首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To evaluate the effects of dietary nano‐selenium (Nano‐Se) on antioxidant capacity and hypoxia tolerance of grass carp fed with high‐fat diet, experimental fishes were fed Nano‐Se supplemented diets at doses of 0 (Control), 0.3, 0.6, 0.9 and 1.2 mg/kg for 10 weeks. After feeding trial, a part of the fishes were exposed to hypoxia stress. Results showed that the survival ratio of grass carp significantly increased in 0.6 and 0.9 mg/kg Nano‐Se group, and the content of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) significantly decreased in 0.6–1.2 mg/kg Nano‐Se groups compared with the control group. In addition, dietary Nano‐Se significantly enhanced glutathione peroxidase (GPX) activity and reduced the malondialdehyde (MDA) content in fishes fed diets with 0.3 and 0.6 mg/kg Nano‐Se. Dietary Nano‐Se significantly elevated mRNA expression of GPX1 and catalase (CAT) by promoting the mRNA expression of NF‐E2‐related nuclear factor 2 (Nrf2) in the hepatopancreas. After hypoxia stress, the GPX and superoxide dismutase (SOD) activities were significantly enhanced, and the MDA content and mortality rate consequently decreased in fishes fed diets with 0.3 and 0.6 mg/kg Nano‐Se. In summary, these results suggested that optimal Nano‐Se in diet enhanced the antioxidant capacity and hypoxia tolerance of grass carp.  相似文献   

2.
This study was conducted to determine effects of dietary Fe levels on growth performance, hepatic lipid metabolism and antioxidant response for juvenile yellow catfish Pelteobagrus fulvidraco. Yellow catfish were fed six isonitrogenous and isolipidic diets containing Fe levels of 16.20, 34.80, 54.50, 76.44, 100.42 and 118.25 mg/kg for 8 weeks. Weight gain (WG) and specific growth rate (SGR) increased with dietary Fe levels from 16.20 to 54.50 mg/kg diet and then plateaued over the level. Feed conversion rate (FCR) was highest and protein efficiency rate (PER) was lowest for fish fed the lowest Fe levels of diet. Fe contents in whole body and liver increased with increasing dietary Fe levels. Hepatic lipid content was lowest, but mRNA levels of carnitine palmitoyltransferase (CPT‐1) and peroxisome proliferator‐activated receptor α (PPARα) were highest for fish fed 54.50 mg Fe/kg diet. Fish fed adequate dietary Fe levels reduced hepatic malondialdehyde (MDA) level and increased activities of antioxidant enzymes Superoxide dismutase (SOD), Catalase (CAT) and GS. Based on the broken‐line regression analysis of WG against dietary Fe levels, optimal dietary Fe requirement for yellow catfish was 55.73 mg Fe/kg diets. Fe‐induced changes in MDA levels and antioxidant enzymatic activities paralleled with the change in hepatic lipid content, suggesting the potential relationship between oxidative stress and hepatic lipid accumulation in yellow catfish.  相似文献   

3.
The current study was conducted to evaluate the effect of dietary soy isoflavones (SI) on growth performance, antioxidant status, immune response and resistance to Aeromonas hydrophila in juvenile grass carp (Ctenopharyngodon idella). Six diets were formulated to contain 0 (control), 10, 50, 100, 500 or 1,000 mg SI per kg feed. Each diet was randomly allotted to triplicate net cages, and each net cage was stocked with 30 fish. The fish were fed one of the experimental diets to satiation twice per day for 60 days. The results showed that the WGR and DGC of the 500 mg/kg SI‐supplemented group were significantly higher than those of the non‐SI‐supplemented group (p < .05). Serum LZM and IgM activities in the SI‐supplemented groups were improved compared to the control group. SOD and GSH‐Px levels of fish fed the diet containing 500 mg/kg SI were significantly enhanced compared to those of fish fed the control diet (p < .05). Additionally, serum CAT, GSH‐Px and AKP activities in 50, 100 and 500 mg/kg SI‐supplemented groups were significantly higher than that in the control group (p < .05). The expression of most immune‐related genes (including IFN‐γ2, TNF‐α, M‐CSF2, IL‐6, IL‐12p40 and IL‐4) was significantly affected by dietary supplementation of SI. The group fed with 500 mg/kg SI had the highest 7‐day cumulative survival rate after challenge test (p < .05). The current results revealed that dietary inclusion of SI could improve the immune response and resistance against A. hydrophila and the supplementation level is suggested to be 500 mg/kg diet.  相似文献   

