首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The anesthetic potency and cardiopulmonary effects of sevoflurane were compared with those of isoflurane and halothane in goats. The (mean +/- SD) minimal alveolar concentration (MAC) was 0.96 +/- 0.12% for halothane, 1.29 +/- 0.11% for isoflurane, and 2.33 +/- 0.15% for sevoflurane. Cardiopulmonary effects of sevoflurane, halothane and isoflurane were examined at end-tidal concentrations equivalent to 1, 1.5 and 2 MAC during either spontaneous or controlled ventilation (SV or CV). During SV, there were no significant differences in respiration rate, tidal volume and minute ventilation between anesthetics. Dose-dependent decreases in both tidal volume and minute ventilation induced by halothane were greater than those by either sevoflurane or isoflurane. Hypercapnia and acidosis induced by sevoflurane were not significantly different from those by either isoflurane or halothane at 1 and 1.5 MAC, but were less than those by halothane at 2 MAC. There was no significant difference in heart rate between anesthetics during SV and CV. During SV, all anesthetics induced dose-dependent decreases in arterial pressure, rate pressure product, systemic vascular resistance, left ventricular minute work index and left ventricular stroke work index. Systemic vascular resistance with isoflurane at 2 MAC was lower than that with sevoflurane. During CV, sevoflurane induced dose-dependent circulatory depression (decreases in arterial pressure, cardiac index, rate pressure product, systemic vascular resistance, left ventricular minute work index and right ventricular minute work index), similar to isoflurane. Halothane did not significantly alter systemic vascular resistance from 1 to 2 MAC.  相似文献   

2.
This study was performed to determine the cardiovascular responses to isoflurane in euthyroid and hypothyroid dogs. Four healthy mixed-breed dogs were studied prior to thyroidectomy (PRE), 6 months after thyroidectomy (HYP), and after 2 months of oral supplementation with 1-thyroxine (SUP). Heart rate (HR), cardiac output (), stroke volume (SV), systolic, diastolic, mean arterial blood pressure (SAP, DAP, MAP), and total peripheral resistance (TPR) were determined in awake dogs and in the same dogs when end-tidal isoflurane concentrations were 1.28%, 1.92%, and 2.56%. Ventilation was controlled in anesthetized dogs and Paco2 maintained between 38 to 42 mm Hg. Isoflurane caused significant ( P <.05) dose-dependent reduction in , SV, SAP, DAP, and MAP in the PRE, HYP, and SUP dogs. Cardiac output was lower in the HYP dogs than in the PRE or SUP dogs during awake measurement. TPR was increased in the awake HYP dogs compared with the PRE or SUP dogs. During anesthesia, HYP dogs tended to have lower , SV, SAP, and MAP than the PRE or SUP groups, but the only significant reduction was SAP during 1.5 MAC. The cardiovascular responses to isoflurane in hypothyroid dogs are similar to euthyroid animals with a dose-dependent depression in , SV, and arterial pressure.  相似文献   

3.
Adenosine is a potent analgesic in people and reduces the MAC of halothane in dogs. The purpose of this study was to determine whether adenosine reduces the MAC of isoflurane in dogs. Seven beagles (four males and three females) were anesthetized and randomly assigned to receive adenosine (0.3 mg kg–1 minute–1; 6 mL kg–1 hour–1, IV) or saline (0.9%, 6 mL kg–1 hour–1IV). After an interval of ≥7 days, each dog was reanesthetized and treated with the alternate infusion. Anesthesia was induced and maintained with isoflurane in oxygen. Dogs were intubated and instrumented for measurement of mean systemic arterial blood pressure and airway concentration of isoflurane and end‐tidal partial pressure of carbon dioxide. The MAC for isoflurane was determined using the tail‐clamp technique. Baseline MAC values were 1.25 (1.15, 1.35)% [median (minimum, maximum)] and 1.25 (1.05, 1.45)% before the saline and adenosine treatments, respectively. After 2 hours of infusion with saline or adenosine, MAC values were not different (p = 0.156) and were 1.25 (0.95, 1.35)% and 1.05 (1.00, 1.25)%, respectively. Two hours following the end of each infusion, the MAC values for saline and adenosine treatment groups differed significantly (p = 0.015), but by no more than the normal variation inherent in this study, and were 1.15 (1.15, 1.35)% and 1.05 (1.05, 1.25)%, respectively. Mean arterial blood pressure was 93 (74, 123) mm Hg for saline treated dogs and 67 (52, 72) mm Hg (p = 0.008) during adenosine infusion. End‐tidal carbon dioxide was not different between the two treatment groups. We conclude that adenosine administered at 0.3 mg kg–1 minute–1had no effect on isoflurane MAC in dogs, but decreased mean arterial blood pressure.  相似文献   

