首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
23份中国小麦微核心种质抗叶锈性评价   总被引:2,自引:0,他引:2  
【目的】探测23份微核心种质材料的抗叶锈性和可能携带的抗叶锈基因。【方法】选取12个具有鉴别能力的小麦叶锈菌生理小种对23份微核心种质进行了苗期和成株期的抗性鉴定以及基因推导,同时结合使用已经报道的能够用于抗病基因分子鉴定的分子标记对其进行进一步抗叶锈基因的分子检测。【结果】这些品种中除中国春表现感病外,其余22份种质均表现出较强的抗性。火球、老齐麦、凤麦11、山红麦、红和尚头、府麦、尕老汉和郑引4号含Lr34和未知抗性基因,中国春含Lr34,碱麦和小佛手含Lr1和Lr34,同家坝小麦和红花麦含Lr34和Lr32,克丰3号含有Lr10、Lr34、Lr16和Lr32,Atlas66含有Lr1、Lr2c和Lr32,烟农15含Lr1,可能含有Lr17,白条鱼含Lr26、Lr16、Lr42和LrZH84,木宗卓嘎含Lr26,可能含Lr14a,金黄麦含Lr1、Lr34和Lr32,云麦34含Lr26、Lr37和LrZH84,可能含有Lr15,百农3217含Lr1和Lr16,白朗灰麦和山麦可能含有未知抗叶锈基因。【结论】这些小麦微核心种质中含有比较丰富的抗叶锈基因,具有较好的抗叶锈性,是抗叶锈育种的重要资源。  相似文献   

2.
Wheat leaf rust, triggered by Puccinia triticina Eriks(Pt), is among the most important diseases of wheat worldwide. Deploying resistant varieties against leaf rust is the most effective, environmentally-friendly and economic way to control the disease. In the present study, 66 wheat varieties form China and foreign countries were tested with 17 Pt races for gene postulation during the seedling stage in the greenhouse. All the varieties were also planted to identify slow rusting responses to leaf rust at the adult plant stage in Baoding and Zhoukou field trials during the 2016/2017 to 2017/2018 cropping seasons. Moreover, 12 closely linked molecular markers to known leaf rust resistance(Lr) genes were used for assessing all the varieties. The results of both gene postulation and molecular marker identification showed that a total of eight Lr genes, Lr1, Lr10, Lr17, Lr20, Lr26, Lr34, Lr37 and Lr46, either singly or in combination were detected in 32 varieties. Known Lr genes were not identified in the remaining 34 varieties. Seventeen varieties were found to have slow rusting resistance. The resistance sources identified in this study can be used as resources for resistance against leaf rust in wheat breeding programs in China and the respective foreign countries.  相似文献   

3.
10个小麦新品种(系)抗小麦叶锈性评价   总被引:1,自引:1,他引:0  
 【目的】明确小麦新品种(系)河农5290、河农58-3、河农825、河农826、河农827、河农6049、河农6251、河农6425、河农7106和河农9206的抗叶锈性,确定其应用潜力,为合理推广使用这些品种(系)提供依据。【方法】采用16个具有鉴别能力的小麦叶锈菌株对测试的10个材料进行苗期抗性鉴定和基因推导;选用其中6个菌株对其进行田间成株期抗叶锈性鉴定和基因推导,同时,结合使用已报道的15个抗叶锈病基因稳定的分子标记对测试材料进行抗叶锈基因的分子检测。【结果】河农6425和河农9206含有抗病基因Lr1和Lr26,河农825、河农826、河农827、河农6049和河农6251含有Lr26。河农58-3、河农5290、河农6251和河农825对大部分供试菌株表现抗性,可能含有测试基因以外的或未知抗叶锈基因。【结论】河农58-3、河农5290和河农6251具有抗叶锈病应用潜力。  相似文献   