4.
To determine dietary magnesium (Mg) requirements of juvenile grass carp, Ctenopharyngodon idella, magnesium sulphate was added to the basal diet at 0, 150, 300, 600, 1200, 2400 mg Mg kg−1 diet. Each diet was fed to three replicate groups of juvenile grass carp (initial weight: 7.69 ± 0.13 g) in a closed, recirculating rearing system for 76 days. No mortality or nutritional deficiency signs were observed except the growth depression in fish fed the Mg‐deficient diet. Growth performance and activities of serum superoxide dismutase (SOD), glutathione peroxidase (GPx) and lysozyme (LSZ) were highest (P <0.05) in fish fed the diet supplemented with 600 mg Mg kg−1. The serum malondialdehyde (MDA) content was higher (P <0.05) in fish fed the diets supplemented with 0 and 150 mg Mg kg−1 than that in fish fed the diets with ≥300 mg Mg kg−1. Mg concentrations both in whole‐body and vertebrae increased with the increase in dietary Mg level up to 300 mg kg−1, whereupon the response reached a plateau. Analysis by second‐order polynomial regression of weight gain, by broken‐line regression of vertebrae Mg concentration and by linear regression of whole‐body Mg retention of fish indicated that the adequate dietary Mg concentration for juvenile grass carp was 713.5, 627.7 and 469.8 mg kg−1 diet, respectively.  相似文献   

5.
在纯化饲料中分别添加生物素0、0.05、0.10、0.20、0.40、0.80、1.60 mg/kg投喂初始质量为(5.92±0.25)g的草鱼(Ctenopharyngodon idellus)幼鱼8周,研究了不同生物素添加量对草鱼幼鱼生长性能、饲料系数、机体营养成分、血清生化指标的影响。试验结果显示:与对照组相比,添加生物素提高了草鱼幼鱼的增重率、特定生长率,降低了饲料系数。添加量为0.40 mg/kg时草鱼幼鱼的特定生长率和增重率最大,饲料系数最低,并与对照组存在显著差异(P<0.05);添加不同水平生物素对草鱼幼鱼全鱼水分、粗蛋白、粗脂肪含量无显著影响,但添加量为0.40 mg/kg时粗蛋白含量最大。0.10 mg/kg组和0.20 mg/kg组的全鱼灰分含量显著高于对照组(P<0.05);添加生物素对血清总蛋白(TP)、血糖(GLU)和总胆固醇(TC)无显著影响,但显著提高了血清甘油三酯(TG)含量,各添加组TG含量均显著高于对照组(P<0.05),1.60 mg/kg添加组的高密度脂蛋白胆固醇(HDL-C)和低密度脂蛋白胆固醇(LDL-C)含量显著高于对照组(P<0.05)。综合本试验结果,草鱼幼鱼饲料中生物素适宜添加量为0.40 mg/kg。  相似文献   

6.
The study was to investigate effects of dietary chlorogenic acid (CGA) on growth performance, flesh quality and serum biochemical indices of grass carp (95.1 ± 0.3 g) (Ctenopharyngodon idella) fed seven different diets, including control diet, Eucommia ulmoides (EU)‐supplemented diet (20 g kg–1) and CGA‐supplemented diets containing 100, 200, 400, 600 and 800 mg/kg CGA. Contents of collagen and alkaline‐insoluble collagen in muscle and skin were significantly increased by dietary CGA and EU (< .05). Total essential amino acids (TEAA) and total amino acids (TAA) in muscle of grass carp fed EU diet or 400, 600 and 800 mg/kg CGA diet were significantly higher than those of fish fed control diet and 100 and 200 mg/kg CGA diet (< .05). Fish fed 200–800 mg/kg CGA showed significantly lower muscle crude lipid content than EU, control and 100 mg/kg CGA groups (< .05). Fish fed CGA‐supplemented diets (100–800 mg/kg) had significantly higher muscle fibre density and lower muscle fibre diameter than control group (p < .05). In conclusion, supplementation of CGA improved flesh quality of grass carp, and supplemental level of CGA for improving flesh quality and growth was estimated to be 400 mg/kg diet.  相似文献   