4.
M-mode echocardiographic measurements were made from 50 healthy German Shepherd dogs (30 males and 20 females). The dogs were awake and unsedated, in right lateral recumbent position. The following parameters were measured on the echocardiographic images: interventricular septal thickness at end-diastole (IVSd), interventricular septal thickness at end-systole (IVSs), left ventricular internal dimension at end-diastole (LVIDd), left ventricular internal dimension at end-systole (LVIDs), left ventricular posterior wall thickness at end-diastole (LVPWd), left ventricular posterior wall thickness at end-systole (LVPWs), left atrial dimension (LAD), aortic root dimension (AOD), left atrial to aortic root ratio (LAD/AOD), right ventricular internal dimension at end-diastole (RVID), amplitude of mitral valve excursion (DE amplitude), velocity of mitral valve opening (D-E slope), and velocity of mitral valve closure (E-F slope). Fractional shortening (FS) was also calculated. The effect of gender and age on each echocardiographic parameter was analyzed and the relationship between body weight (BW) and each parameter was also investigated. There was a significant relationship between gender and LVPW in systole and diastole and FS. Significant association was also found between BW and IVS, LVID, and LVPW in systole and diastole, FS, LAD, AOD, RVID, DE amplitude, and D-E slope of the mitral valve.  相似文献   

5.
Summary

A number of clinically important features of isoflurane anaesthesia were studied in comparison to those of halothane. Two groups of dogs were used. After light premedication, anaesthesia was induced by mask, and both groups of dogs were maintained for 30 minutes at 1.5 × MAC value of either halothane or isoflurane in a combination of oxygen and nitrous oxide (50:50). All animals were ventilating spontaneously.

There was no difference in the speed of induction of the halothane and isoflurane groups. Blood pressure in both groups dropped to approximately 7.5 kPa (56 mm Hg) during maintenance anesthesia (1.5 MAC), while the heart rate was significantly higher in the isoflurane group. Individual respiratory variables were not significantly different between the two groups, however the differences between the trends of the mean values were significant (Sign‐test). In general, with isoflurane, respiration rates were lower, with the tidal volume and end tidal CO2 being greater.

The trends in pH and arterial pCO2 showed a slightly more severe respiratory acidosis in the isoflurane group. However, neither group showed values corresponding to any expected clinical problems. Speed of recovery (determined by times to head‐lift and righting‐reflex) was greater in the isoflurane group. Previously known important features of isoflurane are low biodegradability, low blood: gas partition coefficient, and decreased myocardial sensitivity to catecholamines. It is concluded from this study that isoflurane deserves a place in canine anesthesia whenever these specific pharmacologic properties are desired.  相似文献   

