首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
DNA疫苗又称为核酸疫苗,是20世纪90年代初发展起来的一种全新疫苗,具有能够激发机体体液和细胞免疫反应,核酸疫苗因高效、持久、广谱、简便、廉价、无致病性等特点,被作为一种新型的疫苗而得到广泛的研究和应用,是近年来研究的一个热点.抗原编码基因的选择、质粒的构建、各种佐剂的应用以及疫苗接种方法和途径等因素可以提高和改变DNA疫苗的免疫效果与反应类型.DNA疫苗不仅有预防疾病的作用,同时还具有治疗疾病的作用.在不久的将来,DNA疫苗有望成为人类防治疾病的重要手段.  相似文献   

2.
DNA疫苗又称为核酸疫苗,是20世纪90年代初发展起来的一种全新疫苗,具有能够激发机体体液和细胞免疫反应,核酸疫苗因高效、持久、广谱、简便、廉价、无致病性等特点,被作为一种新型的疫苗而得到广泛的研究和应用,是近年来研究的一个热点。抗原编码基因的选择、质粒的构建、各种佐剂的应用以及疫苗接种方法和途径等因素可以提高和改变DNA疫苗的免疫效果与反应类型。DNA疫苗不仅有预防疾病的作用,同时还具有治疗疾病的作用。在不久的将来,DNA疫苗有望成为人类防治疾病的重要手段。  相似文献   

3.
动物核酸疫苗的研究现状及发展前景   总被引:2,自引:2,他引:0  
王凯 《中国畜牧兽医》2010,37(8):186-188
核酸疫苗是近年来备受人们关注的一种新型疫苗。核酸疫苗以其特有的可诱导机体产生全面的免疫应答,对不同亚型的病原体具有交叉防御作用,以及安全、可靠、生产方便等优点被称之为“疫苗的第三次革命”。核酸疫苗由编码能引起保护性免疫反应的病原体抗原的基因片段和载体构建而成,包括DNA疫苗和RNA疫苗,目前研究较多的是DNA疫苗。DNA疫苗是指含有编码抗原基因的真核表达质粒DNA,经直接接种体内后,可被体细胞摄取,并转录、翻译、表达出相应的抗原,然后通过不同途径刺激机体产生针对此种抗原的应答。作者简单介绍了动物核酸疫苗的特点、免疫机制、免疫影响因素及在畜禽传染病中的应用,此外还分析了核酸疫苗的发展前景等问题,从而为核酸疫苗的发展提供了新思路和新途径。  相似文献   

4.
核酸疫苗的研究与应用   总被引:1,自引:0,他引:1  
核酸疫苗(nucleicacidvaccine)是指将含有编码某种抗原蛋白的外源基因(DNA或RNA)序列质粒载体作为疫苗,直接导入到动物细胞内,通过宿主细胞的表达系统合成抗原蛋白,诱导宿主产生对该抗原蛋白的免疫应答,以达到预防和治疗疾病的目的。核酸疫苗又称为基因疫苗或裸DNA疫苗,核酸疫苗包括DNA疫苗和RNA疫苗。这种免疫称为核酸免疫、基因免疫、DNA介导的免疫以及遗传免疫等。核酸疫苗与传统疫苗相比有许多优势。1核酸疫苗的研究历史核酸疫苗是由基因治疗发展而来的,1990年Wolff等发现,在小鼠肌肉组织内直接注射质粒DNA后,质粒及其携带的外…  相似文献   

5.
核酸疫苗的免疫效果与安全性   总被引:1,自引:0,他引:1  
核酸疫苗是通过基因重组手段将编码某种抗原蛋白质的基因与载体重组后直接导入动物体内,在宿主体内表达抗原从而引起机体免疫应答的新型疫苗,是一种与传统疫苗截然不同的新型疫苗,被誉为第三代疫苗。核酸疫苗可诱导细胞免疫并可抵抗母源抗体干扰,它的诞生给基因治疗和免疫学领域带来了不可估量的前景。核酸疫苗目的基因、质粒载体的选择,接种剂量以及应用的佐剂等因素直接影响到核酸疫苗的免疫效果。DNA疫苗自诞生以来,其安全性一直是人们关心的问题,也是DNA疫苗得以日后应用于临床的关键。  相似文献   