7.
An 8‐week feeding trial was conducted to quantify dietary copper (Cu) requirement of juvenile Siberian sturgeon, Acipenser baerii. Five isonitrogenous diets were formulated to provide actual dietary copper values of 1.8, 5.7, 10.1, 15.9 and 28.3 mg Cu per kg diet. Experimental diets were fed to the Siberian sturgeon (27.57 ± 0.24 g) in triplicate to apparent satiation for 8 weeks. At the end of experiment, weight gain (WG), specific growth rate (SGR) and protein efficiency ratio (PER) were significantly increased with increasing dietary Cu level up to 10.1 mg/kg and then decreased with further increases in dietary Cu level (p < .05). The Cu concentration in the liver and cartilage was positively correlated with the respective concentrations in the diet (p < .05), while muscle and serum Cu concentrations remained significantly unchanged (p > .05). Superoxide dismutase and glutathione peroxidase had the highest activities in serum of fish fed with 15.9 and 28.3 mg Cu per kg diet, respectively. Analysis by the broken‐line regression of SGR, crude protein content and superoxide activity demonstrated that the optimum dietary Cu requirements in juvenile Siberian sturgeon were 9.51, 9.58 and 16.10 mg/kg diet, respectively.  相似文献   

8.
Vitamin C is an essential micronutrient for normal physiological and immune functions of fish. However, its requirements and effects in Chu's croaker (Nibea coibor) are currently unknown. A 56‐day feeding trial was conducted to evaluate the optimal dietary vitamin C requirements based on its effects on growth performance, body composition and biochemical parameters in juvenile Chu's croaker (14.17 ± 0.1 g). Six isoproteic (450 g/kg crude protein) and isolipidic (100 g/kg crude lipid) diets were formulated to contain 2.24 (basal diet), 39.03, 85.01, 171.16, 356.49 and 715.46 mg/kg of vitamin C. The results showed that fish fed on 171.16 mg/kg vitamin C diet had the highest growth performance and feed utilization. Fish fed on the basal diet had higher malondialdehyde (MDA) content and lower activities of antioxidant enzymes in the serum and liver as compared with those fed on vitamin C diets. Polynomial analysis indicated that the optimal dietary vitamin C requirements of juvenile Chu's croaker were 102.28, 98.21, 150.26, 165.38, 71.46, 176.19, 84.84 and 103.78 mg/kg based on weight gain, specific growth rate, liver storage, muscle storage, liver MDA content, liver alanine aminotransferase activity, liver alkaline phosphatase activity and liver superoxide dismutase activity, respectively. We recommend an inclusion level in the range of 71.46–150.26 mg/kg vitamin C in the diets of juvenile Chu's croaker for optimum growth performance, liver function, antioxidant capacity and innate immunity functions.  相似文献   