6.
Anesthetic respiratory effects of sevoflurane (SEVO) were compared with isoflurane (ISO) in unpremedicated dogs. Minimum alveolar concentration (MAC), apneic concentration (AC), and anesthetic index (AI) of SEVO and ISO were determined in eight 1‐year‐old healthy dogs, weighing 19 ± 3 kg (mean ± SEM) in a randomized complete block multiple cross‐over design. Dogs were mask‐induced with either SEVO or ISO in 100% oxygen. Following endotracheal intubation, dogs were instrumented, mechanically ventilated, and MAC was determined using a tail‐clamp method. Next, spontaneous ventilation was re‐established, and anesthetic concentration was increased to determine the AC. Throughout the anesthetic event, heart rate (HR), systolic blood pressure (SAP), mean blood pressure (MAP), diastolic blood pressure (DAP), respiratory rate (RR), end‐tidal carbon dioxide (Pe ′CO2), and oxyhemoglobin saturation (SpO2) were recorded at 3‐minute intervals. Following AC determination, AI was calculated as AC/MAC, and dogs were allowed to recover. Each dog was anesthetized four times (twice with ISO and SEVO each) at 1‐week intervals. All data were analyzed using the two‐way anova . Multiple comparisons were performed between ISO and SEVO treatments. Statistical significance was set at p < 0.05. Significant differences were noted between agents for MAC (SEVO, 2.13 ± 0.10%; ISO, 1.38 ± 0.14%; p < 0.0001), AC (SEVO, 7.34 ± 0.13%; ISO, 3.60 ± 0.13%; p < 0.0001), and AI (SEVO, 3.46 ± 0.22; ISO, 2.63 ± 0.14; p = 0.0002). Physiologic parameters were compared between SEVO and ISO at 1MAC, 2MAC, 3MAC, and AC. No differences were noted between SEVO and ISO treatments for cardiovascular parameters (HR, SAP, MAP, DAP). Significant differences were noted, favoring SEVO, for all respiratory parameters (RR, Pe ′CO2, SpO2) at increasing MAC multiples. Additionally, regression analysis was conducted for physiologic variable data points. Analysis of Pe ′CO2 data points demonstrated a significant slope difference of ?6.47 ± 1.02 (BSEVO ? BISO; p < 0.0001; r2 = 0.6042) favoring SEVO. While expected dose‐related ventilatory depression was noted for both agents, all the respiratory parameters for SEVO demonstrated less respiratory depression than ISO at equipotent doses. These results indicated that SEVO caused less dose‐dependent ventilatory depression than ISO, having a significantly higher AI and causing less detrimental change in pulmonary parameters at increasing levels of MAC.  相似文献   

7.
Duration of anesthesia onset (time to intubation) and recovery (time to extubation, sternal and standing) and quality of recovery were compared for sevoflurane and isoflurane in 10 adult psittacines. Both agents were initially administered at an equal volume percentage (2%) rather than at equal minimum alveolar concentrations (MACs), therefore the initial concentration was above the isoflurane MAC for dogs and birds (1.3%) but below the sevoflurane MAC for dogs (2.3%). The time to intubation was significantly longer with sevoflurane because of initially delivering the sevoflurane below suspected MAC for birds. Although recovery times (time to extubation, sternal, and standing) were not significantly different, birds recovering from sevoflurane were less ataxic. Sevoflurane is a suitable inhalant agent for use in these psittacines and merits further study.  相似文献   

8.
The relative myocardial irritant properties of halothane, isoflurane, and pentobarbital were evaluated in chickens. Sixteen adult male broiler chickens were randomly assigned to 1 of 3 groups: group-1 chickens were anesthetized with pentobarbital (30 mg/kg, IV), group-2 chickens were anesthetized with halothane (end tidal halothane 1.2%), and group-3 chickens were anesthetized with isoflurane (end tidal isoflurane 2.1%). Birds in any 2 of the 3 treatment groups were tested on any 1 day. Local anesthesia was induced, and blood pressure, heart rate, ECG, and blood gas variables were measured before general anesthesia was induced. Positive-pressure ventilation with an inspired O2 fraction greater than 0.95 was adjusted to result in an end tidal CO2 concentration that reflected a Paco2 similar to that obtained prior to anesthesia and ventilation. All measurements were repeated. The threshold for ventricular fibrillation in response to electrical stimulation of the heart was then determined for all birds. Effects of anesthesia on hemodynamic and blood gas variables were similar in all 3 groups. Compared with halothane or pentobarbital, isoflurane anesthesia resulted in a significantly (P less than 0.05) lower threshold for electrical fibrillation of the heart.  相似文献   