4.
本研究选用9个小麦叶锈菌菌系接种36个已知基因载体品种(系)、‘武农148’和‘西农928’进行抗叶锈基因苗期推导分析,在2014—2015和2015—2016连续两年两点对其进行成株抗叶锈性鉴定并结合苗期抗叶锈基因推导与系谱分析;利用9个与已知抗病基因紧密连锁的特异性标记进行标记检测,从而得出供试材料的抗性和携带的抗病基因。结果表明,‘西农928’中可能携带抗病基因Lr30、Lr42和携带有未知微效抗病基因,所检测的2个品种均不含抗病基因Lr1、Lr9、Lr10、Lr19、Lr20、Lr24、Lr26、Lr34和Lr46。针对西农928中含有的抗叶锈病基因,可作为小麦抗锈病育种中的抗源材料。  相似文献   

5.
粗山羊草苗期抗叶锈性鉴定及抗叶锈基因推导   总被引:4,自引:1,他引:3  
普通小麦D基因组的供体材料粗山羊草含有丰富的抗叶锈病基因资源,而且具有较好的农艺性状,在抗病育种中具有重要的应用价值。本研究旨在了解粗山羊草的抗叶锈性以及准确了解其中所含抗叶锈基因。选取25株小麦叶锈菌株对6个粗山羊草品系进行抗叶锈性离体鉴定,筛选出4个在苗期对22个和23个菌株表现中到高抗的品系。试验选用18个不同毒力类型的小麦叶锈菌株和44个已知的抗叶锈单基因品系对其进行了抗叶锈基因推导,推导出粗山羊草4254-Y206可能含有Lr1,Lr10和Lr29或其他未用于本次研究的抗叶锈基因;4255-Y212可能含有Lr10和Lr29抗叶锈基因或其他未用于本次研究的抗叶锈基因;Y192可能含有Lr41抗叶锈基因或其他未用于本次研究的抗叶锈基因;Y201可能含有其他未用于本次研究的抗叶锈基因。  相似文献   

6.
30个重要小麦生产品种抗叶锈性基因分析   总被引:2,自引:0,他引:2  
【目的】小麦叶锈病是影响中国小麦产量的重要病害之一,培育持久抗病品种可以经济、有效地控制该病害。论文通过基因推导结合系谱分析、分子标记及成株抗病鉴定对小麦生产品种中抗病基因进行鉴定,从而确定小麦品种中所携带的抗病基因。【方法】选用18个小麦叶锈菌菌系(PHGQ、THJT、PHJT、KHJS、PHJS、THTT?、KHHT、FHRT、FHJQ、PHTT、THTT?、PHTT、FHTR、FHHT?、FHHT?、TGGT、FHTT、FGMT)接种36个已知抗叶锈病基因载体品种和中国的30个小麦生产品种进行苗期抗叶锈病基因推导,进一步利用9个与已知抗病基因紧密连锁的特异性标记进行标记检测,同时系谱分析法确定供试小麦品种中所携带的已知抗叶锈病基因。为了鉴定小麦品种的成株抗性基因,在2014—2015和2015—2016年度将30个小麦品种、慢锈对照品种SAAR和感病对照品种郑州5389种植于河北农业大学小麦试验田和河南周口黄泛区农场试验田,田间用混合生理小种(FHRT、THTT、THJT)接种进行成株抗叶锈性鉴定,进一步运用软件IBM SPSS Statistics 19.0进行方差分析(ANOVA),根据苗期与成株期的侵染型排除具有主效抗性基因的品种,将田间最终严重度(当达到发病高峰时调查的严重度为最终严重度,final disease severity,FDS)明显小于或与慢锈对照SAAR无显著差异的作为慢锈品种,从而筛选出表现慢锈的小麦品种。【结果】基因推导、系谱分析结合标记检测结果表明,30个小麦生产品种中有4个品种(鄂恩5号、鄂麦14、陕229和西农979)含有抗病基因Lr1,10个品种(鄂恩1号、鄂恩5号、鄂恩6号、贵农16、陕225、陕354、陕715、陕合6号、陕麦509和陕农7859)携带有抗病基因Lr26,2个品种(陕225和小偃81)经分子标记检测含有慢锈抗病基因Lr46,另外还有3个品种(西农979、陕229和贵农16)可能含有基因Lr13,所有供试品种均不含Lr9、Lr10、Lr19、Lr20、Lr24和Lr34抗病基因。根据2年2点的田间抗叶锈病鉴定筛选出18个表现慢锈的品种,且方差分析结果表明各品种间和地点间差异均极显著,年份间差异显著,品种与地点间、品种与年份间差异均极显著,而品种与重复间和重复间均不显著,这表明小麦叶锈病抗性的表达受基因型和环境互作共同影响。【结论】30个小麦品种中共检测到Lr1、Lr26、Lr13和Lr46等4个抗叶锈病基因,其中Lr46为成株抗病基因,通过田间抗性鉴定共检测出18个品种可能携带成株慢锈基因,所有慢锈材料中可能含有未知成株抗叶锈病基因,需要进一步进行遗传鉴定。  相似文献   