9.
This study was conducted to investigate the effects of dietary protease on growth performance, feed utilization, whole‐body proximate composition, nutrient digestibility, intestinal and hepatopancreas structure of juvenile Gibel carp, Carassius auratus gibelio (mean weight 8.08 ± 0.18 g). Six diets were prepared, including a positive control diet (dietary protein 350 g/kg, PC), one negative control diet (dietary protein 33 g/kg, NC) and four protease supplementations diets, which were 75, 150, 300 and 600 mg/kg protease NC diet. After 12 weeks of diet feeding in indoor recycle aquarium tanks, no significant difference (> .05) was found on growth performance between fish fed diet with 75–600 mg/kg protease and the PC group. Compared with the fish fed the NC diet, the specific growth rate of fish fed 300 mg/kg protease increased significantly (< .05), as well as protein efficiency ratios (< .05), while feed conversion was the opposite (< .05). The nutrient digestibility of crude protein and lipid was higher (< .05) in fish fed 150 mg/kg protease diet than the PC diet. Whole‐body proximate composition of fish was not affected (> .05) by the dietary treatment. Serum alkaline phosphatase and albumin were significantly affected by dietary protease (< .05), while the content of total protein, glucose, triglyceride, total cholesterol, aspartate aminotransferase and alanine aminotransferase activities in serum was not affected (> .05). Foregut muscular thickness was thinner (< .05), when the fish fed diets supplementation of protease in 150 or 600 mg/kg diet than the NC diet. Protease activities in hepatopancreas and foregut were higher (< .05), in the fish fed 150 or 300 mg/kg protease diet than the fish fed the PC diet, but those in the mid‐ and hindgut were not significantly affected (> .05) by the dietary treatments. Based on the regression analysis of weight gain rate, the optimal dietary inclusion level of protease was 400 mg/kg in the diet for juvenile Carassius auratus gibelio.  相似文献   

10.
This study investigated the effects of coconut oil as a dietary supplement on the growth, lipid metabolism and related gene expressions of juvenile orange‐spotted grouper Epinephelus coioides. Coconut oil at concentrations of 0, 10, 30 and 50 g/kg was used to replace dietary lipids in a basal diet containing 150 g/kg lipids. The four experimental diets were, respectively, fed to triplicate groups of juvenile groupers (initial weight: 8.53 ± 0.13 g) in a recirculating system for 8 weeks. Fish fed the diet containing 50 g/kg coconut oil exhibited lower (p < .05) weight gain than did fish fed the diet containing 30 g/kg coconut oil; however, no significant differences in weight gain were observed between fish fed diets containing 0 and 10 g/kg coconut oil. Hepatic carnitine palmitoyltransferase‐1, fatty acid synthase, fatty acid elongase, fatty acid desaturase and peroxisome proliferator‐activated receptor gamma gene expressions were all the highest in fish fed the diet containing 10 g/kg coconut oil. Fish fed the coconut oil‐free basal diet demonstrated upregulated gene expression of neuropeptide Y. The results suggest that dietary supplementation with 10 g/kg coconut oil exerted beneficial effects on lipid metabolism by E. coioides.  相似文献   

11.
Dietary thiamin requirement of fingerling Channa punctatus was quantified by feeding casein/gelatin‐based diets (450 g/kg CP; 18.39 kJ/g GE) with seven graded levels of thiamin (0, 0.5, 1, 1.5, 2, 2.5 and 5 mg/kg diet) to triplicate groups of fish (6.9 ± 0.93 cm; 4.91 ± 0.62 g) for 16 weeks. Fish fed diet with 2.5 mg/kg thiamin reflected highest absolute weight gain (AWG), protein gain (PG), RNA/DNA ratio and lowest feed conversion ratio. Similarly, highest liver thiamin concentration was also recorded in fish fed 2.5 mg/kg thiamin diet. Hepatic thiobarbituric acid reactive substance (TBARS) concentration responded negatively with increasing concentrations of dietary thiamin up to 2.5 mg/kg, whereas superoxide dismutase and catalase activities were found to improve with the increasing levels of dietary thiamin from 0 to 2.5 mg/kg. Transketolase activity also improved as the thiamin concentrations increased up to 2.5 mg/kg. Broken‐line regression analysis of AWG, PG, RNA/DNA ratio, liver thiamin concentrations, transketolase and TBARS activities exhibited the thiamin requirement in the range of 2.34–2.59 mg/kg diet. Data generated during this study would be useful in formulating thiamin‐balanced feeds for the intensive culture of this fish.  相似文献   