6.
核酸免疫与核酸疫苗   总被引:1,自引:0,他引:1  
滕勇 《中国饲料》2003,(12):30-31
核酸疫苗是最近几年从基因治疗研究领域发展起来的一种全新免疫防治剂。核酸疫苗是指将含有编码某种抗原蛋白基因序列的质粒载体作为疫苗 ,直接导入动物细胞内 ,通过宿主细胞的转录系统合成抗原蛋白 ,诱导宿主产生对该抗原蛋白的免疫应答 ,从而使被接种动物获得相应的免疫保护。免疫应答包括细胞激活、细胞因子分泌、细胞毒淋巴细胞 (CTL)产生以及特异性抗体形成等。因此 ,核酸疫苗又称基因疫苗或裸DNA疫苗。这种免疫称为核酸免疫、基因免疫、遗传免疫或DNA介导免疫等。核酸疫苗与传统疫苗相比有许多潜在的优势 ,从而被誉为第三次疫苗革…  相似文献   

7.
增强DNA疫苗免疫效果的研究进展   总被引:3,自引:1,他引:2  
随着DNA重组技术的发展和应用,DNA疫苗、病毒和细菌活载体疫苗等基因工程疫苗的研制日益成为医学领域的一大研究热点。DNA疫苗在许多方面优于传统的灭活苗和减毒苗,但其免疫效果的稳定性和确实性方面尚存不足。影响DNA疫苗免疫效果的因素很多,国内外的许多研究者在这方面作了大量有意义的工作。目前,多数研究者主要通过目的基因的选择、促进外源基因在体内表达、改善疫苗导入方式以及辅以免疫刺激序列和免疫佐剂等方面来提高DNA疫苗的免疫效果。如果DNA疫苗在免疫效果方面能得到大幅度的提高,则它进入临床使用大有前途。  相似文献   

8.
核酸疫苗的研究和应用   总被引:8,自引:0,他引:8  
90年代中期 ,研制了一种新的免疫防治制剂 -核酸疫苗。所谓核酸疫苗是指将含有编码某种抗原蛋白基因序列的质粒载体作为疫苗 ,直接导入动物细胞内 ,通过宿主细胞的转录系统合成抗原蛋白 ,诱导宿主产生对该抗原蛋白的免疫应答 ,从而使被接种动物获得相应的免疫保护。免疫应答包括了细胞激活、细胞毒淋巴细胞 ( CTL)产生、细胞因子分泌以及特异性抗体形成等。核酸疫苗又称为基因疫苗或裸 DNA疫苗。这种免疫称为核酸免疫、基因免疫 ,DNA介导的免疫以及遗传免疫等。核酸疫苗与传统疫苗相比有许多潜在的优势 ,从而被誉为疫苗领域的第三次革命…  相似文献   

9.
本试验通过分子克隆技术分别构建了单独表达猪繁殖与呼吸综合征病毒(PRRSV)GP5基因以及PRRSVGP5基因和猪IL-18基因共表达的重组核酸疫苗质粒(pEGFP—GP5和pEGFP—ILl8-GP5),并进行仔猪免疫原性研究,对构建的PRRSV核酸疫苗所诱导的体液免疫和细胞免疫水平进行检测,进一步研究了PRRSV核酸疫苗免疫效果以及猪IL-18基因对PRRSV核酸疫苗免疫调节作用的影响。同时,调查了商业上应用不同类型的PRRSV疫苗诱导的免疫效果,并与核酸疫苗免疫效果进行比较。结果表明,IL-18作为免疫佐剂在疫苗免疫猪后诱导的病毒特异性细胞免疫反应方面具有很好的调节作用,共表达IL18-GP5蛋白能够明显的改善DNA疫苗的免疫效力,增强抗PRRSV的免疫保护。因此,DNA疫苗做为一种新一代疫苗可用于对抗高致病性PRRSV感染。  相似文献   

10.
核酸疫苗研究进展   总被引:7,自引:0,他引:7  
核酸疫苗 (DNA疫苗 )是 2 0世纪 90年代诞生的一种新型疫苗 ,具有能够激发机体全面免疫反应、不散毒、便于储存和运输等优点。抗原递呈细胞在 DNA疫苗诱导产生的 CTL反应中起主导作用。 DNA疫苗的运输载体 (脂质体、减毒突变的胞内菌等 )、佐剂 (细胞因子等 )以及疫苗接种方法和途径等因素可以提高和改变 DNA疫苗的免疫效果与反应类型。 DNA疫苗自诞生以来 ,其安全性一直是人们关心的问题 ,也是 DNA疫苗得以日后应用于临床的关键。  相似文献   

