首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The aim of this study was to determine whether orally ingested ovine serum IgG partly resists digestion in the growing rat. Fifteen Sprague‐Dawley male rats were allocated to one of three diets for a 3‐week study: a control diet (CON) and two test diets containing either freeze‐dried ovine serum immunoglobulin (FDOI) or inactivated ovine serum immunoglobulin (IOI). Samples of stomach chyme and intestinal digesta from the ad libitum‐fed rats were subjected to ELISA and Western blot analysis. Amounts of intact ovine IgG for the FDOI diet were found to be 13.9, 20.0, 34.1, 13.0 and 36.9 μg in the total wet digesta from the stomach chyme, duodenal, jejunal, ileal and colonic digesta respectively. Qualitative detection by Western blot revealed the presence of intact ovine serum IgG with a ~150 kDa MW. This was detected in all of the gut segments (stomach chyme, duodenal, jejunal, ileal and colonic digesta) for growing rats fed the FDOI diet. No ovine IgG was detected in the chyme or digesta from rats fed the CON or the IOI diets. Ovine serum IgG partly resisted digestion in the growing rat fed the FDOI diet and was found throughout the digestive tract. These results provide a basis to explain the reported biological effects of orally administered immunoglobulin.  相似文献   

2.
动物肠道存在复杂的微生物群落,适宜的微环境有利于多种肠道微生物的定植生长。肠道健康是保证动物机体健康的基础,也是当前国内外学者所关注的热点问题。益生菌是对肠道健康有益的微生物,在改善动物肠道健康领域具有极大的潜力。益生菌对病原微生物侵袭有一定的抑制作用,对部分病毒也具有一定的预防及清除作用,但不同菌株作用效果存在较大差异。作者首先将益生菌对肠道健康的保护概括为益生菌抑制病原菌入侵和定植、改善肠道屏障功能、维持肠道健康菌群、提高机体免疫力4种方式,并探讨了不同菌株的作用方式;其次简述了益生菌抗肠道病毒的作用机制,其中,益生菌通过间接方式调节机体免疫是其抗病毒的主要方式;最后讨论了近年来益生菌在轮状病毒、流行性腹泻病毒和传染性胃肠炎病毒中应用的研究进展,并对益生菌的发展前景进行了展望,以期为益生菌在改善动物肠道健康的研究及产品的开发方面提供一定的参考依据。  相似文献   

3.
Intestinal epithelial cells (IECs) are the first line of defense against pathogenic microorganisms of animal organism, which are important component of mucosal mechanical barrier, immune barrier and chemical barrier, they have absorption and barrier double function. In the intestine, there are many kinds of microorganisms. According to its relationship with the host, it is divided into three types of commensal bacteria, conditional pathogenic bacteria and pathogenic bacteria, it plays an important role in the construction of intestinal barrier. Firstly, IECs identify the intestinal microbes by direct or indirect ways, and distinguish their own and non-self, it is immune tolerance to their own substances (such as, commensal bacteria), and produce specific immune response to non-self-substances (pathogenic bacteria). Both of IECs and intestinal commensal bacteria together against pathogens maintain intestinal health. When the pathogenic microorganisms invade the intestine, IECs defense pathogenic microorganisms mainly through extracellular secretions and cell surface mucus layer, and the former largely include mucin, antibacterial molecular and antimicrobial immunoglobulin. The intestinal symbiotic bacteria can resist the pathogenic microorganisms and maintain the normal intestinal mucosal barrier function through the competitive identification sites, the secretion of antimicrobial substances, the increase of mucus secretion, the induction of IECs renewal, proliferation and repair. In the process of resisting invasion of gut microbes, pathogenic microorganisms through their own movement, secretion of toxins and enzymes to destroy the intestinal epithelial barrier, and directly contact with IECs to damage them. So the interaction between IECs and intestinal bacteria maintain the intestinal homeostasis. In this paper, a review is made of the IECs and intestinal microbial structure and functional adaptations, and hope to elaborate the mechanism of intestinal microbial-epithelial cell barrier interaction.  相似文献   

