首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of feeding frequency (one, three, and continuous feeding), feed ration (0.2, 0.5, 0.8% of total fish biomass), and feeding per se on the oxygen consumption (OC, mg O2 kg−1 h−1) and ammonia excretion (AE, mg TAN kg−1 h−1) of juvenile tench (body weight 15–19 g) and variations in these parameters in daily cycles were examined. Fish metabolism was studied in a recirculating system (rearing tanks of 0.2 m3, water temperature 23 °C). It was found that oxygen consumption and ammonia excretion depended significantly on feed ration. An increase of feed ration from 0.2 to 0.8% of fish biomass caused an increase of OC and AE from 126.80 mg O2 kg−1 h−1 and 1.95 mg TAN kg−1 h−1 to 187.35 mg O2 kg−1 h−1 and 8.80 mg TAN kg−1 h−1 (p<0.05). There was no dependence between feeding frequency and the mean rate of oxygen consumption. However, the relationship between feeding frequency and ammonia excretion by juvenile tench was statistically significant (p<0.05). Feeding frequency significantly affected daily fluctuations of AE and OC. It was found that diurnal variations in metabolic rates were strictly related to tench feeding, and the daily variations of AE were significantly higher than OC.  相似文献   

2.
The impact of feeding, fish size (body weight from 18.5 to 56.5 g) and water temperature (20 and 23 °C) on oxygen consumption (OC, mg O2 kg–1 h–1) and ammonia excretion (AE, mg TAN kg–1 h–1) was studied in Eurasian perch held in recirculation systems. OC for both fed and feed-deprived (3 days) fish was higher at 23 °C (278.5 and 150.1 mg O2 kg–1 h–1) than at 20 °C (249.3 and 135.0 mg O2 kg–1 h–1; P < 0.01). AEs for both fed and feed-deprived fish were also significantly higher at 23 °C than at 20 °C (P < 0.001). Water temperature and fish size had a significant impact on the oxygen:feed ratio (OFR, kg O2 kg–1 feed fed day–1) and ammonia:feed ratio (AFR, kg TAN kg–1 feed fed day–1; P < 0.001). Their average values at temperatures of 20 and 23 °C were 0.17 and 0.19 kg O2 kg–1 feed fed day–1 and 0.009 and 0.011 kg TAN kg–1 feed fed day–1, respectively.  相似文献   

3.
Oxygen consumption (OC) and ammonia excretion rates (AE) of perch were measured under commercial‐like conditions (temperature 23.3 °C) in both fed (F) and feed‐deprived groups (D). Measurements were taken in triplicate in six sized batches of perch ranging from 44.8 to 336.2 g. The mean daily OC was 288.3–180.6 mg O2 kg?1 h?1 for group F fish ranging in size from 44.8 to 279.4 g body weight. The mean daily AE expressed as total ammonia nitrogen (TAN) was 13.8–5.2 mg TAN kg?1 h?1 in the same groups. Daily peaks of OC in group F perch were observed 6 h after the onset of feeding for each size group with relatively stable values up to the end of feeding. Peaks of daily AE in group F perch were observed 10 h after the onset of feeding in each size group, with a rapid decrease up to 16 h after onset. In group D, OC was 181.1–110.5 mg O2 kg?1 h?1 in the weight range 57.9–336.2 g. The daily mean AE was 1.7–0.5 TAN kg?1 h?1 in this group. No dramatic peaks of OC and AE were observed in group D perch.  相似文献   

4.
The effects of feeding frequency (1, 2, 3, or 15 times daily) on oxygen consumption (OC, mg O2 kg−1 h−1) and ammonia excretion, (AE, mg TAN kg−1 h−1) of walleye (Stizostedion vitreum) are described. Walleye were reared at a practical culture density of 35·4 kg m−3 in a single-pass system at 23·2°C. Diurnal variation in metabolic rates were related to feeding, not to photoperiod. Minimum OC rates occurred 30 min before the first feeding of the day, which was the longest average time since the last feeding. Metabolic rates increased immediately after feeding. The maximum rates for OC were 36–49% higher than the minimum rates, and 14–22% higher than the 24-h mean rate. Maximum rates for AE were 137–409% higher than the minimum rates, and 39–87% higher than the mean rates. There was a highly significant difference in the mean metabolic rates related to feeding frequency. The mean OC rate for 1 feeding day−1 (222·0 mg O2 kg−1 h−1) was greater than the mean rates for 2, 3 and 15 feedings day−1. The OC rate for 1 feeding day−1 was 50·6% greater than the rate for 15 feedings day−1 (147·4 mg O2 kg−1 h−1), the lowest mean rate. Mean and maximum oxygen/feed ratio (OFR, kg O2 kg−1 feed fed day−1), varied inversely with feeding frequency. The mean ammonia/feed ratio (AFR) was similar for all but the 3 feedings day−1 treatment, but the maximum AFRs for 2 and 15 feedings day−1 were lower than the AFRs for 1 and 3 feedings day−1. AE was directly proportional to OC; the regression equations were highly significant, but specific for feeding frequency.  相似文献   

