首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Euryhaline fish, such as the Bullseye puffer Sphoeroides annulatus (Jenyns 1842), experience sudden salinity changes in their natural environment, which is more common than the exception, so they must adapt to survive and cope with extreme salt conditions. Therefore, Bullseye puffer juveniles were exposed to short‐term stress (39 hr) by fluctuating salinity conditions (41, 35, 29, 23, 17, 11, 5, 11, 17, 23, 29, 35, 41 psu) with a 3‐hr interval between each point at 26 ± 1ºC in a respirometer chamber and acclimation reservoirs. Responses to oxygen consumption rate (OCR: 23–35 mg O2 h–1 kg–1), ammonium excretion rate (AER: 1–1.85 mg NH4+ h?1 kg?1), oxygen‐nitrogen atomic ratio (O:N 17–30), osmoregulatory pattern (blood osmotic pressure from 342.4 to 332.8 mmol/kg) and changes in expression levels of Na+/K+‐ATPase in the gills (higher values at higher salinities) were measured. Although some signs of stress were detected below the iso‐osmotic point (11.4 psu), the puffer fish is a strong euryhaline fish that survives under these conditions. Nonetheless, it could recover when salinity returned to the initial acclimation point because Sphoeroides annulatus is able to live in a wide range of environments with wide natural salinity fluctuations; thus, a common practice in aquaculture has been to expose fish to low salinity for several reasons discussed in this study. This capacity reveals its high plasticity to saline adaptation from 41 to 5 psu an up from 5 to 41 psu, all in less than 2 days.  相似文献   

2.
A growth trial lasting for 12 weeks was conducted in 21 net cages to determine the dietary potassium (K) requirement of subadult grass carp (Ctenopharyngodon idellus) (Average weight: 331.3 g). Seven isonitrogenous and isoenergetic semi‐purified diets were compounded with different dietary K level. The specific growth rate (SGR) of fish was significantly (< 0.05) improved by dietary K supplementation, SGR and the gill Na+‐K+ ATPase activity increased first and then decreased (< 0.05) as dietary K level increased. The highest SGR and gill Na+‐K+ ATPase activity values were both observed at 6.38 g kg?1 group. Dietary K level showed significant (< 0.05) effect on serum superoxide dismutase (SOD) and glucose (GLU), the maximum values of SOD and GLU were in 8.42 and 6.38 g kg?1 group, respectively. The body lipid content of the 6.38 g kg?1 group was significantly (< 0.05) lower than that of the control. However, the ash content in the 8.42 g kg?1 group was significantly higher than those in the 1.21, 2.21, 4.41 and 6.38 g kg?1 group. When dietary protein was 320 g kg?1 and the waterborne potassium ranged from 6.86 to 9.10 mg L?1, the dietary K requirement for subadult grass carp judged from SGR and gill Na+‐K+ ATPase activity is 5.38 and 7.41 g kg?1 diet, respectively.  相似文献   

3.
A growth trial was conducted to estimate the optimum concentration of dietary potassium (K) for grass carp (Ctenopharyngodon idella). Triplicate groups of grass carp (3.96 ± 0.06 g) were fed diets containing graded levels (0.87, 2.90, 5.37, 7.54, 9.87 and 12.4 g kg?1) of K for 8 weeks. Final body weight, weight gain and feed efficiency and gill Na+‐K+ ATPase activity were highest in fish fed with 9.87 g kg?1 dietary K and lowest in fish fed the basal diet (P < 0.05). The K contents in whole body and muscle were linearly increased up to the 9.87 g kg?1 dietary K and then levelled off beyond this level, whereas in scales and vertebrae up to the 7.54 g kg?1 dietary K (P < 0.05). However, dietary K levels had no significant effect on ash, Ca, P and Mg contents in whole body, scales, vertebrae or muscle. Analysis using polynomial regression of weight gain and gill Na+‐K+ ATPase activity and using the broken‐line regression of whole body K concentrations indicated that the adequate dietary K concentration for grass carp is about 9.45–9.99 g kg?1 diet.  相似文献   