4.
肠道上皮细胞(intestinal epithelial cells,IECs)是动物机体抵御病原微生物的第一道防线,是黏膜机械屏障、免疫屏障和化学屏障的重要组成部分,具有吸收和屏障双层功能。肠道中微生物数量庞大、种类繁多,根据其与宿主的关系,主要分为共生菌、条件致病菌和病原菌3类,在肠道屏障的构建中发挥重要作用。IECs首先通过直接或间接方式对肠道微生物进行识别,区别自身与非自身,对自身物质(即共生菌)免疫耐受,对非自身物质(即病原菌)产生特异性免疫反应。IECs与肠道共生菌共同抵御肠道病原微生物,维持肠道健康,病原微生物侵入肠道,IECs主要通过胞外分泌物和细胞表面黏液层双重屏障发挥作用,其中胞外分泌物主要包括黏蛋白、抗菌分子和抗微生物免疫球蛋白。肠道共生菌可以通过竞争识别位点,分泌抗菌物质,增加黏液分泌,诱导IECs更新、增殖和修复等方式抵御病原微生物,维护正常的肠黏膜屏障功能。在IECs抵御肠道病原微生物入侵过程中,病原微生物通过自身运动、分泌毒素和酶等破坏肠上皮屏障,直接接触IECs,对其进行损伤。因此IECs和肠道菌群间相互作用,共同维持肠道内环境稳态。作者就IECs和肠道微生物结构、功能的适应性变化作一综述,以期阐述肠道微生物-上皮细胞屏障互作的机制。  相似文献   

5.
Nutritional diarrhea and subsequent performance degradation in weaned piglets are major challenges for the pig industry. Bile acids (BA) can be added to the diet as emulsifiers. This experiment was conducted to investigate the effects of chenodeoxycholic acid (CDCA), a major primary BA, on growth performance, serum metabolic profiles and gut health in weaned piglets. A total of 72 healthy weaned piglets were randomly assigned to the control (CON) and the CDCA groups, which were feed a basal diet and the basal diet supplemented with 200 mg/kg CDCA for 30 d, respectively. Our results demonstrated that CDCA significantly increased final BW and average daily gain (ADG), decreased feed-to-gain (F:G) ratio and tended to reduce diarrhea incidence. In addition, CDCA increased the villus height-to-crypt depth (V:C) ratio, elevated goblet cell numbers and the expression of tight junction proteins, suggesting the enhancement of intestinal barrier function. As an emulsifier, CDCA increased jejunal lipase activity and the mRNA expression of pancreatic lipases. CDCA supplementation also altered the serum metabolic profiles, including increasing the levels of indole 3-acetic acid, N′-formylkynurenine and theobromine that were beneficial for gut health. Moreover, the relative abundance of 2 beneficial gut bacteria, Prevotella9 and PrevotellaceaeTCG-001, were increased, whereas the relative abundance of a harmful bacteria, Dorea, was decreased in the gut of weaned piglets supplemented with CDCA. Importantly, the altered serum metabolic profiles showed a strong correlation with the changed gut bacteria. In conclusion, CDCA improved the growth performance of weaned piglets by improving intestinal morphology and barrier function, and enhancing lipid digestion, accompanied by alterations of serum metabolic profiles, and changes in relative abundance of certain gut bacteria.  相似文献   