7.
河北省21个小麦品种抗叶锈基因的推导   总被引:3,自引:0,他引:3  
选用了18个小麦叶锈菌菌系对河北省的21个小麦品种(系)进行了抗性基因推导。通过与31个抗叶锈的单基因系的反应作比较,在河北省的品种中鉴定出Lr1,Lr3,Lr3Bg,Lr18,Lr26和Lr30共6个抗性基因。冀麦15有Lr3,冀麦3号有Lr3Bg;有8个品种有3个基因,其中7个品种例如冀麦23等,有Lr3,Lr3Bg 和Lr26,另一品种冀麦20有Lr18,Lr26和Lr30。有两个品系88-5424和84—5103有4个基因;前者有Lr1,Lr18,Lr26和Lr30,后者有Lr3,Lr3Bg,Lr18和Lr26。冀麦26和冬协4号有与供试的已知基因不同的基因;在丰抗8号等3个品种中没有鉴定出抗性基因。Lr26最为普遍,在13个品种中存在。  相似文献   

8.
利用2个近等基因系TcLr3和TcLr26及3个小麦品种洛夫林10<Lt26>、阿芙乐尔<Lr3+Lr26>、和洛夫林13<Lr3+Lr26>分别与2个毒力不同的叶锈菌(Pucciniareconditaf.sp.tritici)小种10—2和冀77—1,组合成亲和程度不同的品种—小种组合。对侵柒过程中过氧化物酶(PO)活性及其同工酶谱的变化进行了研究。结果表明,TcLr3与小种互作过程中PO活性变化是单峰曲线特征,峰值出现在接种后36h,同时在PO同工酶谱的变化中表现出p16.3,6.8处的酶带活性增强,而TcLr26和其他含Lr26的各品种与小种互作过程中PO活性变化均呈双峰曲线特征,峰Ⅰ,Ⅱ分别出现在接种后36h和84h,同时在po同工酶谱变化中也有特征性表现。  相似文献   

9.
巨麦6号抗叶锈病基因的推导和分子定位   总被引:1,自引:0,他引:1  
巨麦6号在田间表现出很好的抗叶锈性,鉴定其抗叶锈病基因对小麦抗叶锈病育种具有重要意义。在小麦苗期对36个含有已知抗叶锈病基因的对照品种和巨麦6号接种15个中国小麦叶锈菌小种进行抗叶锈病鉴定,推导巨麦6号中可能含有的抗叶锈病基因。以巨麦6号为抗病亲本与感病品种郑州5389进行杂交、自交获得F1、F2代群体,苗期利用叶锈菌小种FHBQ接种F2代群体进行抗叶锈病遗传分析。结果表明,巨麦6号中可能含有已知抗叶锈病基因Lr1,其抗叶锈性由1对显性的抗病基因控制。利用与Lr1共分离的STS标记WR003进一步检测F2单株DNA,结果显示,该标记与抗叶锈病基因共分离,进一步证实巨麦6号携带已知抗叶锈病基因Lr1。  相似文献   

