首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There have been increasing efforts to understand the dynamics of organic carbon (OC) associated with measurable fractions of bulk soil. We compared the decomposition of native OC (native C) with that of an added substrate (glucose) on physically separated fractions of a diverse suite of soils. Five soil orders were selected from four contrasting climate zones (Mollisol from temperate, Ultisol and Oxisol from tropics, Andisol from sub-arctic, and Gelisol from arctic region). Soils from the A horizon were fractionated into particulate OC (POC) and mineral-associated OC (MOC) by a size-based method. Fractions were incubated at 20 °C and 50 % water-holding capacity in the dark after the addition of unlabeled d-glucose (0.4 mg C g?1 fraction) and U–14C glucose (296 Bq g?1 fraction). Respiration of glucose 14C indicated 64 to 84 % of added glucose 14C which was respired from POC and 62 to 70 % from MOC within 150 days of incubation, with more than half of the cumulative respiration occurring within 4 days. Native C respiration varied widely across fractions: 12 to 46 % of native C was respired from POC and 3 to 10 % was respired from MOC fractions. This suggested that native C was more stabilized on the MOC than on the POC, but respiration from the added glucose was generally similar for MOC and POC fractions. Our study suggests a fundamental difference between the behavior of freshly added C and native C from MOC and POC fractions of soils.  相似文献   

2.
Atmospheric C (TAC) is continuously transported by rivers at the continents’ surface as soil dissolved and particulate organic C (DOC, POC) and dissolved inorganic C (DIC) used in rock weathering reactions. Global typology of the C export rates (g.m?2.yr?1) for 14 river classes from tundra rivers to monsoon rivers is used to calculate global TAC flux to oceans estimated to 542 Tg.yr?1, of which 37 % is as DOC, 18 % as soil POC and 45 % as DIC. TAC originates mostly from humid tropics (46 %) and temperate forest and grassland (31 %), compared to boreal forest (14 %), savannah and sub-arid regions (5 %), and tundra (4 %). Rivers also carry to oceans 80 Tg. yr?1 of POC and 137 TG.yr?1 of DIC originating from rock erosion. Permanent TAC storage on land is estimated to 52 Tg.yr?1 in lakes and 17 Tg.yr?1 in internal regions of the continents.  相似文献   

3.

A soil core collected in a tidal freshwater marsh in the Waccamaw National Wildlife Refuge (Georgetown, SC) exuded a particularly strong odor of cow manure upon extrusion. In order to test for manure and determine its provenance, we carried out microbial source tracking using DNA markers for Bacteroides, a noncoliform, anaerobic bacterial group that represents a large proportion spectrum of the fecal population. Three core sections from 0–3 cm, 9–12 cm, and 30–33 cm were analyzed for the presence of Bacteroides. The ages of core sediments were estimated using 210Pb and 137Cs dating. All three core sections tested positive for Bacteroides DNA markers related to cow or deer feces. Because cow manure is stockpiled, used as fertilizer, and a source of direct contamination in the Great Pee Dee River/Winyah Bay watershed, it is very likely the source of the Bacteroides that was deposited on the marsh. The mid-points of the core sections were dated as follows: 0–3 cm, 2009; 9–12 cm, 1999, and 30–33 cm, 1961. The presence of Bacteroides at different depths/ages in the soil profile indicates that soils in tidal freshwater marshes are, at the least, capable of being short-term sinks for Bacteroides and, may have the potential to be long-term sinks of stable, naturalized populations.