6.
Use of feed antibiotics as growth promoters for control of pathogens associated with monogastric food animal morbidity and mortality has contributed to the development of antimicrobial resistance, which has now become a threat to public health on a global scale. Presently, a number of alternative feed additives have been developed and are divided into two major categories, including 1) the ones that are supposed to directly and indirectly control pathogenic bacterial proliferation; and 2) the other ones that are intended to up-regulate host gut mucosal trophic growth, whole body growth performance and active immunity. A thorough review of literature reports reveal that efficacy responses of current alternative feed additives in replacing feed antibiotics to improve performances and gut health are generally inconsistent dependent upon experimental conditions. Current alternative feed additives typically have no direct detoxification effects on endotoxin lipopolysaccharides(LPS) and this is likely the major reason that their effects are limited. It is now understood that pathogenic bacteria mediate their negative effects largely through LPS interactions with toll-like receptor 4, causing immune responses and infectious diseases. Therefore, disruptive biological strategies and a novel and new generation of feed additives need to be developed to replace feed antibiotic growth promoters and to directly and effectively detoxify the endotoxin LPS and improve gut health and performance in monogastric food animals.  相似文献   

7.
Recent research often lauds the services and beneficial effects of host‐associated microbes on animals. However, hosting these microbes may come at a cost. For example, germ‐free and antibiotic‐treated birds generally grow faster than their conventional counterparts. In the wild, juvenile body size is correlated with survival, so hosting a microbiota may incur a fitness cost. Avian altricial nestlings represent an interesting study system in which to investigate these interactions, given that they exhibit the fastest growth rates among vertebrates, and growth is limited by their digestive capacity. We investigated whether reduction and restructuring of the microbiota by antibiotic treatment would: (i) increase growth and food conversion efficiency in nestling house sparrows (Passer domesticus); (ii) alter aspects of gut anatomy or function (particularly activities of digestive carbohydrases and their regulation in response to dietary change); and (iii) whether there were correlations between relative abundances of microbial taxa, digestive function and nestling growth. Antibiotic treatment significantly increased growth and food conversion efficiency in nestlings. Antibiotics did not alter aspects of gut anatomy that we considered but depressed intestinal maltase activity. There were no significant correlations between abundances of microbial taxa and aspects of host physiology. Overall, we conclude that microbial‐induced growth limitation in developing birds is not driven by interactions with digestive capacity. Rather, decreased energetic and material costs of immune function or beneficial effects from microbes enriched under antibiotic treatment may underlie these effects. Understanding the costs and tradeoffs of hosting gut microbial communities represents an avenue of future research.  相似文献   

8.
The protective effect of two porcine enterovirus vaccines in swine.   总被引:1,自引:1,他引:0       下载免费PDF全文
The virus neutralizing substance in the gastrointestinal tract of swine vaccinated in different ways with porcine enterovirus strain T80 was characterized by tests for enhancement and absorption of virus neutralizing activity by class specific antiporcine Ig antisera. The gastrointestinal virus neutralizing activity of piglets which were vaccinated with live virus orally resided predominantly in the IgA class, although some activity was present also in the IgM and IgG classes. The serum virus neutralizing activity of this group was present in all three classes but primarily in the IgG class. The IgA in the serum of this group was presumably of gut origin. However, in piglets vaccinated with live virus intramuscularly, with formaldehyde-inactivated virus orally or intramuscularly or with ethylenimine-inactivated virus by both oral and subcutaneous routes, both serum and gastrointestinal virus neutralizing activity were attributable predominantly to antibodies of the IgG and IgM classes. None possessed serum IgA. There was evidence also for the presence of Ig fragments in some gastrointestinal extracts.  相似文献   

9.
To meet the ever‐increasing demand for animal protein, aquaculture continuously requires new techniques to increase the production yield. However, with every step towards intensification of aquaculture practices, there is an increase in stress level on the animal as well as on the environment. Feeding practices in aqua farming usually plays an important role, and the addition of various additives to a balanced feed formula to achieve better growth is a common practice among the fish and shrimp culturists. Probiotics, also known as ‘bio‐friendly agents’, such as LAB (Lactobacillus), yeasts and Bacillus sp., can be introduced into the culture environment to control and compete with pathogenic bacteria as well as to promote the growth of the cultured organisms. In addition, probiotics are non‐pathogenic and non‐toxic micro‐organisms, having no undesirable side effects when administered to aquatic organisms. Probiotics are also known to play an important role in developing innate immunity among the fishes, and hence help them to fight against any pathogenic bacterias as well as against environmental stressors. The present review is a brief but informative compilation of the different essential and desirable traits of probiotics, their mode of action and their useful effects on fishes. The review also highlights the role of probiotics in helping the fishes to combat against the different physical, chemical and biological stress.  相似文献   