4.
The Pacific white shrimp (Litopenaeus vannamei), as an economically important species, has been reared in low‐salinity water during the last decade. To investigate how juvenile L. vannamei shrimp fed with fructose‐enriched Artemia respond to acute low‐salinity stress, the shrimp were randomly divided into four treatment groups, three groups were fed with Artemia enriched with either 100, 200 and 300 mg L?1 of fructose and a control group fed with Artemia with no enrichment for 10 days. The results showed that the 300 mg L?1 fructose group demonstrated the maximum survival rate and glycogen content. Additionally, the 300 mg L?1 fructose group showed significantly higher Na+/K+‐ATPase activity, total antioxidant capacity, and expression levels of Na+/K+‐ATPase α‐subunit, V‐H ATPase α‐subunit, hexokinase, phosphofructokinase, antioxidants (SOD, CAT, GPX) and Hsp70 mRNA when compared with the control group. Furthermore, after exposure to low salinity, the mRNA levels of phosphofructokinase, V‐H ATPase α‐subunit, GPX, p38, JNK and Rac1 stayed constant in shrimp fed with fructose‐enriched Artemia but changed significantly in the control group. Thus, a diet of fructose‐enriched Artemia can improve the osmoregulation and survival of juvenile L. vannamei shrimp exposed to low salinities.  相似文献   

5.
To investigate the effects of niacin on growth, digestion and absorption capacity, and the potential mechanism for digestive and brush border enzyme activities, grass carp (Ctenopharyngodon idella) (256 ± 0.41 g) were fed diets containing 3.95 (basal diet group), 14.92, 24.98, 35.03, 44.97 and 55.01 mg niacin kg?1 diet for 8 weeks. Results indicated that percentage weight gain (PWG), feed intake and feed efficiency were the lowest in basal group (< 0.05). Similarly, niacin deficiency decreased hepatopancreas trypsin, chymotrypsin, lipase and amylase activities (< 0.05), intestinal Na+, K+‐ATPase, alkaline phosphatase, γ‐glutamyl transpeptidase and creatine kinase (CK) activities, the cholecystokinin (CCK) content in proximal intestine (PI) and growth hormone content in serum (< 0.05). Furthermore, niacin deficiency downregulated gene expression of hepatopancreas trypsinogen 1, trypsinogen 2, chymotrypsinogen and amylase, intestinal Na+, K+‐ATPase alpha subunit isoform 1, Na+, K+‐ATPase alpha subunit isoform 8 and CK, and target of rapamycin (TOR) and S6 kinase 1 (S6K1) of hepatopancreas and intestine (< 0.05), whereas upregulated eIF4E‐binding protein (4EBP) gene expression (< 0.05). The niacin requirement for young grass carp (256–689 g) based on PWG, hepatopancreas trypsin activity and Na+, K+‐ATPase in PI was 34.01, 35.10 and 42.08 mg kg?1 diet, respectively.  相似文献   

6.
To evaluate the effect of salinity on the hatching rate, hatching time, survival percentage, osmoregulation pattern and the incidence of abnormalities in newly hatched larvae, embryos of Sphoeroides annulatus (Jenyns 1842) were exposed to 5, 12, 19, 26, 33, 35 and 40 psu. The hatching percentage (HP), survival percentage (PS), normal larvae (PN), deformed larvae (PD) and hatching time (HT) were significantly affected by salinity (< 0.05). The embryos exposure to 5 psu caused that HP, PS, and PN had lower values (2.6 ± 0.32, 7.78 ± 0.88 and 70.37 ± 7.75% respectively), PD and HT had the highest values 26.67 ± 7.54% and 55.53 ± 0.59 h respectively. However, the survival of newly hatched larvae was not possible in 5 ups, though it was in 40 ups. Osmotic pressure (OP) remained constant in each salinity, whereas isosmotic points changed from 435.5 mOsm kg?1 in 21 h post fertilization to 342.8 mOsm kg?1 at 47 h post fertilization, obtaining a pattern of hyper‐osmoregulation at lower salinities and hypo‐osmoregulation in higher salinities. This study is the first carried out on embryos of this species; therefore, the obtained information is essential to improve strategies and growing conditions in their initial development.  相似文献   