10.
小麦是加拿大种植面积最大的作物,大部分种植于加拿大西部曼尼托巴省、萨斯喀彻温省、阿尔伯塔省的草原省份。在加拿大小麦种植面积大约有1 000万hm2,包括700万hm2的六倍体春小麦,200万hm2的硬粒小麦和100万hm2的冬小麦。六倍体小麦又根据不同的质量标准和多样化的食品分类、市场需要等划分成很多类。其中最主要的一类叫加西硬红类(CWRS),是加拿大最主要用于做面包的春小麦品种系列。历史上危害小麦的病害主要是由秆锈菌(Puccinia graminisf.sp.tritici)引起的小麦秆锈病。在加拿大抗秆锈病的第一个重要品种是Thatcher,从20世纪30年代到70年代早期广泛种植。然而Thatcher对由叶锈菌(P.triticina)引起的叶锈病十分感病。多年来,随着含其他抗锈基因(主要是Sr2,Sr6,Sr7a,Sr9b,Lr13,Lr14a,Lr16,Lr34)品种的育成和推广,秆锈病得到了很好的控制,但叶锈病却由于P.triticina种群变化,导致例如Lr13和Lr16抗性基因的抗性丧失,仍然造成很大的损失。小麦条锈病主要由柄锈菌(P.striiformisf.sp.tritici)引起的,长期以来,条锈病是阿尔伯塔南部灌溉区小麦生产上的主要病害,但是自2000年以来,小麦条锈病已经在加拿大中部草原区和安大略南部发现,并造成严重危害。加拿大小麦品种中,只有少数含有中抗水平的Yr18抗条锈基因,而大多数小麦品种对条锈病的抗性基础及抗病遗传尚不清楚。展望未来,锈病仍然是加拿大小麦的主要病害,如条锈病或者是具有高致病力的秆锈病小种,Ug-99可能会是加拿大小麦及谷物生产的新威胁,目前解决这些问题的最好策略是致力于长期的抗锈病遗传育种研究,包括聚合有效耐用的基因,对基因进行有效的部署和聚合抗性基因使遗传资源最大化等手段。将科研重点放在自然遗传抗病方面旨在使加拿大农民能够按对自然环境有利的方式来生产化学残余量最少的小麦,从而在国内和国际市场竞争中占据优势。  相似文献   

11.
17个粗山羊草品种(系)抗叶锈基因的鉴定   总被引:1,自引:0,他引:1  
为鉴定17个粗山羊草品种(系)中可能含有的抗叶锈病基因,用10株具有不同毒力的小麦叶锈菌混合菌对17个粗山羊草品种进行成株期抗叶锈性鉴定,筛选出7个在田间对叶锈菌有抗性的材料。用抗叶锈基因Lr1、Lr9、Lr19、Lr21、Lr24、Lr28、Lr29和Lr34的STS、SCAR或CAPS标记对这些品种进行分子辅助鉴定。初步明确粗山羊草CN40033和CN30823中可能含有Lr1基因;CN42471中可能含有Lr9基因;CN30942中可能含有Lr21;供试的17个粗山羊草品种中都不含有Lr19、Lr24、Lr28、Lr29和Lr34。  相似文献   

12.
2003-2004年我国小麦叶锈菌致病类型苗期鉴定及毒性分析   总被引:1,自引:0,他引:1  
为明确小麦叶锈菌的毒性基因谱,对2003-2004采自我国的117株小麦叶锈菌菌株进行了致病性鉴定及毒性基因分析。结果表明:2003-2004年,117株小麦叶锈菌被划分为104个致病类型,其中优势类型为PHSS、PHTT和FHSS,其出现频率分别为4.27%、3.42%和2.56%。毒性基因V2 a、V9、V24、V3 a、V19、V38、V39、V40、V41、V42、V43和V46的毒性频率<30%,其对应的抗性基因为有效抗病基因,特别是V38的毒性频率为0,其对应的抗性基因有很好的抗叶锈性。V1、V3 ka、V30、V18、V14 ab、V15、V20、V21、V23、V28、V29、V32、V33+34、V36、V44和V45的毒性频率都在30%~60%之间,表明其对应的抗叶锈基因尚有一定的利用价值;V2 c、V3、V16、V26、V11、V17、VB、V10、V14 a、V2 b、V3 bg、V14 b、V25、V33、V34和VT3的毒性频率都>60%,表明其对应的抗叶锈基因在2003-2004年生产上单独使用几乎没有利用价值。  相似文献   