12.
An 8‐week feeding trial was conducted to determine dietary lysine requirement of juvenile Pseudobagrus ussuriensis (initial body weight: 0.60 g). Six isonitrogenous (crude protein, 400 g/kg) and isolipidic (crude lipid, 50 g/kg) diets were formulated to contain graded levels of dietary lysine (12.8, 19.9, 26.5, 34.0, 40.8 and 44.1 g/kg dry diets, respectively). The results indicated that weight gain, specific growth rate, productive protein value and protein efficiency ratio increased, while feed conversion ratio decreased with increasing dietary lysine level up to 34.0 g/kg dry diet and then levelled off. Fish fed diet with 12.8 g/kg lysine had the lowest lysine content (58.6 g/kg dry matter) in muscle, while fish fed diet with 34.0 g/kg lysine had the highest value (61.6 g/kg dry matter; p < .05). Broken‐line analysis on the basis of weight gain showed that the optimal dietary lysine requirement for maximum growth of juvenile Pseudobagras ussuriensis is 33.5 g/kg dry diet (82.4 g/kg dietary protein). Quadratic regression analysis of protein efficiency ratio against dietary lysine levels indicated that the optimal dietary lysine requirement of juvenile Pseudobagras ussuriensis is 36.4 g/kg dry diet (89.5 g/kg dietary protein).  相似文献   

13.
An eight‐week study was conducted to determine the optimum dietary choline level in juvenile olive flounder, Paralichthys olivaceus. Seven diets were prepared to contain 0, 250, 500, 750, 1,000, 2,000 and 3,000 mg/kg diet. Juveniles (5.9 ± 0.03 g; 5.5 ± 0.4 cm; mean ± SD) were randomly distributed into 21 tanks (25 fish/tank) and fed one of the diets in triplicates. Survival rate of fish fed the diet containing the lowest choline level was significantly lower than those of fish fed the other diets (p < 0.05). Final body weight, weight gain, specific growth rate, feed efficiency and protein efficiency ratio significantly increased with increasing choline levels up to 1,000 mg/kg diet. Whole‐body protein and lipid contents increased in accordance with choline levels up to 750 mg/kg diet, beyond which they plateaued. Liver and muscle lipid contents elevated with increasing choline levels up to 2,000 mg/kg diet. Plasma cholesterol esters, triglycerides, cholesterol and total lipids were significantly influenced by the graded choline levels; however, responses of those indices were not identical. Broken‐line analyses of weight gain and liver choline concentrations responding to the graded choline levels revealed that choline requirements of the juvenile flounder could be between 847 and 1,047 mg/kg diet.  相似文献   

14.
An 8‐week feeding trial was conducted to evaluate the effects of dietary choline levels on growth performance, antioxidant capacity and lipid metabolites in juvenile Pacific white shrimp. Six isonitrogenous and isolipidic diets were formulated to supply 0, 1,000, 2,000, 4,000, 6,000, 10,000 mg/kg choline chloride, and dietary choline levels were analysed to be 1,317 (basal diet), 1,721, 2,336, 3,294, 5,421 and 9,495 mg/kg, respectively. Dietary choline levels significantly influenced percent weight gain (PWG) and protein efficiency ratio (PER), with the highest PWG was observed in shrimp fed the 5,421 mg/kg choline diet. However, there were no significant differences in proximate composition of whole body and muscle. Shrimp fed the diet containing 2,336 mg/kg choline had lower HDL and LDL in haemolymph than those fed the basal diet (1,317 mg/kg diet). Dietary choline prevented the accumulation of free radicals and improved antioxidant capacity by increasing catalase activity and reducing malondialdehyde content. Based on broken‐line regression and quadratic regression analysis between PWG against dietary choline levels, the optimal choline requirements were estimated to be 3,254.1 and 6,488.3 mg/kg for juvenile L. vannamei, respectively.  相似文献   