5.
Oxygen consumption and ammonia production in elvers of varying growth rates were studied. The allometric equation describing the relationship between oxygen consumption and weight is y =00.638 x0,525, where y is the oxygen consumption (mg/h) and x is the mass (g). The weight specific allometric equation for the relationship between ammonia excretion and weight is yx = 0.0129 x0,465. Slow growing elvers were found to have higher respiratory rates (0.737 mg O2 h?1 g?1) than would be expected for their size.  相似文献   

6.
Effects of temperature on food consumption, growth and oxygen consumption were estimated for the freshwater prawn Macrobrachium rosenbergii postlarvae at 23 °C, 28 °C and 33 °C in the laboratory. The results showed that the animal's initial body weight had a close linear relationship with food consumption and growth. Food consumption increased directly with temperature. Consumption rates (C; mg day?1 ind?1 ) of the 28 °C and 33 °C groups were much higher than that of the 23 °C group (P < 0.001), and the 33 °C group's consumption rate was higher than that of the 28 °C group (P < 0.05). The relationship of food consumption with temperature and initial body weight (W; mg) could be described as: C = 0.0679W + 0.185t? 3.17. Growth increased significantly with increased temperature. The relationship among specific growth rate, temperature and initial body weight was as follows: SGR = ?0.110W + 0.213t + 0.176. However, temperature showed no effect on growth efficiency. Oxygen consumption increased significantly with temperature (P < 0.01). The weight‐specific oxygen consumption rates (mg O2 g?1 h?1) at 23 °C, 28 °C and 33 °C were 0.83, 1.16 and 1.49 mg O2 g?1 h?1 for 61.92 mg M. rosenbergii.  相似文献   

7.
Empirical data on ammonia excretion rates were compiled from several published and unpublished growth studies on post-smolt Atlantic salmon, Salmo salar L. Fish in all studies were fed to satiation with commercially produced high-energy diets (ME = 18–19 MJ kg-1) with a protein content of 40–45%. About 35 ± 3% (mean SE) of the nitrogen supplied to fish was excreted as total ammonia (TAN = NH3-N + NH4+-N). The results of a linear regression analysis of N intake to N excretion demonstrated, however, that TAN excretion rates could be divided into two components: TANexcretion [g N kg fish-1 day-1] = 0.036 + 0.26 Nintake [g N kg fish-1 day-1]. The intercept of the regression equation indicates that the endogenous TAN excretion rates in post-smolts could be estimated as 36 mg TAN kg fish-1 day-1, and about 26% of the nitrogen supplied to the fish was excreted postprandially. This postprandial TAN excretion was lower than that from other salmonid species fed low-energy diets. The daily maximum TAN excretion rate was about 43% higher than daily mean values, which agree with several studies. The ammonia quotient (A.Q.) measured was independent of the nitrogen supplied, and was calculated as 0.112. The outputs from the present model were compared to those from other ammonia excretion models.  相似文献   

8.
A physiological study was performed to explore the effects in Sphoeroides annulatus (Jenyns 1842) juveniles of exposure to different salinities 10, 17, 23, 29, 35 and 41‰ on oxygen consumption rate (OCR), ammonium excretion rate (AER), the oxygen‐nitrogen atomic ratio (O:N), osmoregulation and Na+/K+‐ATPase expression. The OCR values ranged from 27.9 to 30.9 mg O2 h?1 kg?1, displaying a Type 1 response pattern Kinne (1977). AER ranged from 0.60 to 0.69 mg h?1 kg?1, and O:N values were from 53.12 to 59.26, indicating that the puffers use proteins and lipids as an energy‐substrate. Osmoregulation in S. annulatus was hyposmotic in salinities of 23, 29, 35 and 41‰ and hyperosmotic in a salinity of 10‰. The isosmotic point of the bullseye puffer was 356 mmol kg?1 (10.5‰). The enzyme expression analysis indicates that the fish acclimated to 41‰ had the highest Na+/K+‐ATPase expression level, whereas, the lowest expression level was found close to the isosmotic point. Na+/K+‐ATPase expression in the gills was found to have a U‐shaped relationship with environmental salinity. We conclude that the bullseye puffer is strongly euryhaline and can be cultivated in a wide range of environments that has important economic implications.  相似文献   

