155.2, 216.7, 258.0, 313.3 and 357.5 g kg?1) were fed to sea cucumber juveniles (1.05 ±0.01 g) once a day for 100 days. More than 70% survival was observed, and there was no significant difference among all treatments. The sea cucumbers fed diets containing 108.9 g kg?1 crude protein showed significantly (< 0.05) higher body weight gain than those of the sea cucumbers fed diets containing 42.0, 216.7, 258.0, 313.3 and 357.5 g kg?1 crude protein. No significantly differences (> 0.05) were observed in moisture, crude protein, crude lipid, ash and carbohydrate content of the body wall among all treatments. The coelomic fluid catalase activity of the sea cucumbers generally increased with increasing dietary protein levels. Therefore, the acid phosphatase, superoxide dismutase and lysozyme activity increased with increasing dietary protein levels at first and decreased subsequently. The relationship between dietary protein levels and body weight gain was analysed by a second‐order polynomial regression analysis model. The result indicates that the optimum dietary protein level for sea cucumber juveniles is 135.4 g kg?1.  相似文献   

11.
Optimum dietary protein and lipid levels for juvenile rockfish were determined. Eight hundred and ten juvenile fish averaging 3.22 g were randomly chosen and distributed into 27 flow‐through tanks of 50 L (30 fish per tank). Nine experimental diets were prepared according to a 3 × 3 factorial experimental design: three crude protein levels (45%, 50% and 55%) × three crude lipid levels (11%, 15% and 19%). Crude protein and crude lipid levels increased at the expense of dextrin and cellulose in the experimental diets. Survival of fish was not affected by either dietary protein or lipid level. Weight gain of fish was affected by dietary protein level, but not by dietary lipid level. Weight gain of fish fed the 50P‐15L (50% protein and 15% lipid) diet was higher than that of fish fed the 45% protein diets regardless of lipid level, but not different from that of fish fed the 50P‐11L (50% protein and 11% lipid), 50P‐19L (50% protein and 19% lipid), 55P‐11L (55% protein and 11% lipid), 55P‐15L (55% protein and 15% lipid) and 55P‐19L (55% protein and 19% lipid) diets. Feed consumption of fish was affected by dietary protein level, but not by dietary lipid levels. Feed efficiency ratio (FER) of fish was affected by dietary protein level, but not by dietary lipid level. Protein efficiency ratio (PER) of fish was affected by dietary protein level, but not by dietary lipid level. Nitrogen retention efficiency (NRE) of fish fed the 45P‐19L diet was higher than that of fish fed the 45P‐11L, 50P‐11L, 50P‐15L, 50P‐19L, 55P‐11L, 55P‐15L and 55P‐19L diets, but not different from that of fish fed the 45P‐15L diet. Moisture, crude protein and crude lipid contents of fish was affected by dietary protein and/or lipid level. Plasma triglyceride of fish was affected by dietary lipid level, but not by dietary protein level. In conclusion, optimum protein and lipid levels for growth and feed utilization (PER and NRE) for juvenile rockfish were 50% and 15%, and 45% and 19%, respectively, and the optimum dietary protein‐to‐energy ratio of 27.4 and 23.9 mg protein kJ?1.  相似文献   

12.
A growth experiment was conducted to determine the optimal dietary protein requirement for juvenile ivory shell reared in indoor aerated aquaria. Six isoenergetic experimental diets using fish meal, casein and gelatin as protein sources were formulated to contain graded levels of protein (27, 33, 38, 43, 49 and 54% of dry diet, respectively). Triplicate groups of 40 shells (average weight 93.50 ± 1.70 mg) were stocked in 120-l tanks and fed to apparent satiation twice daily for 8 weeks. The results showed that the growth performance and feed utilization were significantly affected by dietary protein level (P < 0.05). Maximum weight gain, mean protein gain, specific growth rate and soft body to shell ratio occurred at 43% dietary protein level (P < 0.05). There were significant differences in protein, lipid, moisture and ash content in soft body; except that ash content in shell was not significantly affected by dietary protein level. Pepsin activity in soft body tissue significantly increased with dietary protein level up to 43%, and trypsin-like enzyme activity increased with dietary protein level up to 49%. However, lipase activity in soft body decreased with increasing dietary protein level. However, no significant differences (P < 0.05) in survival, calcium, phosphorus concentration in the shell and soft body were found among dietary treatments. Quadratic regression analysis of weight gain against dietary protein level indicated that the optimal dietary protein requirement for maximum growth and feed utilization of juvenile ivory shell is 45% of dry diet.  相似文献   