10.
The objective of this work was to estimate covariance functions for direct and maternal genetic effects, animal and maternal permanent environmental effects, and subsequently, to derive relevant genetic parameters for growth traits in Canchim cattle. Data comprised 49 011 weight records on 2435 females from birth to adult age. The model of analysis included fixed effects of contemporary groups (year and month of birth and at weighing) and age of dam as quadratic covariable. Mean trends were taken into account by a cubic regression on orthogonal polynomials of animal age. Residual variances were allowed to vary and were modelled by a step function with 1, 4 or 11 classes based on animal’s age. The model fitting four classes of residual variances was the best. A total of 12 random regression models from second to seventh order were used to model direct and maternal genetic effects, animal and maternal permanent environmental effects. The model with direct and maternal genetic effects, animal and maternal permanent environmental effects fitted by quadric, cubic, quintic and linear Legendre polynomials, respectively, was the most adequate to describe the covariance structure of the data. Estimates of direct and maternal heritability obtained by multi‐trait (seven traits) and random regression models were very similar. Selection for higher weight at any age, especially after weaning, will produce an increase in mature cow weight. The possibility to modify the growth curve in Canchim cattle to obtain animals with rapid growth at early ages and moderate to low mature cow weight is limited.  相似文献   

11.
紧密连接是肠上皮细胞间的主要连接方式,参与维持上皮细胞极性与调节肠屏障的通透性。闭锁蛋白(OCLN)是紧密连接相关蛋白中最具代表性的蛋白之一,是形成紧密连接的基础结构。OCLN的功能主要包括栅栏功能和细胞旁屏障功能,研究发现其表达量降低时可引起肠黏膜屏障功能受损,后者是多种消化道疾病发生发展的一个重要过程。益生菌被认为是抗生素的重要替代物之一,其作用于宿主可产生多种有益作用。大量研究表明给予患者或者为疾病模型动物提供益生菌可有效改善肠黏膜屏障功能。本文就益生菌对肠道OCLN蛋白表达调控机制的研究作一综述,以期为OCLN相关研究和疾病的治疗策略提供理论参考。  相似文献   

12.
The goal of prebiotic applications from different sources is to improve the gut ecosystem where the host and microbiota can benefit from prebiotics. It has already been recognized that prebiotics have potential roles in the gut ecosystem because gut microbiota ferment complex dietary macronutrients and carry out a broad range of functions in the host body, such as the production of nutrients and vitamins, protection against pathogens, and maintenance of immune system balance. The gut ecosystem is very crucial and can be affected by numerous factors consisting of dietary constituents and commensal bacteria. This review focuses on recent scientific evidence, confirming a beneficial effect of prebiotics on animal health, particularly in terms of protection against pathogenic bacteria and increasing the number of beneficial bacteria that may improve epithelial cell barrier functions. It has also been reviewed that modification of the gut ecosystem through the utilization of prebiotics significantly affects the intestinal health of animals. However, the identification and characterization of novel potential prebiotics remain a topical issue and elucidation of the metagenomics relationship between gut microbiota alteration and prebiotic substances is necessary for future prebiotic studies.  相似文献   

13.
核苷酸具有许多生理生化功能.人和动物体内能够从头合成核苷酸,但在某些情况下,如机体迅速生长、受到免疫挑战时,一些器官、组织内源合成的核苷酸不能满足机体的需要.日粮来源的核苷酸对胃肠道的生长发育、免疫系统、肝功能及脂肪代谢有重要作用.动物生产中,日粮核苷酸是一种半必需营养素.  相似文献   