9.
This study examined ammonia, urea, creatinine, protein, nitrite, nitrate, and phosphorus (P) excretion at different water hardness, humic acid, or pH levels in silver catfish (Rhamdia quelen) juveniles. The fish were exposed to different levels of water hardness (4, 24, 50, or 100 mg L?1 CaCO3), humic acid (0, 2.5, or 5.0 mg L?1), or pH (5.0, 6.0, 7.0, 8.0, or 9.0) for 10 days. The overall measured nitrogen excretions were 88.1 % (244–423 μmol kg?1 h?1) for ammonia, 10.9 % (30–52 μmol kg?1 h?1) for creatinine, 0.02 % (0.05–0.08 μmol kg?1 h?1) for protein, 0.001 % (0.002–0.004 μmol kg?1 h?1) for urea, 0.5 % (0.64–3.6 μmol kg?1 h?1) for nitrite, and 0.5 % (0.0–6.9 μmol kg?1 h?1) for nitrate, and these proportions were not affected by water hardness or humic acid levels. The overall P excretion in R. quelen was 0.14–2.97 μmol kg?1 h?1. Ammonia excretion in R. quelen usually was significantly higher in the first 12 h after feeding, and no clear effect of water hardness, humic acid levels, and pH on this daily pattern of ammonia excretion could be observed. Water hardness only affected the ammonia and P excretion of R. quelen juveniles in the initial and fifth days after transfer, respectively. The exposure of this species to humic acid increased ammonia excretion after 10 days of exposure but did not affect P excretion. An increase in pH decreased ammonia and increased creatinine excretion but did not change P excretion in R. quelen. Therefore, when there is any change on humic acid levels or pH in the culture of this species, nitrogenous compounds must be monitored because their excretion rates are variable. On the other hand, P excretion rates determined in the present study are applicable to a wide range of fish culture conditions.  相似文献   

10.
Oxygen demand by all animals is driven primarily by their needs for sustaining metabolism. Typically, larger animals require more oxygen and cellular fuel to carry out respiration than smaller animals. This relationship in most cases is not linear and is usually described by a coefficient and exponent (e.g. axb): the exponent b showing the relationship between live‐weight and energy/oxygen demand and is often termed the metabolic body weight (MBW) exponent, while the coefficient (a) tends to be temperature specific and describes the relationship between MBW and maintenance metabolic energy and oxygen demand at that specific temperature. Across all temperatures (range 26.0–32.0°C), the relationship between barramundi (Lates calcarifer) live‐weight (x; g) and relative oxygen consumption as standard metabolic rate (y; mg O2 kg?1 h?1) at 29.4±1.5°C (mean±SD) was described by the exponential curve: y=710.19 x?0.3268, R2=0.6875 (n=222 assessments). Examination of the same data but on a gross oxygen consumption (mg O2 h?1) basis showed a relationship between live‐weight (x; g) and gross oxygen consumption (y; mg O2 h?1) that was described by the exponential curve: y=0.710 x0.6732, R2=0.9033. Evaluation of the combined relationship between fish live‐weight (y; g) and water temperature (x; °C) on gross oxygen consumption rate (z; mg O2 h?1) was described by the equation: z=(?20.7818+1.4017x?0.0227x2) ×y0.673.  相似文献   