7.
Overwintering is an important part of the conservation of Scylla paramamosain, and salinity has an important effect on the conservation of S. paramamosain during overwintering. Three salinities (4‰, 12‰ and 25‰) were selected as the overwintering salinities to reveal the effects of different salinities on the relevant important ions in osmotic pressure regulation, plasma cortisol, digestive enzymes, immune enzymes and amino acids of S. paramamosain during indoor overwintering. Results indicated that after overwintering, Cl, Na+ and the osmotic pressure of serum have the highest salinity at 25‰, and the lowest salinity at 4‰. Na+/K+‐ATPase activity and cortisol were found to increase with decreasing salinity. The activity of digestive and immune enzymes was highest at 25‰, and was the lowest at 4‰. The amount of total amino acids (TAA), umami amino acids (UAA) and essential amino acids (EAA) in 25‰ were significantly higher than in 4‰ and 12‰. After overwintering, the essential amino acid index (EAAI) in the salinity range of 12–25‰ was 54.04–59.00, compared to 48.56–54.04 in the salinity range of 4–12‰. As a result, S. paramamosain at 25‰ had higher digestion and immunity than at 4‰ and 12‰, due to requiring more energy for osmotic pressure adjustment. In addition, S. paramamosain at 25‰ had the best meat quality. The results of this study are helpful for aquaculture production for indoor overwintering of S. paramamosain.  相似文献   

8.
Effects of salinity on the growth, survival, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and sodium‐potassium adenosine triphosphatase (Na+K+‐ATPase) activities of juvenile golden pompano Trachinotus ovatus were studied under a laboratory condition. Experimental fish were reared at the salinities of 10‰, 18‰, 26‰ and 34‰ for 30 days. Growth and survival of juvenile golden pompano were significantly affected by the rearing salinity. Fish reared at 34‰ achieved the highest specific growth rate, while the highest survival was obtained when fish were cultured at the salinity of 26‰. The highest GPX activity was obtained when fish were cultured at 26‰, and the lowest GPX activity was observed when fish reared at 34‰ salinity. The SOD activities of fish reared at 18‰ and 34‰ were significantly higher than those reared at 10‰ and 26‰. The lowest of Na+K+‐ATPase activity was obtained in fish reared at 34‰, while the highest Na+K+‐ATPase activity was obtained when fish reared at 18‰. Results from present study indicate that juvenile golden pompano can be reared above 18‰ without sacrificing fish survival, and the best growth can be achieved when fish is reared at the salinity of 34‰. The salinity of 10‰ may be too low for juvenile golden pompano as the growth, survival and SOD activity were reduced.  相似文献   

9.
The effects of NaCl supplementation (0.0%, 2.5%, 5.0%, 7.5% and 10.0% dry weight of a basal diet) on growth, gill histological alterations and osmoregulation of juvenile cobia reared in low‐salinity water (5 g L?1) were assessed. At the end of the experiment, gills were sampled for Na+, K+‐ATPase activity determination and histological evaluation. In all treatments, no mortality was observed. Results showed that dietary NaCl supplementation did not alter growth. At the highest supplementations (7.5% and 10.0%), juvenile cobia showed higher feed intake and feed conversion ratio. Na+, K+‐ATPase activity was higher in fish fed the diet without salt supplementation than in those fed with NaCl‐supplemented diets. The number of chloride cells significantly increased with increasing dietary salt level, being 2.5‐fold higher in fish fed with 10.0% NaCl supplementation (41 cells mm?2) than in those from the non‐supplemented fed group (16 cells mm?2). These findings indicate that dietary salt supplementation stimulated chloride cell proliferation paralleled with a reduction in the gill Na+, K+‐ATPase activity, suggesting a possible decrease in energy consumption associated with osmoregulation. However, the suggested energy sparing did not have a significant impact on juvenile cobia growth.  相似文献   