14.
核苷酸对动物的营养作用及其在饲料中应用前景分析   总被引:3,自引:0,他引:3  
核苷酸具有许多生理生化功能 ,人和动物体内能够从头合成核苷酸 ,但在某些情况下 ,如机体迅速生长、受到免疫挑战时 ,一些器官、组织内源合成核苷酸不能满足机体的需要。日粮来源的核苷酸对胃肠道的生长发育、免疫系统、肝功能及脂代谢具有重要作用。核苷酸或核酸是一种无毒无害无三致的安全的添加剂 ,在动物生产应用核苷酸或核酸将具有促进动物生长和改善肉质的作用 ,作为新一代的饲料添加剂很有发展前途。  相似文献   

15.
Two longitudinal experiments involving Angora goats challenged with either bovine or ovine strains of Mycobacterium avium subspecies paratuberculosis (Map) have been conducted over a period of 54 and 35 months, respectively. Blood samples for the interferon-gamma (IFN-gamma) test and the absorbed ELISA and faecal samples for bacteriological culture were taken pre-challenge and monthly post-challenge. Persistent shedding, IFN-gamma production, seroconversion and clinical disease occurred earlier with the bovine Map gut mucosal tissue challenge inoculum than with cultured bacteria. The IFN-gamma responses of the gut mucosal tissue and bacterial challenge groups were substantially and consistently higher than those of the control group. The in vivo and cultured cattle strains were much more pathogenic for goats than the sheep strains with persistent faecal shedding, seroconversion and clinical disease occurring in the majority of bovine Map challenged goats. With the ovine Map, 3 goats developed persistent antibody responses but only one of these goats developed persistent faecal shedding and clinical disease. However, there was no significant difference between the IFN-gamma responses of the tissue challenged, bacterial challenged and control groups. Compared with sheep, the ELISA appeared to have higher sensitivity and the IFN-gamma test lower specificity.  相似文献   

16.
Weaning piglets were fed an L -glutamine-supplemented diet with the aim of monitoring the effects on gut mucosal turnover and barrier function, to elucidate the potential preventive or therapeutic roles of glutamine as a nutraceutical or ‘functional food’. Sixteen female weaning piglets were divided into two groups, which were fed a control diet (Ctr group: n = 8) or a Ctr + 0.5% L -glutamine diet (G group: n = 8) for 28 days. In the ileum of group G piglets the villus height (V) and crypt depth (C) were increased, and the V:C ratio was decreased (p < 0.01). The PCNA and TUNEL immunoreactivities were also tested. The number of mitotic mucosal cells (M) was increased, and that of mucosal cells with apoptotic nuclei (A) decreased in such a way that the A:M index diminished (p < 0.01). The A:M index also decreased at the level of some components of the gut-associated lymphatic tissue (GALT), thus indicating a positive effect on the gut barrier function. This trial showed that L -glutamine supplementation influenced some morphofunctional characteristics of piglet ileal mucosa. These data corroborate the nutraceutical role of glutamine as a trophic agent for mucosal repair, improvement of barrier function and gut adaptation in the swine per se and as an animal model.  相似文献   

17.
温度是一个重要的非生物环境变量,能够驱动动物谱系的适应轨迹和动物群落的组成。环境温度作为影响动物肠道微生物菌群变化的众多因素之一,能够影响肠道微生物菌群的组成及丰度,进而调控宿主生长、发育、繁殖、免疫等生物学过程及功能。动物肠道核心菌群的组成及其代谢产物在不同温度下存在显著差异,在单胃动物、反刍动物等中都有相应的报道。极端温度主要通过诱导肠道微生物菌群产生结构和功能上的差异,进而对宿主表型产生影响。目前,对于温度如何影响动物肠道菌群的了解仍非常有限。本文针对不同环境温度条件下,肠道微生物菌群结构和功能的差异及相关研究进行了总结及综述。探讨由环境温度引起的肠道微生物菌群与宿主适应机制之间的关系,包括对宿主产热机制、消化系统和免疫系统等其他方面的影响并开展研究,将为肠道微生物对宿主健康的调节提供参考和思路。  相似文献   