15.
The wide use of lipid as a non‐protein energy substitute has led to lipid metabolic problems in cultured tilapia. Therefore, studies that reduce the effects of high‐fat diets in genetically improved farmed tilapia (GIFT) are required. This study evaluated the optimum level and effects of dietary α‐lipoic acid (α‐LA) on growth performance, body composition, antioxidant capacity and lipid metabolism of GIFT tilapia. The basal diet (120 g/kg lipid) was supplemented with six concentrations of α‐LA at 0 (control), L300, L600, L900, L1200 and L2400 mg/kg diet to make the experimental diets, which were fed to GIFT tilapia juveniles (initial body weight: 0.48 ± 0.01 g) for 8 weeks. The weight gain of fish improved significantly in the L300 than other dietary treatments. The intraperitoneal fat index and lipid content of fish fed on the L2400 diet decreased significantly than those fed on the control diet. The activities of superoxide dismutase and glutathione peroxidase (GSH‐Px) in serum and liver were significantly higher in fish fed on the L300 diet than the control. The reduced GSH content of fish fed on the L300 in serum and liver was significantly higher than those fed on control diet. The malondialdehyde content in serum and liver was significantly lower in L300 than in the control. The adipose triglyceride lipase gene was significantly up‐regulated in fish fed on the L2400, but the diacylglycerol acyltransferase 2 gene was down‐regulated in adipose. The liver‐type fatty acid‐binding protein gene in the liver was significantly up‐regulated in fish fed on the L300 and L600 diets. Moreover, the acyl‐coenzyme A oxidase gene in liver was significantly up‐regulated in fish fed on the L300, L600, L900 and L1200 diets. Polynomial regression analysis indicated that 439–528 mg/kg α‐LA is an appropriate dosage in high‐fat diet to improve growth performance and relieve lipid oxidative damage by accelerating lipid catabolism and reducing lipid synthesis in GIFT tilapia.  相似文献   

16.
Dietary thiamin requirement of juvenile grass carp, Ctenopharyngodon idella, was to investigate in this experiment. Eight purified diets were formulated with graded levels of thiamin (0.1, 0.6, 1.1, 2.1, 5.5, 9.8, 21.2, and 41.8 mg/kg, respectively). Each diet was fed to triplicate groups of 40 fish (initial average weight 10.7 ± 0.2 g) for 12 wk in 400‐L aquaria (R = 1 m, h = 0.6 m). Results showed that weight gain rate, specific growth rate, feed efficiency, protein efficiency ratio, and hepatosomatic indice of fish increased before dietary thiamin increased to the optimum level, then remained similar thereafter (P > 0.05). Thiamin concentration in fish liver was positively correlated with dietary thiamin and it stayed in stable when dietary thiamin level exceed 5.0 mg/kg. The serum biochemical indices analysis showed that dietary thiamin had significant effects on serum triglycerides, total cholesterol, glucose, pyruvate contents, and lactate dehydrogenase activity. Body composition was unaffected by dietary thiamin. Broken‐line regression analysis showed that, a dietary thiamin level of 1.3 mg/kg diet was adequate for optimum growth, and 5.0 mg/kg for maximum liver thiamin accumulation.  相似文献   

17.
The aim of this study was to investigate effects of dietary geniposide (GP) on growth performance, flesh quality, and lipid metabolism of grass carp, Ctenopharyngodon idella (95.2 ± 0.6 g), fed seven different diets, including a control diet; Eucommia ulmoides (EU)–supplemented diet (20 g/kg); and GP‐supplemented diets containing 100, 200, 400, 600, and 800 mg/kg GP, respectively. Weight gain rate was significantly improved (P < 0.05) and feed conversation ratio was significantly decreased (P < 0.05) by supplementation of EU. Grass carp fed 100–800 mg/kg GP‐supplemented diets showed significantly higher total collagen and alkaline‐insoluble collagen content in muscle than control (P < 0.05). Contents of total collagen and the alkaline‐insoluble collagen content in the skin of grass carp were significantly increased by dietary 600–800 mg/kg GP and EU (P < 0.05). Fish fed diets containing 600–800 mg/kg GP showed significantly lower muscle crude lipid content than the EU, control, and 100–400 mg/kg GP groups (P < 0.05). Fish fed 400–800 mg/kg GP diets had significantly higher muscle fiber density and lower muscle fiber diameter and serum triglyceride level than the control (P < 0.05). In conclusion, supplementation of GP could improve flesh quality, but not growth of grass carp. The supplemental level of GP for improving flesh quality was estimated to be a 400–600 mg/kg diet.  相似文献   