11.
牛传染性鼻气管炎(infectious bovine rhinotracheitis,IBR)是由牛传染性鼻气管炎病毒(infectious bovine rhinotracheitis virus,IBRV)即牛疱疹病毒1型(BoHV-1)感染所引起的一种高度接触性传染病。该病给我国养牛业带来了巨大的经济损失。由于缺乏有效的治疗性药物,疫苗免疫仍然是防控该病的有效措施。当前,牛传染性鼻气管炎疫苗主要包括灭活疫苗、弱毒疫苗2种常规疫苗和亚单位疫苗、DNA疫苗、IBRV基因缺失疫苗、病毒活载体疫苗4种基因工程疫苗,各种疫苗各有优点。现对上述疫苗的最新研究进展进行综述,以期为IBRV疫苗的研究与开发提供参考。  相似文献   

12.
寄生虫病带来了相当大的社会经济影响,人畜共患寄生虫给人们带来巨大的疾病负担,并给养殖业造成严重的经济损失。因此,寄生虫病的防治是人们迫切需要研究的课题。寄生虫存在很多形式的免疫逃避机制,灭活疫苗、减毒活疫苗、亚单位疫苗等未达到理想的预防寄生虫病的效果,很多研究表明DNA疫苗有望成为预防和治疗寄生虫病的有效方法。DNA疫苗是一种新型疫苗,可同时诱导机体产生持久的体液免疫和细胞免疫,通过在宿主内表达外源蛋白来提供保护性免疫。DNA疫苗与其他亚单位疫苗不同的是,免疫原由摄取抗原编码DNA的细胞在宿主内合成。体内蛋白质的合成也能进行抗原加工、修饰并递呈到宿主的免疫系统中,类似于自然感染的方式。笔者就DNA疫苗免疫机制、设计原则、免疫途径、优缺点及近几年寄生虫DNA疫苗的研究进展进行综述,以期为寄生虫DNA疫苗的开发提供理论参考。  相似文献   

13.
DNA vaccinations against fish viral diseases as IHNV at commercial level in Canada against VHSV at experimental level are both success stories. DNA vaccination strategies against many other viral diseases have, however, not yet yielded sufficient results in terms of protection. There is an obvious need to combat many other viral diseases within aquaculture where inactivated vaccines fail. There are many explanations to why DNA vaccine strategies against other viral diseases fail to induce protective immune responses in fish. These obstacles include: 1) too low immunogenicity of the transgene, 2) too low expression of the transgene that is supposed to induce protection, 3) suboptimal immune responses, and 4) too high degradation rate of the delivered plasmid DNA. There are also uncertainties with regard distribution and degradation of DNA vaccines that may have implications for safety and regulatory requirements that need to be clarified. By combining plasmid DNA with different kind of adjuvants one can increase the immunogenicity of the transgene antigen – and perhaps increase the vaccine efficacy. By using molecular adjuvants with or without in combination with targeting assemblies one may expect different responses compared with naked DNA. This includes targeting of DNA vaccines to antigen presenting cells as a central factor in improving their potencies and efficacies by means of encapsulating the DNA vaccine in certain carriers systems that may increase transgene and MHC expression. This review will focus on DNA vaccine delivery, by the use of biodegradable PLGA particles as vehicles for plasmid DNA mainly in fish.  相似文献   

14.
Abstract

Viral hemorrhagic septicemia (VHS) in rainbow trout Oncorhynchus mykiss is caused by VHS virus (VHSV), which belongs to the rhabdovirus family. Among the different strategies for immunizing fish with a recombinant vaccine, genetic immunization has recently proven to be highly effective. To further investigate the potential for protecting fish against VHS by DNA vaccination, experiments were conducted to determine the amount of plasmid DNA needed for induction of protective immunity. The time to onset of immunity and the duration of protection following administration of a protective vaccine dose were also analyzed. The dose–response analysis revealed that significant protection of rainbow trout fingerlings was obtained following intramuscular injection of only 0.01 μg of plasmid DNA encoding the VHSV glycoprotein gene. In addition, higher doses of DNA induced immunity to a virus isolate serologically different from the isolate used for vaccine development. Following administration of 1 μg of a DNA vaccine, significant protection against VHS was observed in the fish as early as 8 d postvaccination. At 168 d postvaccination, the fish had increased in size by a factor of 10 and protection against a lethal dose of VHSV was still evident. The results confirm the great potential for DNA vaccination in inducing efficient immunoprophylaxis against viral diseases in aquacultured fish.  相似文献   