18.
Dietary fiber is associated with impaired nutrient utilization and reduced net energy values. However, fiber has to be included in the diet to maintain normal physiological functions in the digestive tract. Moreover, the negative impact of dietary fiber will be determined by the fiber properties and may differ considerably between fiber sources. Various techniques can be applied to enhance nutritional value and utilization of available feed resources. In addition, the extent of fiber utilization is affected by the age of the pig and the pig breed. The use of potential prebiotic effects of dietary fiber is an attractive way to stimulate gut health and thereby minimize the use of anti-microbial growth promoters. Inclusion of soluble non-starch polysaccharides (NSP) in the diet can stimulate the growth of commensal gut microbes, inclusion of NSP from chicory results in changes in gut micro-environment and gut morphology of pigs, while growth performance remains unaffected and digestibility was only marginally reduced. The fermentation products and pH in digesta responded to diet type and were correlated with shifts in the microbiota. Interestingly, fiber intake will have an impact on the expression of intestinal epithelial heat-shock proteins in the pig. Heat-shock proteins have an important physiological role in the gut and carry out crucial housekeeping functions in order to maintain the mucosal barrier integrity. Thus, there are increasing evidence showing that fiber can have prebiotic effects in pigs due to interactions with the gut micro-environment and the gut associated immune system.  相似文献   

19.
Monocarboxylate transporters (MCTs) support tumour growth by regulating the transport of metabolites in the tumour microenvironment. High MCT1 or MCT4 expression is correlated with poor outcomes in human patients with head and neck squamous cell carcinoma (HNSCC). Recently, drugs targeting these transporters have been developed and may prove to be an effective treatment strategy for HNSCC. Feline oral squamous cell carcinoma (OSCC) is an aggressive and treatment‐resistant malignancy resembling advanced or recurrent HNSCC. The goals of this study were to investigate the effects of a previously characterized dual MCT1 and MCT4 inhibitor, MD‐1, in OSCC as a novel treatment approach for feline oral cancer. We also sought to determine the potential of feline OSCC as a large animal model for the further development of MCT inhibitors to treat human HNSCC. In vitro, MD‐1 reduced the viability of feline OSCC and human HNSCC cell lines, altered glycolytic and mitochondrial metabolism and synergized with platinum‐based chemotherapies. While MD‐1 treatment increased lactate concentrations in an HNSCC cell line, the inhibitor failed to alter lactate levels in feline OSCC cells, suggesting an MCT‐independent activity. In vivo, MD‐1 significantly inhibited tumour growth in a subcutaneous xenograft model and prolonged overall survival in an orthotopic model of feline OSCC. Our results show that MD‐1 may be an effective therapy for the treatment of feline oral cancer. Our findings also support the further investigation of feline OSCC as a large animal model to inform the development of MCT inhibitors and future clinical studies in human HNSCC.  相似文献   

20.
大豆是一种优秀的植物蛋白源,因其高含量的蛋白质及平衡的氨基酸模式被广泛应用于食品加工、动物饲养等领域。然而,大豆本身所含有的抗营养因子对动物机体带来一定负面效应,故而限定了其使用。作为引起动物机体过敏反应的大豆抗原蛋白和影响蛋白质消化利用的SBA近年来被广泛研究。文章从大豆抗原蛋白中的大豆球蛋白、-伴大豆球蛋白和SBA在动物肠道内的分布及对肠道组织结构等方面的影响进行阐述,为研究抗营养因子对肠道健康的影响提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号