  相似文献   

4.
Fundamental knowledge about decomposition, fate of crop residue, and allocation of residue-derived carbon (C) in soil aggregates is essential to understand the C dynamics in soil. The incorporation of C derived from corn residue in water-stable aggregate fractions, particulate organic C (POC), and mineral-associated C (MAC) in soil were examined using the 13C tracer technique. Soil was treated with corn straw at the rate of 1% dry mass of soil brought to 66% of field capacity and incubated for 70 days at 25 °C. Samples were taken at 20, 35, and 70 days and analyzed for water-stable aggregates. Values for POC and MAC were analyzed for total C and 13C enrichment. The addition of corn straw caused a shift in the distribution of recoverable particles with significant decreases in <53-μm silts and clays, microaggregrates (53–250 μm), and smaller macroaggegates (250–2000 μm); however, the large macroaggegates (>2000 μm) increased significantly. Macroaggregates contained greater amount of C than microaggregates. The proportion of 13C recovered in the fractions <53 μm (silt and clay), 53–250 μm, and 250–2000 μm increased during decomposition of corn straw, whereas there was no significant change in >2000-μm fraction. Most (70–76%) of the soil organic C was affiliated with MAC (<53 μm). Carbon (13C) derived from corn straw decreased in POC but increased in MAC as decomposition proceeded. In the long term, microaggregate fraction appears to be involved in storage and stabilization of the C derived from corn straw and is important for soil quality and soil C sequestration point of view.  相似文献   

5.
In the absence of significant mechanical disturbance such as under permanent no-till (NT), crop type should be a prominent factor controlling soil organic C (SOC) pools. Microbial cell residues have been shown to be influenced by plant species and are believed to contribute significantly to soil organic matter formation. We performed a study to investigate the co-accumulation of microbial cell wall residues (glucosamine, GlcN and muramic acid, MurN) and organic C (total and particle-size fractions) in the surface layer (0- to 5-cm depth) of an Oxisol after 7 yr under NT, as affected by different crop types. SOC content associated with pigeon pea [Cajanus cajan (L.) Millsp.] was 20% and 18% higher than that with corn (Zea mays L.) or sunflower (Helianthus annuus L.), respectively. The highest particulate organic C (POC) content in soil was also found under pigeon pea, which showed values 54, 46, and 48% higher than under corn, sunflower, and oilseed radish (Raphanus sativus L. var. oleiformis Pers.), respectively. Changes in POC explained most of the variation in SOC. The positive impact of pigeon pea on POC and SOC was attributed to rapid decomposition of its residues, due to their low C/N ratio, followed by selective preservation of lignin-rich particulate organic matter. The accrual of POC was closely associated with the accumulation of fungal and bacterial cell wall residues. This may be due to preferential feeding of fungi and bacteria on recently deposited plant-derived C sources present in the form of particulate organic matter. This observation is consistent with a recent model suggesting that microbial residues play a greater role in the formation of SOC than previously considered. We emphasize that this effect was mediated by the accumulation of POC and influenced by crop type.  相似文献   

6.
Maintaining soil organic carbon (SOC) in arid ecosystem is important for soil productivity and restoration of deserted sandy soil in western plain of India. There is a need to understand how the cropping systems changes may alter SOC pools including total organic carbon (TOC), particulate organic C (POC), water soluble carbon (WSC), very labile C (VLC), labile C (LC), less labile C (LLC) and non-labile C (NLC) in arid climate. We selected seven major agricultural systems for this study viz., barren, fallow, barley–fallow, mustard–moth bean, chickpea–groundnut, wheat–green gram and wheat–pearl millet. Result revealed that conversion of sandy barren lands to agricultural systems significantly increased available nutrients and SOC pools. Among all studied cropping systems, the highest values of TOC (6.12 g kg?1), POC (1.53 g kg?1) and WSC (0.19 g kg?1) were maintained in pearl millet–wheat system, while the lowest values of carbon pools observed in fallow and barren land. Strong relationships (P < 0.05) were exhibited between VLC and LC with available nutrients. The highest carbon management index (299) indicates that wheat–pearl millet system has greater soil quality for enhancing crop productivity, nutrient availability and carbon sequestration of arid soil.  相似文献   