13.
An 8‐week feeding trial was conducted to determine the effect of dietary l ‐methionine supplementation on growth performance, serum immune and antioxidative responses of juvenile Nile tilapia Oreochromis niloticus. Six iso‐nitrogenous (282 g kg?1 crude protein) diets were formulated to contain graded levels of methionine (0.32%, 0.54%, 0.75%, 0.93%, 1.14% and 1.33% of dry weight) at a constant dietary cysteine level of 0.83 g kg?1. Each diet was randomly assigned to triplicate groups of 25 juvenile fish (2.3 ± 0.0 g), which were fed three times daily (8:30, 12:30 and 17:00 hours). The results showed that growth performance and feed utilization significantly improved when dietary methionine levels increased (P < 0.05). Using quadratic regression analysis of weight gain against dietary methionine levels indicated that, the optimal dietary methionine requirement for maximum growth of juvenile tilapia was 9.12 g kg?1 of the dry diet in the presence of 0.83 g kg?1 cystine. In addition, maximum C4 content and lysozyme activity were observed in fish fed 7.50 g kg?1 methionine diet; maximum C3 content and superoxide dismutase activity were obtained in fish fed 9.30 g kg?1 dietary methionine level. While there was no significant difference in serum glutathione peroxidase activity among all methionine supplemented treatments (P > 0.05). Methionine supplementation decreased malondialdehyde content in serum significantly (P < 0.05) when compared with the control diet, while there was no significant difference among supplemented treatments. These data suggested that l ‐methionine affected antioxidant status and promoted serum immune response in juvenile Nile tilapia, and at non‐stressed status, the requirement of dietary methionine in maintaining normal immunity and physiology is lower than that for maximum growth.  相似文献   

14.
An 8-week feeding experiment was conducted to determine the effect of dietary methionine supplementation on intestinal microflora and humoral immune of juvenile Jian carp (initial weight of 9.9 ± 0.0 g) reared in indoor flow-through and aerated aquaria. Eight amino acid test diets (350 g kg−1 crude protein, CP), using fish meal, soybean-condensed protein and gelatin as intact protein sources supplemented with crystalline amino acids, were formulated to contain graded levels of methionine (0.6–22.0%) at a constant dietary cystine level of 3 g kg−1. Each diet was randomly assigned to three aquaria. Growth performance and feed utilization were significantly influenced by the dietary methionine levels ( P  < 0.05). Maximum weight gain, feed intake occurred at 12 g kg−1 dietary methionine ( P  < 0.05). Methionine supplementation improved hepatopancreas and intestine weight, hepatosomatic and intestine index, intestinal γ-glutamyltransferase and creatine kinase activity, Lactobacillus count, Bacillus count, lysozyme activities, lectin potency, sim-immunoglobulin M content, addiment C3,C4 contents and serum total iron-binding capacity and declined Escherichia coli and Aeromonas counts. Quadratic regression analysis of weight gain against dietary methionine levels indicated that the optimal dietary methionine requirement for maximum growth of juvenile Jian carp is 12 g kg−1 of the dry diet in the presence of 3 g kg−1 cystine.  相似文献   