13.
21个小麦品种(系)抗叶锈性基因推导   总被引:5,自引:0,他引:5  
选用17个小麦叶锈菌菌系对1999扑河北省使用的21个小麦品种(系)进行了抗叶锈性基因的推导。通过与21个抗叶锈单基因系的反应型比较,鉴定出Lr1、Lr14a、Lr26和Lr37等4个抗叶锈基因。8904含有Lr1;5108和4185可能含有Lr1或含与Lr1不同的抗性基因;中麦9号含有Lr14a及其它抗性基因;84251、邯郸4564、71-3、梁麦2、7118-8、859-34、859-39和矮三共8个品种(系)含有Lr26抗性基因;2631、北农8、鲁麦23、高优503、97-11、益麦1含有与供试的已知基因不同的抗性基因;冀麦38、京38和3181没有鉴定出抗叶锈基因。  相似文献   

14.
两个中国小麦品种中抗叶锈基因的遗传分析和基因定位   总被引:2,自引:0,他引:2  
周悦  吴娱  李星  李在峰  刘大群 《中国农业科学》2012,45(16):3273-2380
【目的】确定来自四川的两个小麦品种绵阳351-15和SW8588所携带的抗叶锈基因,为选育持久抗锈品种提供理论依据。【方法】在苗期用15个叶锈菌生理小种接种小麦品种绵阳351-15、SW8588和30个含有已知抗叶锈基因的近等基因系,推导2个材料中所含有的抗叶锈病基因,同时以小麦抗叶锈品种绵阳351-15和SW8588分别同感病品种郑州5389杂交获得F1和F2代群体,用叶锈菌小种FHTT接种各亲本及其杂交后代,进行抗叶锈遗传分析,并利用SSR和STS标记进行抗叶锈病基因的分子定位。【结果】经苗期基因推导发现SW8588中含有未知基因不同于已知抗叶锈病基因Lr1,绵阳351-15中可能含有已知抗叶锈病基因Lr1。用叶锈菌小种FHTT接种各F1和F2代群体,2个F2代群体抗感单株分离比例均符合3﹕1的理论分离比例,表明2个亲本对小种FHTT的抗病性均由1个显性基因控制。经过分子标记分析,在小麦材料绵阳351-15中发现该抗叶锈基因与位于5DL的SSR标记barc144和wmc765连锁,其遗传距离分别为8.9和20.8 cM,并同Lr1的STS标记WR003共分离,确定在小麦材料绵阳351-15中对小种FHTT的抗病性由抗叶锈基因Lr1提供;经分子标记检测SW8588中含有1对显性的抗叶锈病基因,暂命名为LrSW85,该基因位于5DL染色体上与Lr1的STS标记WR003共分离,该抗叶锈基因可能是Lr1的等位基因或紧密连锁基因。【结论】通过基因推导、遗传分析和分子标记等手段,确定小麦材料绵阳351-15中含有抗叶锈基因Lr1;小麦材料SW8588中含有抗叶锈基因LrSW85,该基因可能为Lr1的等位基因或紧密连锁基因。  相似文献   

15.
采用16个固定鉴别寄主和21个辅助鉴别寄主,在小麦苗期对2009-2011年采自河南省6个地区184个单孢子堆上纯化分离的小麦叶锈菌菌株进行致病性鉴定及毒性基因频率分析。结果显示:2009-2011年河南省主要优势致病类型为THTS、THTT、THKS、PHKT、PHTT、THPS、PHKS、PHSS、THFS、THPN和THSS,出现总频率为52.13%。毒性基因V1、V2c、V3、V16、V26、Vb、V25和V37的平均毒性频率超过95%,说明其对应的小麦抗叶锈病基因在河南省几乎完全丧失了抗性;毒性基因V9、V24、V19、V38和V47的平均毒性频率低于4%,说明其对应的抗病基因为目前河南省小麦叶锈菌有效抗病基因,尤其毒性基因V24的毒性频率为0,表明目前河南省无对其表现出毒力的小麦叶锈菌小种。另外,毒性基因V11、V15、V17、V30、V10、V14a、V23、V29、V18、V21、V32、V33+34、V36和V39等的毒性频率在2009-2011年际间差异较大。  相似文献   