7.
Coastal habitats near urban centres in North Atlantic estuaries often support substantial numbers of wintering waterfowl, but little is known of the effects of landscape setting and urbanisation on habitat use. We conducted surveys of waterfowl at 32 wintering sites in Narragansett Bay, Rhode Island, to identify characteristics that may influence habitat use. Sites were chosen along a gradient of urbanisation and reflected the dominant habitat types used by waterfowl in the Bay. Mean waterfowl abundance was 206.7 ± 209.5 birds per site, and sites in the inner part of the estuary had higher overall waterfowl abundances (r2 = 0.40, p = 0.021). Species richness ranged from 3.2 to 13.0 and decreased with increasing hunting activity (r2 = 0.36, p = 0.040). Hunting activity and habitat characteristics (e.g., latitude, shoreline configuration, prey density) explained 13-27% of the variation in waterfowl abundance and species richness among sites, but landscape characteristics (e.g., surrounding residential development, vegetated land, or wetland surrounding the sites and the extent of wetland edge) explained an additional 1-26%. The landscape characteristics extent of adjacent residential development and vegetated upland were the most common variables entering into the models; most species were more abundant at sites with more adjacent vegetated upland and less adjacent residential development. Our results suggest that landscape setting may be influencing the distribution of wintering waterfowl, and should be considered when developing strategies for the conservation for these species in urban North Atlantic estuaries.  相似文献   

8.
ABSTRACT

Mangrove ecosystems play an important role in carbon (C) accumulation in tropical and subtropical regions. Below-ground deep anoxic soil is especially important for C accumulation. However, quantitative data on below-ground soil C stocks in mangrove ecosystems are lacking compared with data on above-ground biomass. In addition, soil C accumulation processes in mangrove ecosystems have not been sufficiently clarified. In this study, we quantified soil C stocks and focused on the mass of fallen litter and below-ground roots, which are produced by tree and that may directly influence soil C stocks in a mature subtropical mangrove in the estuary of Fukido River, Ishigaki Island, southwestern Japan. The principal species in this study site were Bruguiera gymnorhiza and Rhizophora stylosa, and total above-ground biomass at the site was 80.7 ± 1.3 (mean ± SD) Mg C ha?1 over the period from 2014 to 2016. Litter was collected in six litter traps from May 2013 to November 2016, it ranged from 7.8 to 11.5 Mg C ha?1, with the major proportion of litter being from foliage (leaves and stipules). The root C density at 90-cm depth was 27.1 ± 11.3 Mg C ha?1. The soil C stock in the mangrove forest at a depth of 90 cm at the study site was 251.0 ± 34.8 Mg C ha?1, and it seems to be lower value in the tropical region but it to be higher in subtropical East Asian mangrove sites. Dead roots, especially dead fine roots, but not fallen litter, were significantly positively correlated with soil C stocks. The δ13C values obtained from soils ranged from ?29.3‰ to ?27.0‰; these values are consistent with those for below-ground fine roots. These results strongly suggest that dead fine roots could be a main factor controlling soil C stocks at this study site.  相似文献   

9.
《Soil & Tillage Research》2007,92(1-2):57-67
Tillage, organic resources and fertiliser effects on soil carbon (C) dynamics were investigated in 2000 and 2001 in Burkina Faso (West Africa). A split plot design with four replications was laid-out on a loamy-sand Ferric Lixisol with till and no-till as main treatments and fertiliser types as sub-treatments. Soil was fractionated physically into coarse (0.250–2 mm), medium (0.053–0.250 mm) and fine fractions (< 0.053 mm). Particulate organic carbon (POC) accounted for 47–53% of total soil organic carbon (SOC) concentration and particulate organic nitrogen (PON) for 30–37% of total soil nitrogen concentration. The POC decreased from 53% of total SOC in 2000 to 47% of total SOC in 2001. Tillage increased the contribution of POC to SOC. No-till led to the lowest loss in SOC in the fine fraction compared to tilled plots. Well-decomposed compost and single urea application in tilled as well as in no-till plots induced loss in POC. Crop N uptake was enhanced in tilled plots and may be up to 226 kg N ha−1 against a maximum of 146 kg N ha−1 in no-till plots. Combining crop residues and urea enhanced incorporation of new organic matter in the coarse fraction and the reduction of soil carbon mineralisation from the fine fraction. The PON and crop N uptake are strongly correlated in both till and no-till plots. Mineral-associated N is more correlated to N uptake by crop in tilled than in no-till plots. Combining recalcitrant organic resources and nitrogen fertiliser is the best option for sustaining crop production and reducing soil carbon decline in the more stabilised soil fraction in the semi-arid West Africa.  相似文献   