15.
用蛋白质水平分别为31.45%,36.37%,41.55%,46.13%,51.72%和56.86%的6种等能饲料,对初始体重为(11.86?0.11)mg的拟穴青蟹(Scylla paramamosain)幼蟹进行为期3周的养殖实验,考察饲料蛋白质水平对拟穴青蟹幼蟹生长性能、体成分以及消化酶活性的影响,以期获得拟穴青蟹幼蟹饲料蛋白质的适宜添加量。结果表明,饲料蛋白质水平对拟穴青蟹幼蟹的成活率影响不显著(P0.05);幼蟹的增重率和特定生长率随饲料蛋白质水平的提高先显著升高(P0.05)后稍有下降,最大值出现在蛋白质水平为51.72%的实验组;随着饲料蛋白质水平的提高,幼蟹粗蛋白质含量显著升高(P0.05)后趋于稳定,粗脂肪含量显著降低(P0.05),灰分含量先显著升高(P0.05)后显著降低(P0.05),水分含量则没有显著变化(P0.05);随着饲料蛋白质水平的提高,幼蟹蛋白酶活性显著升高(P0.05),淀粉酶活性显著降低(P0.05),各组脂肪酶活性也有显著差异(P0.05),但没有明显的变化规律。本研究条件下,饲料蛋白质水平在41.55%~56.86%,拟穴青蟹幼蟹均表现出较好的生长率,增重率和蛋白质水平的回归分析表明,幼蟹饲料蛋白质适宜水平为49.03%。  相似文献   

16.
Growth and amino acid oxidation studies were conducted to estimate methionine requirement of juvenile Japanese flounder, Paralichthys olivaceus , by using the purified diets containing 500 g kg–1 crude protein from casein, gelatine and crystalline amino acids (CAA). Diets with six graded levels of methionine (5.3, 8.3, 11.3, 14.3, 17.3 and 20.3 g kg–1 diet) were fed to triplicate groups of the juvenile (initial weight 2.8 ± 0.05 g) twice a day for 40 days. To prevent leaching losses, CAA were precoated using carboxymethylcellulose (CMC), and further diets were bound by CMC and κ-carrageenan. Based on broken-line analysis of percentage weight gain and feed conversion efficiency, the methionine requirements of Japanese flounder in the presence of 0.6 g kg–1 of cystine were 14.9 and 14.4 g kg–1 dry diet, respectively. After the growth study was finished, a direct estimate of methionine requirement was made by examining the influence of dietary methionine level on 14C-methionine oxidation by determining radioactive carbon dioxide, protein and nonprotein fractions of the whole body. The dose–response curve between expired radioactive CO2 and dietary methionine levels showed that the optimum methionine level for the flounder was estimated to be within the range of 14.3–17.3 g kg–1 of diet in high agreement with values obtained from the growth study.  相似文献   

17.
Isonitrogenous and isocaloric diets containing 0, 18 or 36% toasted full-fat soybean meal (FFSM) were fed to Atlantic halibut. The diets were fed to five tanks of fish each for 34 days (period 1). Four tanks from each treatment were then retained in the growth experiment for a further 32 days (period 2), while the groups of fish from one tank from each of the 0 and 36% FFSM groups were split and transferred to two metabolism tanks each. The initial weight of the fish in the growth trial was 169 ± 1 g (mean ± SEM, n =12; weight range 89–253 g) and the final weight was 317 ± 5 g. There was no significant effect of dietary treatment on specific growth rate (range, 0.8–1.1% day−1), feed consumption (0.5–0.7% body weight day−1), feed efficiency (1.3–1.6 g wet gain g dry feed−1), protein retention (48–55%) or energy retention (49–57%). The fat, protein and energy concentrations in the fish increased during the trial and were not affected by the diet. The hepatosomatic index in fish fed with 36% FFSM diet was significantly lower (1.7%) than in the other groups (2.2%) ( P  < 0.05). No differences in intestinal morphology were observed between dietary treatments and no pathological reactions were identified in any of the samples. In the metabolism trial, there were no significant differences in oxygen consumption or ammonia excretion between fish fed with 0 and 36% FFSM diets. In conclusion, up to 36% FFSM may be added to diets for Atlantic halibut without negative effects on growth, feed efficiency or intestinal morphology.  相似文献   