11.
Galaxias maculatus is an osmeriform native fish of the Southern Hemisphere, in which the crystalline larvae is considered as a luxury delicacy, for this reason, it has been commercially exploited in Chile, Argentina and New Zealand. However, the fisheries have been rapidly decreasing due to the overexploitation and the predation of introduced species. Because of these events, there is a need to determine a carrying capacity for an intensive fish culture. In order to optimize stocking densities for fish culture, this paper proposes objectives to determine oxygen consumption (OC) rates, dissolved oxygen concentrations that produce signs of hypoxia and the average time elapsed between food intake and peak OC in G. maculatus. In the oxygen experiments under routine metabolism conditions, we found that G. maculatus adults and whitebait showed signs of asphyxia at dissolved oxygen concentrations between 1.3 and 2.2 mg L?1 and that adults tolerated dissolved oxygen levels as low as 1.3 mg L?1. The results showed that G. maculatus individuals with an average weight of 0.04 g consumed 0.048 mg O2 h?1, whereas individuals with an average weight of 1.4 g consumed 0.345 mg O2 h?1. Galaxias maculatus increased the OC rate by 31%, from 0.39 to 0.51 mg O2 h?1 g?1, occurring 14 min after food intake. The carrying capacities for industrial cultures of G. maculatus, were estimated using an allometric equation (OC=0.2363 ×W 0.612 ), a water flow rate of 1 m3 h?1 and an input oxygen concentration of 10 mg L?1 at 12 °C. The density culture of whitebait (4 g) can be allowed to reach 8–11 kg m?3; therefore, these stocking densities reduce the risk of hypoxia and mortality, ensuring the appropriate growth and feed conversion rates.  相似文献   

12.
Standard oxygen consumption rate (MO2) was determined for 19 cownose rays (Rhinoptera bonasus) using flow-through respirometry. Rays ranged in size from 0.4 to 8.25 kg (350–790 mm DW). Respirometry experiments were conducted on seasonally acclimatized rays at temperatures from 19.0 to 28.8 °C. Estimates of mass-dependent MO2 ranged from 55.88 mg O2 kg−1 h−1 for an 8.25 kg ray to 332.75 mg O2 kg−1 h−1 for a 2.2 kg animal at 22–25°C. Multiple regression analysis examining the effect of temperature, salinity, and mass on standard mass-independent MO2 found temperature (P < 0.01), and mass (P < 0.0001) to have a significant effect on oxygen consumption, whereas salinity did not (P > 0.05). Q 10 was calculated as 2.33 (19–28 °C), falling between the estimates determined for two other batoid species, the bull ray (Myliobatos aquila; Q 10 = 1.87) and the bat ray (Myliobatis californica; Q 10 = 3.00). The difference in the Q 10 estimates may be attributed to the use of seasonally acclimatized as opposed to laboratory-acclimated animals.  相似文献   

13.
Feed requirements were estimated from specific growth rates in standardized soft tissue dry weight (SGRDW) and atomic O:N ratios for mussels fed seven rations of microalgae (5–735 μg C h?1 ind?1) at 7 and 14°C respectively. The mean oxygen consumption and ammonia‐N excretion rates were significantly higher at 14°C (0.29 μg O2 and 27.3 μg N ind?1 h1) compared with those at 7°C (0.16 μg O2 and 11.4 μg N ind?1 h?1) (P < 0.05), resulting in O:N ratios between 3 and 45 at 7°C and 7 and 28 at 14°C. Low O:N ratios indicate protein catabolism and an unfavourable condition, whereas high ratios indicate that carbohydrate is the primary energy source. The measured SGRDW suggests minimum feed requirements of ~240 and ~570 μg C ind?1 h?1 for weight maintenance at 7 and 14°C, with corresponding O:N ratios of 24 and 16, respectively, indicating a more stressed condition at 14°C. A 0.5% SGRDW day?1 was obtained by ~565 (O:N = 29) and ~680 (O:N = 23) μg C ind?1 h?1 at 7 and 14°C respectively. A positive and significantly higher SGRDW, with the lowest feed ration at 7°C compared with a negative SGRDW at 14°C (P < 0.05), indicated that storage time can also possibly be prolonged at low temperatures if the mussels are not fed.  相似文献   