10.
Persistent organic pollutants (POPs) immobilization in farm land is an important issue to solve the residue in crop, and char has been considered for the remediation. In here, three commercially available chars like powdered oak char (POC), granulated oak char (GOC), and rice husk char (RHC) including powdered activated carbon (PAC) were investigated for their potential to adsorb and immobilize endosulfan in the soil. The maximum adsorption capacities (mg g?1) of the applied chars as POC, GOC, and RHC were 714.8, 322.6, and 181.8, respectively, and the capacity of POC was similar with PAC (713.8). In addition, the pore volume (0.138 cm3 g?1) and the surface area (270.3 m2 g?1) of POC were over 3-fold higher than GOC and RHC. The bioconcentration factor (BCF) reducing effect of α-, β-endosulfan, and endosulfan sulfate in oriental radish (Raphanus sativus var. sativus) was investigated by amendment of three commercially available chars to the contaminated soils. The BCF of total endosulfan was 0.025 in the radish root. POC treatments effectively suppressed the endosulfan uptake (BCF 0.002). However, GOC and RHC showed little BCF reducing effect of endosulfan in radish.  相似文献   

11.
Plastic film mulching (PFM) is critical for agricultural planting and maximizing production in semiarid and arid areas. Particulate organic matter (POM) is assumed to be a sensitive indicator for evaluating the effects of different agricultural practices on soil fertility and the soil organic carbon (SOC) pool. Soil aggregates have the function of ‘wrap’ and protect the POM stored in them. However, there is limited information regarding how PFM and fertilization jointly influence the dynamic changes of newly added stalk-derived POM in brown earth. Consequently, an in-depth study of the fate of carbon (C) and nitrogen (N) derived from maize stalk residues within the particulate organic carbon (POC) and particulate organic nitrogen (PON) fractions in soil aggregates was undertaken. Its outcome would contribute to better predictions on the active organic matter components sequestered in the soil. The dynamics and accumulation of newly added maize stalk C and N as POC and PON in different soil aggregates (using the dry sieving method divided into >2, 1–2, 0.25–1 and <0.25 mm) were analysed by an in situ 13C/15N-tracing technique under PFM and different fertilization treatments. Over 360 days of cultivation, the POC and PON contents were significantly (p < 0.05) larger in the nitrogen (N) and organic manure (M) treatments than in the MN (manure combined with nitrogen) and Control treatments. The PFM treatment accelerated the decomposition of maize stalk C in the N fertilizer treatment, with an increase of 64% in stalk-derived POC after the 1-day cultivation period. Stalk-derived POM tended to accumulate in <0.25 mm microaggregates in the early cultivation period and then decreased rapidly with the extension of the cultivation period affected by PFM coupled with fertilization. However, stalk-derived POM accumulation in macroaggregates (>0.25 mm) fluctuated over the 360-day cultivation period. Accordingly, PFM application and fertilization practices had important effects on the accumulation of newly added stalk-derived POM in soil aggregates. We conclude that the accumulation of maize residue POM was primarily affected by soil fertilization type, rather than by the presence or absence of PFM. These results provide new insights into agricultural management strategies for improving soil carbon sequestration capacity.  相似文献   