18.
Growth performance, carcass quality, survival and haematological responses were determined when Huso huso juvenile (41.7±1.8 g) fed diets containing Ergosan (an algal product) at 0, 2.0, 4.0 and 6.0 g kg−1 for 60 days. Each diet was fed to triplicate groups of fish at 10-day intervals (1–10, 20–30 and 40–50 with non-supplemented diets and 10–20, 30–40 and 50–60 with supplemented diets). Results showed that fish fed diets containing Ergosan had significantly higher growth than the control group ( P <0.05). Survival was not different among all dietary treatments ( P >0.05). Food conversion ratio in the fish fed a diet containing 4.0 and 6.0 g kg−1 Ergosan was significantly better than the other treatments ( P <0.05), whereas protein efficiency ratio was not different between experimental diets. Lymphocyte count in the fish fed diets containing Ergosan was higher than the other treatments. Haematocrit, haemoglobin (Hb) concentration, number of erythrocytes, total leucocytes, monocyte, eosinophil, myelocyte, mean corpuscular volume, mean corpuscular haemoglobin and mean corpuscular haemoglobin concentration were not different between treatments. Neutrophil count in the control group was higher than the fish fed supplemented diets. Furthermore, whole body lipid, moisture and fibre were not different among dietary treatments ( P >0.05) but body protein in the fish fed a diet containing Ergosan at the level of 2.0 and 4.0 g kg−1 was higher than the other treatments. Whole body ash content was higher in the control group. It was concluded that dietary administration of Ergosan can influence some growth and haematological parameters in great sturgeon, H. huso juveniles.  相似文献   

19.
A 10-wk feeding trial was conducted to quantify the dietary threonine requirement of juvenile striped bass Morone saxatilis . The basal diet was analyzed to contain 42% crude protein with a calculated digestible energy (DE) level of 3,200 kcal/kg. L-threonine was added to the basal diet to yield five dietary treatments of 0.61, 0.81, 1.00, 1.18, and 1.40% available threonine on a dry-matter basis. Weight gain, specific growth rate (SGR), feed conversion ratio (FCR) and apparent nitrogen utilization (ANU) were significantly ( P < 0.05) affected by dietary threonine concentrations. Least-squares regression analysis of weight gain, SGR, FCR, and ANU indicated dietary threonine requirements (±SE) of 1.00 ± 0.19, 0.91 ± 0.11, 1.06 ± 0.09 and 1.13 ± 0.22% of dry diet, respectively. From these results, the average recommended dietary threonine requirement of juvenile striped bass is 1.03% of dry diet, 2.45% of dietary protein or 3.22 mg/kcal DE.  相似文献   

20.
Triplicate groups of Mystus nemurus (Cuvier & Valenciennes) were fed isoenergetic semipurified diets containing seven dietary protein levels from 200 to 500 g kg–1 diet for 10 weeks. Dietary protein was supplied by graded amounts of a protein mixture (tuna muscle meal:casein:gelatine) at a fixed ratio of 50:37.5:12.5. Mystus nemurus fingerlings of initial weight 7.6 ± 0.2 g were fed close to apparent satiation at 2.5% of their body weight per day in two equal feedings. Growth performance and feed utilization efficiency increased linearly with dietary protein level from 202 to 410 g kg–1 diet and declined with protein levels of 471 g kg–1 diet or above. Protein efficiency ratio and apparent net protein utilization started to decline when the fish were fed with dietary protein levels exceeding 471 g kg–1 diet. Fish fed with lower protein diets (202–295 g kg–1 diet) had significantly ( P  < 0.05) higher carcass lipid content compared with fish fed with higher protein diets. Carcass lipid contents were inversely related to moisture content. Dietary protein did not significantly affect fish carcass protein and ash content. Using two-slope broken-line analysis, the dietary protein requirement for M. nemurus based on percentage weight gain was estimated to be 440 g kg–1 diet with a protein to energy ratio of 20 mg protein kJ–1 gross energy. This level of protein in the diet is recommended for maximum growth of M. nemurus fingerlings weighing between 7 and 18 g under the experimental conditions used in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号