14.
This study determined the digestibility of nitrogen and phosphorus, and the excretion rate of different‐sized groups of milkfish fed a commercial diet, a SEAFDEC formulated diet or lab‐lab (natural food‐based diet). Fish (31.2–263.0 g) were stocked in 12 units of 300‐L fibreglass tanks filled with aerated seawater. The postprandial total ammonia‐nitrogen (TAN) and phosphate (PO4‐P) excretion of fish were estimated from changes in TAN and PO4‐P concentrations in water for 24 h. Digestibility was determined from the nitrogen, phosphorus and Cr2O3 content of the diets, and pooled faeces after the fish had been fed diets marked with chromic oxide. TAN excretion rate (mg TAN kg?1 fish day?1) was significantly lowest (P < 0.05) in medium to very big fish fed the lab‐lab diet (60.8–124.4) and highest in small and medium fish fed the SEAFDEC diet (333.3–331.6) and small fish fed the commercial diet (280.1). Regardless of size, fish fed lab‐lab excreted (mg PO4‐P kg?1 fish day?1) significantly lower PO4‐P (36.2) but did not differ with fish fed the commercial diet (64.8). Excretion rates decreased exponentially as fish weight increased but positively increased with feed ration. Excretion pattern of milkfish revealed two peaks: the first peak occurred 6 h after feeding and the second peak at 18 h for TAN and 21 h for PO4‐P, coinciding with the start of the daylight hours. TAN and PO4‐P excretion accounted for 20.5–34.6% of total N consumed and 18.7–42.6% of P consumed respectively. Approximately 27.9–42.5% of N consumed and 47.2–58.5% of P consumed were lost as faeces. Total nutrient losses were lower using the lab‐lab diet (0.31 g N and 0.14 g P kg?1 fish) compared with the formulated diets (0.47–0.48 g N and 0.17–0.19 g P kg?1 fish); the losses decreased per kg of fish as fish size increased. Results suggest that the diet and size of fish influence wastage of N and P to the environment with greater losses in small fish and when artificial diets are used. Such measurements will provide valuable information for the preparation of N and P budgets for milkfish in grow‐out systems.  相似文献   

15.
The metabolic responses of the juvenile Miichthys miiuy in terms of oxygen consumption and ammonia excretion to changes in temperature (6–25°C) and salinity (16–31 ppt) were investigated. At a constant salinity of 26 ppt, the oxygen consumption rate (OCR) of the fish increased with an increase in temperature and ranged between 133.38 and 594.96 μg O2 h−1 g−1 DW. The effect of temperature on OCR was significant (P < 0.01). Q10 coefficients were 6.80, 1.41, 1.29 and 2.36 at temperatures of 6–10, 10–15, 15–20 and 20–25°C, respectively, suggesting that the juveniles of M. miiuy will be well adapted to the field temperature in the summer, but not in the winter. The ammonium excretion rates (AER) of the fish were also affected significantly by temperature (P < 0.01). The O:N ratio at temperatures of 6, 10, 15 and 20°C ranged from 13.12 to 20.91, which was indicative of a protein-dominated metabolism, whereas the O:N at a temperature of 25°C was 51.37, suggesting that protein-lipids were used as an energy substrate. At a constant temperature of 15°C, the OCRs of the fish ranged between 334.14 (at 31 ppt) and 409.68 (at 16 ppt) μg O2 h−1 g−1 DW. No significant differences were observed in the OCR and AER of the juveniles between salinities of 26 and 31 ppt (P > 0.05). The OCR and AER at 16 ppt were, however, significantly higher than those at 26 and 31 ppt (P < 0.05), indicating salinity lower than 16 ppt is presumably stressful to M. miiuy juveniles.  相似文献   

16.
Rainbow trout Oncorhynchus mykiss (Walbaum) are usually cultured at high densities to maximize production, but little is known about the physiological and behavioural consequences of high‐density fish culture. The purpose of this study was to develop quantitative correlates of activity for fish held under conditions of increasing density. Fifteen hatchery‐reared rainbow trout (mean fork length = 432.3 ± 9.2 mm) were implanted with activity (electromyogram; EMGi) transmitters and randomly assigned to each of three replicate tanks. Original tank densities (15 kg m?3) were then increased to 30 and finally to 60 kg m?3 at weekly intervals by adding additional fish. Remote telemetry signals indicated that activity increased with increasing stocking density. Fish were relatively inactive during the middle of the day, with diel activity patterns not differing among treatments. Fish were more active during periods of darkness, with activity increasing with increasing stocking density. Relationships between swimming speed, EMGi activity and oxygen consumption were developed using a respirometer and used to estimate oxygen consumption of the fish in the density treatments. Average oxygen consumption estimates increased with increasing density treatments as follows: low density = 75.6 mg kg?1 h?1; medium density = 90.0 mg kg?1 h?1; and high density = 102.6 mg kg?1 h?1. Telemetry permits quantification of the effects of increasing density on fish activity. Physiological telemetry devices may provide a useful tool for remotely monitoring animal welfare correlates under controlled conditions for fish exposed to different husbandry conditions and may prove a valuable tool for the aquaculture industry.  相似文献   