12.
Experiments were conducted between 2003 and 2008 to examine how N additions influence soil organic C (SOC) and its fractions in forests at different succession stages in the subtropical China. The succession stages included pine forest, pine and broadleaf mixed forest, and old‐growth monsoon evergreen broadleaf forest. Three levels of N (NH4NO3)‐addition treatments comprising control, low‐N (50 kg N ha–1 y–1), and medium‐N (100 kg N ha–1 y–1) were established. An additional treatment of high‐N (150 kg N ha–1 y–1) was established in the broadleaf mixed forest. Soil samples were obtained in July 2008 for analysis. Total organic C (TOC), particulate organic C (POC, > 53 μm), readily oxidizable organic C (ROC), nonreadily oxidizable organic C (NROC), microbial biomass C (MBC), and soil properties were analyzed. Nitrogen addition affected the TOC and its fractions significantly. Labile organic‐C fractions (POC and ROC) in the topsoil (0–10 cm) increased in all the three forests in response to the N‐addition treatments. NROC within the topsoil was higher in the medium‐N and high‐N treatments than in the controls. In the topsoil profiles of the broadleaf forest, N addition decreased MBC and increased TOC, while no significant effect on MBC and TOC occurred in the pine and mixed forests. Overall, elevated N deposition increased the availability of labile organic C (POC and ROC) and the accumulation of NROC within the topsoil irrespective of the forest succession stage, and might enhance the C‐storage capacity of the forest soils.  相似文献   

13.
The effects of atmospheric nitrogen (N) deposition on carbon (C) sequestration in terrestrial ecosystems are controversial. Therefore, it is important to evaluate accurately the effects of applied N levels and forms on the amount and stability of soil organic carbon (SOC) in terrestrial ecosystems. In this study, a multi‐form, small‐input N addition experiment was conducted at the Haibei Alpine Meadow Ecosystem Research Station from 2007 to 2011. Three N fertilizers, NH4Cl, (NH4)2SO4 and KNO3, were applied at four rates: 0, 10, 20 and 40 kg N ha?1 year?1. One hundred and eight soil samples were collected at 10‐cm intervals to a depth of 30 cm in 2011. Contents and δ13C values of bulk SOC were measured, as well as three particle‐size fractions: macroparticulate organic C (MacroPOC, > 250 µm), microparticulate organic C (MicroPOC, 53–250 µm) and mineral‐associated organic C (MAOC, < 53 µm). The results show that 5 years of N addition changed SOC contents, δ13C values of the bulk soils and various particle‐size fractions in the surface 10‐cm layer, and that they were dependent on the amounts and forms of N application. Ammonium‐N addition had more significant effects on SOC content than nitrate‐N addition. For the entire soil profile, small additions of N increased SOC stock by 4.5% (0.43 kg C m?2), while medium and large inputs of N decreased SOC stock by 5.4% (0.52 kg C m?2) and 8.8% (0.85 kg C m?2), respectively. The critical load of N deposition appears to be about 20 kg N ha?1 year?1. The newly formed C in the small‐input N treatment remained mostly in the > 250 µm soil MacroPOC, and the C lost in the medium or large N treatments was from the > 53 µm POC fraction. Five years of ammonium‐N addition increased significantly the surface soil POC:MAOC ratio and increased the instability of soil organic matter (SOM). These results suggest that exogenous N input within the critical load level will benefit C sequestration in the alpine meadow soils on the Qinghai–Tibetan Plateau over the short term.  相似文献   

14.
C and N content, C/N (atomic) ratio, and C and N isotopic composition (δ13C and δ15N) were determined on suspended particulate matter and sediment samples obtained from riverine, estuarine and marine environments in two cruises (September 1995 and March 1996) in the Po estuary (Italy). Isotopic tracers of C and N, reported for the first time for this environment, gave information on sources of organic matter and their distributions. An end-member mixing model based on δ13C values was applied to estimate the relative importance of riverine and marine sources of organic matter in suspended particulate matter and sediments.  相似文献   