10.
Gibel carp (Carassius auratus gibelio) of mean initial weight 3.1 g were fed one of seven casein‐dextrin‐based diets containing graded levels of magnesium (Mg) (39, 120, 220, 380, 700, 1600 and 2900 mg kg?1) for 3 months with the waterborne Mg concentration of 10.6–12.7 mg L?1. Magnesium sulphate was used as the supplementation Mg source in the diets. The experiment was carried out in a flow‐through system. Growth, survival rate, Na+/K+‐ATPase, Mg2+‐ATPase and tissue mineral contents were measured to investigate the effect of dietary magnesium in gibel carp. At the end of the experiment, the hepatopancreas of fish were collected for enzyme determination. The hepatopancreas, vertebrae and whole body were collected for tissue magnesium content analysis. After 3 months, dietary magnesium supplementation did not improve the growth performance, including feed intake, weight gain and feed conversion efficiency of juvenile gibel carp. On the contrary, negative impacts on survival, reduced growth performance and dramatically decreased Na+/K+‐ATPase, Mg2+‐ATPase and superoxide dismutase activities were observed in gibel carp fed a high Mg diet of 2900 mg kg?1. Although serum and hepatopancreas Mg and Ca contents were not affected by dietary Mg supplementation, vertebrae and whole‐body Mg contents increased significantly with the increasing dietary Mg concentrations. Based on the relationship between whole‐body Mg retention and dietary Mg concentration, a suitable dietary Mg level of 745 mg kg?1 could be estimated for gibel carp. It could be concluded that dietary Mg supplementation did not improve the growth performance, but could increase vertebrae Mg contents of gibel carp. Considering the adverse effects, a dietary Mg concentration of above 2900 mg kg?1 is not recommended and it should be careful to supplement magnesium in practical diets for gibel carp as most feed ingredients contain high magnesium concentrations.  相似文献   

11.
Coho salmon yearlings, reared in France in a freshwater hatchery, were directly transferred to sea water at three different periods of the year: 14 January, 3 March and 14 April 1976. The last two experiments were realized at three different salinities: 25, 30 and 35‰.The results show important seasonal differences in the osmoregulatory responses. The direct transfer to 35‰ reveals some osmoregulatory problems which are not discernable at lower salinities. Yearlings transferred to a 35‰ sea water present a much higher and faster rise of plasma electrolytes and of branchial Na+K+ ATPase activity than fish transferred to a 25 or 30‰ sea water.It was found that a physiologically pre-adapted fish, characterized by a high level of branchial Na+K+ ATPase activity in fresh water (April) will present in sea water a slower and more regular increase in gill Na+K+ ATPase activity than fish with a low level of enzyme activity in fresh water (January–March). These smolts transferred to 25 and 30‰ sea water in April do not exhibit important variations, whereas a well-marked osmotic disequilibrium appears at 35‰. However, this osmotic stress is much more rapidly controlled than in the previous transfers.Our results suggest that the highest tolerance to sea water is reached only at time of smolting and that the time of transfer may have a direct influence on the intensity of the osmotic stress. These facts might be of considerable importance for the development of marine rearing of coho salmon in coastal areas where the salinities stay usually above 30‰ which constitutes an unusual environment for the species under consideration.  相似文献   