16.
中国47个小麦新品种(系)苗期抗叶锈基因推导   总被引:11,自引:2,他引:11  
 【目的】探明中国47个小麦新品种(系)携带的苗期抗叶锈基因状况,改进和完善基因推导方法。【方法】选用17个具有较高鉴别能力的致病类型,在不同温度和(或)光照强度下测定,结合系谱分析进行基因推导。【结果】在供试的47个小麦品种(系)中,推导出Lr1(存在于11个品种或品系中)、Lr3(7)、Lr3bg(3)、Lr9(3)、Lr10(3)、Lr13(10)、Lr16(6)、Lr23(2)、Lr26(14)和Lr34(1)共10个已知抗病基因,另有42个品种(系)含有未知基因。【结论】在苗期进行基因推导时,尽量多地选择鉴别能力强的致病类型,在相对稳定均一的环境条件下重复测定,并结合系谱分析,才能获得可靠的结果。结合温度与光照强度梯度,具有持久抗病性潜质的抗叶锈基因Lr13和Lr34可在苗期进行推导。  相似文献   

17.
用中国小麦秆锈菌小种Z1C3,34,34C2及35C5中9个不同菌系推导了来自秆锈菌不同传播区间里有代表性的41个小麦生产品种的抗秆锈基因,综合分析了中国小麦秆锈菌优势小种稳定的原因.基因推导表明:来自秆锈菌次要越冬及冬后北传桥梁区内的品种除鄂恩1号外,其余均未含有效抗性基因;来自秆锈菌越夏偶发区内的品种含有Sr5,22,25等基因;来自秆锈菌越夏易发区(主要东北春麦区)内的品种主要含有Sr13,14,22,32,35,36,37,Gt等单个或结合基因.结果也表明:中国小麦品种对秆锈菌,尤其是对优势小种ZIC3的抗性水平明显地由南向北呈梯度增强局势.  相似文献   

18.
山西省小麦叶锈菌群体的毒性基因分析   总被引:2,自引:1,他引:1  
1994~1997年间,利用25个抗叶锈病小麦单基因系(或近等基因系),对来自山西省10个地(市)31个县(市)的334个小麦叶锈菌株进行了测试,分析了山西省小麦叶锈菌群体的毒性基因频率。结果表明,毒性基因V19的出现频率较低(2637%),其对应的抗性基因Lr19为目前山西省小麦叶锈菌的有效抗病基因。其次,毒性基因V15,V20,V25的出现频率分别为715%,7625%,7808%,对应的抗性基因Lr15,Lr20,Lr25具有一定的利用价值。除此以外,其余21个毒性基因的出现频率均高于8174%,其对应的抗性基因为目前山西省小麦叶锈菌的无效基因,在小麦抗锈育种上没有重要利用价值。  相似文献   

19.
小麦叶锈病是一种世界性发生的小麦病害,利用抗病品种是防治该病害最经济、安全、有效的方法.目前已经正式定名的56个小麦抗叶锈基因中,有许多表现出抗锈性的丧失.来自中间偃麦草的小麦抗叶锈基因Lr38则表现出优良的抗锈性.利用DDRT-PCR技术,分析了小麦抗叶锈近等基因系材料TcLr38与感病对照Thatcher间的表达差异.通过对差异片段的克隆测序,获得一条425 bp的差异表达序列,推测可能为一与抗病相关的基因片段.  相似文献   

20.
小麦叶锈病是一种世界性发生的小麦病害,利用抗病品种是防治该病害最经济、安全、有效的方法。目前已经正式定名的56个小麦抗叶锈基因中,有许多表现出抗锈性的丧失。来自中间偃麦草的小麦抗叶锈基因Lr38则表现出优良的抗锈性。利用DDRT-PCR技术,分析了小麦抗叶锈近等基因系材料TcLr38与感病对照Thatcher间的表达差异。通过对差异片段的克隆测序,获得一条425bp的差异表达序列,推测可能为一与抗病相关的基因片段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号