15.
The Esk estuary is approximately 10 km from the marine outfall fromBritish Nuclear Fuels plc (BNFL) Sellafield Site and saltmarshes here havereceived significant quantities of radionuclides as reported in many studiessince 1975. These studies have concentrated on the inventory ofradionuclides in the estuary, but they have not addressed the continualreworking of radionuclides from these deposits. A detailed investigation ofboth the concentration of 137Cs in the surface 10 cm and gammaair-kerma dose rates has been made where 120 determinations were made in agrid over 14600 m2 of saltmarsh. The surface microtopographyis shown to be important for the continuing deposition of contaminatedsediments to the saltmarsh surface. This study has concentrated on thedevelopment and the possible application of sediment traps made fromAstroturf (an artificial grass). They were deployed at three sites whichwere representative of the major saltmarsh units in the estuary. The trapswere used to investigate the mobile sediments during a single tide, for aweek, and for a month. The Astroturf provided a reasonable analogue for thesaltmarsh surface and was arranged such that the radionuclide concentrationof the trapped sediment was measured directly by gamma spectrometry. Sediment deposition rates of between 30 and 240 g m-2d-1 were determined for the study sites, and these wereconsistent with earlier studies. Measurement of the radionuclideconcentration of the deposited sediment showed the addition of between 90and 750 Bq 317Cs m-2 d-1 and 200and 1400 Bq 241Am m-2 d-1. At thedepositional sites over the saltmarsh this would represent an annualaddition of about 90 kBq m-2 of 137Cs and 180kBq m-2 of 241Am.  相似文献   

16.
Surface waters of the Scheldt Estuary were sampled on various occasions between 1991 and 1994. Longitudinal particulate Hg (PM) concentrations ranged from 0.4 – 1.7 μgHg/g and are essentially controlled by physical mixing of polluted fluvial particulates with relatively unpolluted marine particulates. Total dissolved mercury (TDM)concentrations ranged from 0.5 to 5.2 ng/L and are strongly influenced by removal and mobilization processes in the upper estuary, while in the lower estuary mixing processes cause a progressive decrease in TDM towards the mouth. Speciation studies showed that dissolved Hg is predominantly bound to strong complexing ligands (organic substances) in the upper estuary, but this fraction decreases with increasing salinity. In June 1993, however, the reactive mercury fraction was also high in the upper estuary. Model calculations showed that a conditional stability constant for Hg- humic acid interactions of 1019 was a good estimate for the Scheldt estuary. Dissolved methylmercury was analyzed on three occasions. Significant seasonal variations were observed with concentrations ranging from 11 to 120 pg/L in the winter and 80 to 400 pg/L in summer. Supersaturation of Hg° is observed throughout the whole estuary resulting in an estimated evasion flux of 140–1400 ng/m2 day.  相似文献   

17.
Long-term effect of mungbean inclusion in lowland rice-wheat and upland maize-wheat systems on soil carbon (C) pools, particulate organic C (POC), and C-stabilization was envisaged in organic, inorganic and without nutrient management practices. In both lowland and upland systems, mungbean inclusion increased very-labile C (Cfrac1) and labile C (Cfrac2) in surface soil (0–0.2 m). Mungbean inclusion in cereal-cereal cropping systems improved POC, being higher in lowland (107.4%). Lowland rice-based system had higher passive C-pool (11.1 Mg C ha?1) over upland maize-based system (6.6 Mg C ha?1) indicating that rice ecology facilitates the stabilization of passive C-pool, which has longer persistence in soil. Organic nutrient management (farmyard manure + full crop residue + biofertilizers) increased Cfrac1 and carbon management index (CMI) over inorganic treatment. In surface soil, higher CMI values were evident in mungbean included cropping systems in both lowland and upland conditions. Mungbean inclusion increased grain yield of cereal crops, and yield improvement followed the order of maize (23.7–31.3%) > rice (16.9–27.0%) > wheat (lowland 7.0–10.7%; upland 5.4–16.6%). Thus, the inclusion of summer mungbean in cereal-cereal cropping systems could be a long-term strategy to enrich soil organic C and to ensure sustainability of cereal-cereal cropping systems.  相似文献   