12.
A 60‐d growth trial was conducted with the black tiger prawn, Penaeus monodon (ca. 0.8 g juveniles) at CIFE Rohtak Centre to evaluate the effects of salinity and Na+/K+ ratio of inland saline water on shrimp growth, survival, and osmoregulation. Three different salinities (5, 10, and 15 ppt) and five different Na+/K+ ratios (25:1, 45:1, 65:1, 85:1, and 27.9:1), for a total of 15 treatments were prepared by ionic manipulation. The medium with Na+/K+ ratio 27.9 was reconstituted seawater and was used as the reference treatment. At the end of the 60‐d trial both salinity and Na+/K+ ratio significantly influenced the survival and growth of shrimp in inland saline water (P < 0.05). Final mean individual weight, weight gain (%) (WG [%]) increased with decreasing Na+/K+ ratios. Survival rates were significantly higher (P < 0.05) for Na+/K+ ratio 45 and 27.9 at salinities 10 and 15 ppt, respectively. Minimum growth and survival (0–24%) were observed in mediums with Na+/K+ ratio 85 at all salinities. Serum osmolality and osmoregulatory capacity were similar across all treatments at identical salinities except for sodium to potassium ratio (Na+/K+) 85. The serum sodium and potassium levels did not show any significant difference (P > 0.05) for mediums with Na+/K+ ratio 25, 45, 65, and 27.9 at all salinities. Significantly different (P < 0.05) serum sodium levels were observed in mediums with Na+/K+ ratio 85 at all salinities at the end of the trial. The serum potassium levels were significantly low in treatments with Na+/K+ ratio 85. There was no significant difference in the serum magnesium levels between treatments and the serum calcium levels were significantly lower for shrimp reared in the reference mediums. Results of this study confirm that P. monodon can be successfully cultured in low salinity waters with Na+/K+ ratio ranging between 25 and 45:1.  相似文献   

13.
This study investigated the effects of phenylalanine on growth, digestive and absorptive ability and antioxidant status of young grass carp (Ctenopharyngodon idella). Young grass carp were fed diets containing 3.4 (basal diet), 6.1, 9.1, 11.5, 14.0 and 16.8 g phenylalanine kg?1 diet with a fixed of 10.7 g tyrosine kg?1 diet for 8 weeks. Percent weight gain (PWG), feed efficiency and feed intake of fish were the lowest in fish fed the basal diet (< 0.05). Trypsin, lipase and amylase activities in the hepatopancreas, and antioxidants including glutathione contents and glutathione reducase activities in the hepatopancreas and intestine were all the highest in fish fed 11.5 g phenylalanine kg?1 diet (< 0.05). Trypsin, chymotrypsin and amylase activities in whole intestine, and creatine kinase, Na+, K+‐ATPase and alkaline phosphatase activities in the proximal intestine, and superoxide dismutase activities in the hepatopancreas and intestine were all the highest when phenylalanine at level of 9.1 g kg?1 diet (< 0.05). In conclusion, phenylalanine improved growth, digestive and absorptive ability, and antioxidant capacity of young grass carp. The phenylalanine requirement of young grass carp (256–629 g) based on PWG was 10.4 g kg?1 diet or 3.44 g 100 g?1 protein.  相似文献   

14.
D. Xie  D. Han  X. Zhu  Y. Yang  J. Jin  H. Liu  S. Xie 《Aquaculture Nutrition》2017,23(5):1104-1112
A nine‐week feeding experiment was conducted in flow‐through system with gibel carp (43.8 ± 0.2 g) to study the effects of dietary available phosphorus (P) on growth, phosphorous digestibility and intestinal enzyme activities. Seven semipurified diets were formulated to contain 0.8 (the basal), 2.4, 3.6, 6.1, 7.4, 10.1 and 15.8 g available phosphorus kg?1 diet. The results showed that specific growth rate and feed efficiency increased with increasing dietary available P from 0.8 to 7.4 g P kg?1. Fish body ash increased with increasing dietary available P, while moisture, protein content or energy content had no difference. Total phosphorus waste discharging (TPW) increased with increased dietary phosphorous. Plasma glucose was higher in the fish fed with 7.4 g kg?1 P. Plasma triglycerides was lower in fish fed diets containing 6.1–10.1 g kg?1 P. No significant effects were observed in plasma P and Ca (> .05). The activities of intestinal amylase, lipase and trypsin showed no difference, while AKP and Na+, K+‐ATPase activities decreased with increasing dietary available P. In conclusion, based on the regression between specific growth rate (SGR), P retention efficiency, feed efficiency (FE) and dietary available P, the available P requirements for on‐growing gibel carp were 10.69, 8.22 and 6.72 g kg?1, respectively.  相似文献   