18.
A 12‐week feeding trial was conducted to determine the dietary phosphorus requirement of Heteropneustes fossilis fingerlings (7.7 ± 0.04 g). Fish were fed casein–gelatine‐based purified diets in triplicate groups near satiation with seven different levels of dietary phosphorus (3.2, 5.2, 7.2, 9.2, 11.2, 13.2 and 15.2 g/kg dry diet). All diets were formulated to be isoproteic (400 g/kg) and isoenergetic (17.89 kJ/g). Highest absolute weight gain (68.38 g/fish), best feed conversion ratio (1.48), protein retention efficiency (30.74%), protein gain (12.44 g/fish), haemoglobin (11.19 g/dL), RBCs (3.12 x106/mm3), haematocrit (33.44%) and serum phosphate (2.82 mg/L) were found at 9.2 g/kg phosphorus. Hepatic superoxide dismutase and catalase activity were also significantly influenced by the dietary phosphorus levels. Whole body and vertebrae phosphorus concentrations increased significantly as the amount of dietary phosphorus increased from 3.2 to 11.2 g/kg dry diet and then plateaued. More accurate information on dietary phosphorus requirement was obtained by subjecting the AWG, FCR, vertebrae phosphorus and whole body phosphorus concentrations data against various levels of dietary phosphorus to broken‐line analysis, which yielded the requirement in the range of 9.0–11.0 g/kg for optimum growth and mineralization of H. fossilis.  相似文献   

19.
An 8‐week feeding trial was conducted to determine the requirement of protein for large‐size grouper Epinephelus coioides (initial body weight: 275.07 ± 1.56 g). Six iso‐lipidic (124 g/kg) diets were formulated containing graded levels of protein (350, 400, 450, 500, 550 and 600 g/kg). Grouper was hand‐fed twice daily to apparent satiation with triplicate. The results showed that significantly high weight gain, specific growth rate and significantly low feed conversion ratio were observed in fish fed 450 g/kg protein group. High‐protein level diets significantly increased protein content and significantly decreased lipid content of fish body and muscle. Total protein and cholesterol content in serum of 600 g/kg group were significantly higher than those of 350 g/kg group. However, serum glucose and triglyceride contents of fish fed low‐protein diets were significantly higher than those of fish fed high‐protein diets. Meanwhile, liver glutamic‐pyruvic transaminase and glutamic‐oxaloacetic transaminase in high‐protein diet groups were significantly higher than those of low‐protein diet groups. The intestinal protease activity in high‐protein diet groups was significantly higher that of low‐protein diet groups, but lipase and amylase showed opposite trend. With the increasing of dietary protein level, the activities of alkaline phosphatase, superoxide dismutase and lysozyme in liver of grouper increased significantly compared with 350 g/kg group, while the activities of acid phosphatase decreased significantly. With specific growth rate as the evaluation index, the optimum dietary protein level of large‐size grouper Epinephelus coioides was 438.39 g/kg by fitting the broken‐line regression analysis.  相似文献   

20.
The study evaluated effects of cholesterol supplementation in a diet with high soybean meal (SBM) on the growth and cholesterol metabolism of giant grouper (Epinephelus lanceolatus). All‐fish‐meal diet was used as control. The diet including SBM (replaced 50% of the fish meal protein, SBM diet) and the SBM diet supplemented with 10 g/kg cholesterol (SBM + cholesterol) were used as experimental diets. Three diets were each fed to triplicate groups of juvenile grouper (initial body weight: 12.39 ± 0.36 g) in a recirculating aquaculture system for 8 weeks. Grouper fed the control diet showed higher (p < .05) weight gain, feed intake, feed efficiency and protein efficiency ratio than the other two dietary treatments. Hepatic cholesterol concentrations and 3‐hydroxy‐3‐methylglutaryl coenzyme A reductase gene expressions were higher in fish fed the control diet than fish fed the control diet and SBM + cholesterol diet. Hepatic cholesterol 7α‐hydroxylase gene expression was higher in fish fed the SBM + cholesterol diet than that in fish fed the control diet. Results indicate that giant grouper on a diet low in cholesterol can regulate cholesterol synthesis, suggesting that the reduced dietary cholesterol intake in the fish fed diet containing SBM is sufficiently compensated by increased cholesterol synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号