18.
Arsenic distribution and dispersion in sediments of the EngenhoInlet and the Sepetiba Bay were investigated in order to evaluate the extent of the contamination caused by a metallurgical plant installed in the Sepetiba Bay watershed. The ore used in the smelting process, the soil around the plant, and ore waste collected inside the plant were also analyzed for As. Very high As concentrations in the stronglyand weakly bound fractions (up to 63 000 and 52 700 μgg-1, respectively) were found in the ore waste. The soilsalso contained high concentrations of both the strongly andweakly bound fractions (748 and 636 μg g-1, repectively), although the ore itself contained lower levelsof the two fractions (63 and 13 μg g-1, respectively).The sediments of the Engenho Inlet had a high degree of contamination (up to 347 μg g-1) decreasing toward Sepetiba Bay where the lowest concentrations were found (up to 50 μg g-1). Altough lower concentrations were found in the Sepetiba Bay sediments, they are 5 times higher than the world average. The results showed that there is an As transport from the Engenho Inlet to the Sepetiba Bay. These results suggests that the bay's fish and mollusk stock my be contaminated. This contamination may adversely affect the health of the local population, whose main protein supply is seafood.  相似文献   

19.
Sanchez  A. L.  Horrill  A. D.  Howard  B. J.  Singleton  D.  Mondon  K. 《Water, air, and soil pollution》1998,106(3-4):403-424
The activity concentrations of 137Cs,238 Pu, 239,240Pu and 241Am were measured in root mat and vegetation samples collected from tide washed pastures in 17 estuaries spanning the eastern seaboard of the Irish Sea, extending from the Solway in north-west England to St. David's Head in south Wales. Some of these estuaries had been investigated in previous surveys, but this study is unique in that it covered a wide geographic range using the same sampling and analytical methodology and within a comparatively short time scale. This allows for a valid comparison within the data set of the contamination levels at the different areas. Spatial distributions of the radionuclides were consistent with transport of radionuclides discharged to the Irish Sea from the Sellafield Nuclear Reprocessing Plant, with the highest activities occurring in the Esk estuary (closest to Sellafield) and lowest at the Welsh sites. Measurable activity concentrations of238 Pu and 239,240Pu were found in root mat samples from the Solway estuary to as far south as the Gwyrfai in Wales and showed an average238 Pu/239,240Pu ratio of 0.2, consistent with Sellafield-derived Pu. The ratios of137 Cs/241Am increased with distance from the source, with values of 1:1 in estuaries near Sellafield to ratios between 2 and 5 in estuaries further south and in excess of 10:1 in Wales. This is probably due to the more rapid movement of dissolved137 Cs in Irish Sea waters compared with the actinides. In contrast, 241Am and 239,240Pu behave similarly with consistent ratios of between 2:1 and 3:1, as both are associated with particulates. Dose assessment calculations suggest that external exposure would be a maximum of 530 µSv at the most contaminated spot at the Esk estuary. Relatively lower doses arise from the ingestion of animal products (along the soil-vegetation-grazing animal pathway) due to the low availability of sediment-associated radionuclides for gut transfer. The dose assessment calculations highlight the importance of using the appropriate transfer parameters that take into account this low bioavailability.  相似文献   

20.
Factors Affecting the Fate of Ciprofloxacin in Aquatic Field Systems   总被引:1,自引:0,他引:1  
Ciprofloxacin (cipro) is a broad-spectrum antibiotic used in human and veterinary medicine that is readily transported into the environment via domestic wastewaters and through direct runoff. Although factors governing cipro fate are becoming understood, an integrated evaluation of disappearance mechanisms in aquatic systems has not been performed. Here we examined cipro disappearance rate in surface waters using both laboratory and field systems under different light, and dissolved (DOC) and particulate organic carbon (POC) conditions to determine when photodegradation versus adsorption dominates cipro fate. Initial laboratory experiments showed that cipro rapidly photodegraded (t 1/2 ~ 1.5 h) with numerous photodegradation products being noted when POC levels were low. However, even moderate water column POC levels resulted in reduced photodegradation (no breakdown products detected) and soluble cipro disappearance rates were accelerated. 14C-ciprofloxacin studies confirmed significant adsorption onto aquatic POC (K OC values of 13,900 to 20,500 L/kg at neutral pH). In contrast, a follow-up mesocosm-scale field study using low POC water showed that photodegradation could also dominate cipro fate. In conclusion, both adsorption and photodegradation strongly influence cipro fate in aquatic systems, although the dominant mechanism appears to depend upon the ambient POC level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号