15.
The effects of two different environmental salinities [brackish water (BW), 12‰; sea water (SW), 39‰] and initial stock densities [low (LD), 1.0 g L?1; high (HD), 2.0 g L?1] on growth, osmoregulation, stress and energy metabolism of the fry Pagrus pagrus were investigated over a period of 45 days. Pagrus pagrus (n=80, 5.51 ± 0.25 g mean initial body weight) were randomly divided in eight groups. Growth, weight gain and specific growth rate increased in BW‐acclimated fish compared with SW‐acclimated fish. No differences were observed between the two stock densities tested at either environmental salinity. Plasma osmolality was lowest in BW‐acclimated specimens, but the stock density had no effect on this parameter. Branchial Na+,K+‐ATPase activity was positively correlated with environmental salinity, but unaltered at the renal level. Plasmatic parameters were enhanced by salinity and stocking conditions. At the hepatic level, triglyceride values were enhanced in BW‐acclimated fish maintained at LD. Muscle metabolites (glycogen, glucose and lactate) increased in BW‐ compared with SW‐acclimated fish; stock density had no influence. Our data suggest that changes in metabolic parameters could be correlated with the higher growth rates observed in P. pagrus acclimated to BW, while no significant effects due to the stocking density used were observed.  相似文献   

16.
This study investigated the effects of myo‐inositol (MI) on the growth and antioxidant capacity of carp enterocytes. The enterocytes were incubated in media containing 0, 15, 30, 45, 60 and 75 mg MI L?1 for 96 h. The results indicated that MI could increase cell viability. In addition, the activities of cellular alkaline phosphatase (AKP), gamma‐glutamyl transpeptidase (γ‐GT), Na+, K+‐adenosine trisphosphatase (Na+, K+‐ATPase) and creatinkinase (CK) increased with MI supplementation at levels ranging from 15 to 60 mg MI L?1 medium, indicating an improvement in cell differentiation and function. Further, enzymatic antioxidant ability, as measured by total superoxide dismutase (T‐SOD), Cu/Zn‐SOD, Mn‐SOD, catalase (CAT), glutathione peroxidase (GPx) and glutathione‐S‐transferase (GST) activities, improved with MI supplementation. Finally, cell damage, as indicated by lactic acid dehydrogenase (LDH) activity, malondialdehyde (MDA) content of the medium and cellular protein carbonyls (PC), was all depressed by MI. Correlation analyses showed that cell viability (MTT) was positively related to the antioxidant enzyme activities, but negatively related to cell damage (LDH, MDA and PC). In summary, the data showed that MI could improve the growth of fish enterocytes. This result may be partly due to the enhanced antioxidant status and depressed oxidative damage.  相似文献   

17.
A 56‐d feeding trial was conducted to investigate the effect of dietary mannan‐oligosaccharides (MOS) and fructo‐oligosaccharide (FOS) on growth indices, body composition, intestinal bacterial community and digestive enzymes activity of regal peacock. A total of 240 fish were randomly distributed to 15 experimental units (40‐L aquariums) of 16 fish each. These replicates were randomly assigned to one of five treatments in a 2 × 2 + 1 factorial arrangement. The treatments were control diet (no MOS and FOS), diet A (2 gkg?1 MOS + 1.5 g kg?1 FOS), diet B (2 g kg?1 MOS + 3 g kg?1 FOS), diet C (4 g kg?1 MOS + 1.5 g kg?1 FOS) or diet D (4 g kg?1 MOS + 3 g kg?1 FOS). The results showed that feeding diet C increased specific growth rate and protein efficiency ratio and decreased feed conversion ratio compared with control diet. Higher intestinal trypsin activity and increased Lactobacillus counts were observed in fish fed diets B and C. All diets significantly elevated body protein deposition and intestinal amylase activity compared to the control diet. In conclusion, the diet supplemented with 4 g kg?1 MOS + 1.5 g kg?1 FOS was advantageous over other MOS + FOS‐supplemented diets, with respect to growth performance and health benefits of regal peacock.  相似文献   