15.
The influenza virus vaccines that are commercially-available for humans, horses and pigs in the United States are inactivated, whole-virus or subunit vaccines. While these vaccines may decrease the incidence and severity of clinical disease, they do not consistently provide complete protection from virus infection. DNA vaccines are a novel alternative to conventional vaccination strategies, and offer many of the potential benefits of live virus vaccines without their risks. In particular, because immunogens are synthesized de novo within DNA transfected cells, antigen can be presented by MHC class I and II molecules, resulting in stimulation of both humoral and cellular immune responses. Influenza virus has been used extensively as a model pathogen in DNA vaccine studies in mice, chickens, ferrets, pigs, horses and non-human primates, and clinical trials of DNA-based influenza virus vaccines are underway in humans. Our studies have focused on gene gun delivery of DNA vaccines against equine and swine influenza viruses in mice, ponies and pigs, including studies employing co-administration of interleukin-6 DNA as an approach for modulating and adjuvanting influenza virus hemagglutinin-specific immune responses. The results indicate that gene gun administration of plasmids encoding hemagglutinin genes from influenza viruses is an effective method for priming and/or inducing virus-specific immune responses, and for providing partial to complete protection from challenge infection in mice, horses and pigs. In addition, studies of interleukin-6 DNA co-administration in mice clearly demonstrate the potential for this approach to enhance vaccine efficacy and protection.  相似文献   

16.
口蹄疫是由口蹄疫病毒感染引起的偶蹄动物共患的急性、热性、接触性传染病,接种疫苗是特异性预防口蹄疫的有效手段,口蹄疫疫苗主要有弱毒疫苗、灭活疫苗及新型疫苗。自20世纪80年代开始,基因工程亚单位疫苗、合成肽疫苗、病毒活载体疫苗、基因缺失疫苗、重组表位疫苗、核酸疫苗等新型疫苗研究日趋活跃,现对各类型疫苗的研究进展作一综述。  相似文献   

17.
Vaccination against prion diseases constitutes a promising approach for the treatment and prevention of the disease. Passive immunisation with antibodies binding to the cellular prion protein (PrP(C)) can protect against prion disease. However, immunotherapeutic strategies with active immunisation are limited due to the immune tolerance against the self-antigen. In order to develop an anti-prion vaccine, we designed a novel DNA fusion vaccine composed of mouse PrP and immune stimulatory helper T-cell epitopes of the tetanus toxin that have previously been reported to break tolerance to other self-antigens. This approach provoked a strong PrP(C)-specific humoral and cellular immune response in PrP null mice, but only low antibody titres were found in vaccinated wild-type mice. Furthermore, prime-boost immunisation with the DNA vaccine and recombinant PrP protein increased antibody titres in PrP null mice, but failed to protect wild-type mice from mouse scrapie.  相似文献   

18.
Marek's disease is an economically important lymphoid neoplasm of chickens, caused by oncogenic strains of Marek's disease herpesvirus. The disease can be successfully controlled by vaccination with attenuated or non-pathogenic MDV strains. However, vaccine failures do occur as field strains continue to evolve towards pathotypes of greater virulence, and this evolution is likely to be driven by the vaccines themselves. Two general strategies can be considered to improve protection by vaccination. Firstly by the development of novel vaccines, and secondly by maximizing the potential of existing vaccines. This second goal requires investigation of optimal timing and vaccine delivery route, and optimal vaccination regimes for different breeds of chick. Accurate quantitation of Marek's disease vaccine virus in vaccinated chicks will contribute significantly to our understanding of vaccinal protection. We recently developed a real-time polymerase chain reaction (PCR) assay for quantitation of CVI988 vaccine virus in the feather tips, a rich source of viral DNA which can easily be sampled in a non-invasive manner. This PCR test is now used commercially to confirm the successful vaccination of chicks. We have also used the PCR to examine various aspects of vaccination in experimental chicks and commercial chicks with a view to determining how vaccine level in feathers correlates with protection against challenge, and for identifying optimal timing and vaccine delivery route, and optimal vaccination regimes for different breeds of chick. In this article we review some aspects of the current vaccinal control of Marek's disease, before highlighting some of the problems associated with current vaccines and vaccination strategies, and the challenges for the future. We go on to discuss the development and use of our real-time PCR feather test, its current applications and potential opportunities in Marek's disease vaccine research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号