17.
Three components of the energy budget, consumption (C), respiration (R) and growth (G). were measured in larval and early juvenile sole (77 μg to 7.2 mg dry weight) kept under controlled temperature (15oC), light (photoperiod 18 h at 800 lux) and food (Artemici salina. 5 ind ml-1) conditions. The increase in body weight with age is described by the growth function Wt= 51.9 e0143t, where t is time in days from hatching. Wt is weight (ug dry wt) at time t, 51.9 is the estimate of larval weight at hatching (Wo) and 0.143 is the instantaneous growth coefficient. Daily food consumption (C, in ug dry wtday”1 ind-1) increased with body weight (W, in ug dry wt) according to the allometric function, C = 1.852W0.852. Low routine oxygen consumption (R, in nl 02 h-1 ind-1) was best described in relation to body weight by the allometric equation R = 1.47W0.975 By using the above growth and allometric functions and by converting G, C and R into their energetic equivalents (joules day-1 ind-1), the changes in assimilation efficiency (K1) and gross growth efficiency (K1) during ontogeny could be modelled.  相似文献   

18.

Gilthead sea bream (Sparus aurata) was raised in six individual recirculating aquaculture systems (RAS) whose biofilters’ performance was analyzed. Fish were fed with three different diets (a control diet, a fishmeal-based diet (FM), and a plant meal-based diet (VM)) and with three different feeding strategies (manual feeding to apparent satiation, automatic feeding with restricted ration, and auto-demand feeding). For every combination of diet and feeding strategy, the mean oxygen consumption, ammonia excretion, and ammonia removal rate were determined. Fish fed with the VM diet consumed the most oxygen (20.06?±?1.80 gO2 consumed kg?1 day?1). There were significant differences in ammonia excretion depending on the protein content and protein efficiency of the diet, as well as depending on feeding strategy, which in turn affected ammonia removal rates. Fish fed by auto-demand feeders led to the highest mean ammonia removal rate (0.10 gN-TAN removed m?2 biofiltration area day?1), while not leading to peaks of high ammonia concentration in water, which preserve fish welfare and growth.

  相似文献   

19.
The effects of acclimation temperature (15, 20, 25 °C) on routine oxygen consumption and post-exercise maximal oxygen consumption rates (MO2) were measured in juvenile shortnose sturgeon (Acipenser brevirostrum LeSueur, 1818). The routine MO2 of shortnose sturgeon increased significantly from 126.75 mg O2 h?1 kg?1 at 15 °C to 253.13 mg O2 h?1 kg?1 at 25 °C. The temperature coefficient (Q 10) values of the routine metabolic rates ranged between 1.61 and 2.46, with the largest Q 10 values occurring between 15 and 20 °C. The average post-exercise MO2 of all temperature groups increased to a peak value immediately following the exercise, with levels increasing about 2-fold among all temperature groups. The Q 10 values for post-exercise MO2 ranged from 1.21 to 2.12, with the highest difference occurring between 15 and 20 °C. Post-exercise MO2 values of shortnose sturgeon in different temperature groups all decreased exponentially and statistically returned to pre-exercise (resting) levels by 30 min at 15 and 20 °C and by 60 min at 25 °C. The aerobic metabolic scope (post-exercise maximal MO2-routine MO2) increased to a maximum value ~156 mg O2 h?1 kg?1 at intermediate experimental temperatures (i.e., 20 °C) and then decreased as the temperature increased to 25 °C. However, this trend was not significant. The results suggest that juvenile shortnose sturgeon show flexibility in their ability to adapt to various temperature environments and in their responses to exhaustive exercise.  相似文献   

20.
The present study aimed to determine the effect of feeding time on growth and nitrogen excretion in juvenile sole. An 84‐day growth trial was conducted, in which food was supplied to three triplicate groups of juvenile Senegalese sole (3 g wet weight) at different schedules – diurnal, nocturnal and mixed. At the end of the growth trial, ammonia and urea excretion was assessed during a 24 h cycle. Improved growth (1.3% vs. 0.9% day?1, specific growth rate), higher nitrogen retention (0.35 vs. 0.27 g N kg?1 day?1), lower ammonia excretion (209 vs. 272 mg N‐NH4 kg?1 day?1) and lower total nitrogen excretion (278 vs. 352 mg N kg?1 day?1) were found in daytime‐fed fish compared with night‐fed fish. Fish in the mixed feeding regime showed intermediate values of ammonia and total nitrogen excretion, but did not differ from day‐fed fish regarding the other parameters. Results indicate that juvenile sole at a period of their life cycle appear to use more efficiently dietary protein for somatic growth under a diurnal than under a nocturnal feeding regime. This suggest that at least during a time‐window in the juvenile rearing a diurnal feeding regime might be more effective in the production of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号