18.
A total of 1400 juvenile Jian carp (Cyprinus carpio var. Jian) (8.93 ± 0.03 g) were fed diets containing graded levels of vitamin K at 0.027 (basal diet), 1.52, 3.02, 4.51, 6.02 and 7.52 mg kg?1 diet for 60 days to investigate the effects of vitamin K on growth, enzyme activities and antioxidant capacity in the hepatopancreas and intestine. Percentage weight gain (PWG), feed intake and feed efficiency of fish were improved by vitamin K. Activities of trypsin, chymotrypsin, amylase and lipase in the intestine and hepatopancreas and Na+, K+‐ATPase, creatine kinase, alkaline phosphatase and gamma‐glutamyl transpeptidase in the intestine were increased by vitamin K. Malondialdehyde and protein carbonyl contents in the hepatopancreas and intestine were decreased with vitamin K supplements. Certain level of vitamin K increased antihydroxyl radical, antisuperoxide anion, superoxide dismutase, catalase, glutathione‐S‐transferase, glutathione peroxidase and glutathione reductase activities and glutathione contents in the hepatopancreas and intestine. Intestinal Lactobacillus, Ecoli and Aeromonas were changed with vitamin K supplements. Together, these results indicate that vitamin K improved fish growth, digestive and absorptive ability, and anti‐oxidant capacity. The dietary vitamin K requirement of juvenile Jian carp (8.93–73.7 g) based on PWG was 3.13 mg kg?1 diet.  相似文献   

19.
A total of 1050 Jian carp, Cyprinus carpio var. Jian (23.39 ± 0.06 g) were randomly divided into seven groups of each three replicates, which were fed respectively with seven semi‐purified diets contained 1.25, 2.71, 4.22, 5.78, 7.23, 8.83 and 11.44 mg riboflavin kg?1 diet for 6 weeks. The results showed that riboflavin significantly improved percent weight gain, specific growth rate, feed efficiency and protein efficiency ratio at the level of 4.22 mg kg?1 diet. Gross protein retention efficiency and lipid production value improved with increasing dietary riboflavin levels from 1.25 to 5.78 mg kg?1. Activities of trypsin, lipase, α‐amylase, Na+,K+‐ATPase and alkaline phosphatase in the intestinal tract were significantly improved with increasing riboflavin levels. Weight and protein content of hepatopancreas, intestine protein and intestine length index were also significantly improved.  相似文献   

20.
In this study, we evaluated the growth, osmoregulation and energy metabolism of the oriental river prawn, Macrobrachium nipponense, reared during 6 weeks with different salinities (0, 8, 14 and 22 g/L). The results showed that the haemolymph osmolality of M. nipponense increased with an increase in ambient osmotic pressure; the isosmotic point was 490 mOs/kg H2O. The prawns showed a higher survival rate, weight gain rate and hepatopancreas index in salinity 14 g/L. Digestive enzymes were all affected by salinity, and the highest activities were observed in the salinity 14 g/L. The mRNA expression of Na+‐K+‐ATPase in gills and p53 in hepatopancreas were the highest in salinity 22 g/L. The expressions of heat shock protein 90 and glutathione S‐transferase genes in hepatopancreas were significantly higher in the salinity 8 g/L. Lipid metabolism‐related genes in hepatopancreas were significantly expressed in the salinity 14 g/L. The glucose‐6‐phosphatase gene in hepatopancreas was highly expressed in the salinity 8 and 22 g/L, and the expression of the ecdysone receptor gene in hepatopancreas was significantly higher in the salinity 14 g/L. The results showed that salinity 14 g/L could promote the growth of M. nipponense. However, higher salinity conditions may cause physiological damage, which provides a theoretical basis for brackish water culture of M. nipponense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号