9.
OBJECTIVE: To compare the anesthetic index of sevoflurane with that of isoflurane in unpremedicated dogs. DESIGN: Randomized complete-block crossover design. ANIMALS: 8 healthy adult dogs. PROCEDURE: Anesthesia was induced by administering sevoflurane or isoflurane through a face mask. Time to intubation was recorded. After induction of anesthesia, minimal alveolar concentration (MAC) was determined with a tail clamp method while dogs were mechanically ventilated. Apneic concentration was determined while dogs were breathing spontaneously by increasing the anesthetic concentration until dogs became apneic. Anesthetic index was calculated as apneic concentration divided by MAC. RESULTS: Anesthetic index of sevoflurane (mean +/- SEM, 3.45 +/- 0.22) was significantly higher than that of isoflurane (2.61 +/- 0.14). No clinically important differences in heart rate; systolic, mean, and diastolic blood pressures; oxygen saturation; and respiratory rate were detected when dogs were anesthetized with sevoflurane versus isoflurane. There was a significant linear trend toward lower values for end-tidal partial pressure of carbon dioxide during anesthesia with sevoflurane, compared with isoflurane, at increasing equipotent anesthetic doses. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that sevoflurane has a higher anesthetic index in dogs than isoflurane. Sevoflurane and isoflurane caused similar dose-related cardiovascular depression, but although both agents caused dose-related respiratory depression, sevoflurane caused less respiratory depression at higher equipotent anesthetic doses.  相似文献   

10.
OBJECTIVE: To determine left ventricular free wall (LVFW) motions and assess their intra- and interday variability via tissue Doppler imaging (TDI) in healthy awake and anesthetized dogs. ANIMALS: 6 healthy adult Beagles. PROCEDURE: n the first part of the study, 72 TDI examinations (36 radial and 36 longitudinal) were performed by the same observer on 4 days during a 2-week period in all dogs. In the second part, 3 dogs were anesthetized with isoflurane and vecuronium. Two measurements of each TDI parameter were made on 2 consecutive cardiac cycles when ventilation was transiently stopped. The TDI parameters included maximal systolic, early, and late diastolic LVFW velocities. RESULTS: The LVFW velocities were significantly higher in the endocardial than in the epicardial layers and also significantly higher in the basal than in the mid-segments in systole, late diastole, and early diastole. The intraday coefficients of variation (CVs) for systole were 16.4% and 22%, and the interday CV values were 11.2% and 16.4% in the endocardial and epicardial layers, respectively. Isoflurane anesthesia significantly improved the intraday CV but induced a decrease in LVFW velocities, except late diastolic in endocardial layers and early diastolic in epicardial layers. CONCLUSIONS AND CLINICAL RELEVANCE: Left ventricular motion can be adequately quantified in dogs and can provide new noninvasive indices of myocardial function. General anesthesia improved repeatability of the procedure but cannot be recommended because it induces a decrease in myocardial velocities.  相似文献   

11.
The purpose of this study was to investigate the cardiopulmonary influences of sevoflurane in oxygen at two anaesthetic concentrations (1.5 and 2 MAC) during spontaneous and controlled ventilation in dogs. After premedication with fentany-droperidol (5 microg/kg and 0.25 mg/kg intramuscularly) and induction with propofol (6 mg/kg intravenously) six dogs were anaesthetized for 3 h. Three types of ventilation were compared: spontaneous ventilation (SpV), intermittent positive pressure ventilation (IPPV), and positive end expiratory pressure ventilation (PEEP, 5 cm H2O). Heart rate, haemoglobin oxygen saturation, arterial blood pressures, right atrial and pulmonary arterial pressures, pulmonary capillary wedge pressure and cardiac output were measured. End tidal CO2%, inspiratory oxygen fraction, respiration rate and tidal volume were recorded using a multi-gas analyser and a respirometer. Acid-base and blood gas analyses were performed. Cardiac index, stroke volume, stroke index, systemic and pulmonary vascular resistance, left and right ventricular stroke work index were calculated. Increasing the MAC value during sevoflurane anaesthesia with spontaneous ventilation induced a marked cardiopulmonary depression; on the other hand, heart rate increased significantly, but the increases were not clinically relevant. The influences of artificial respiration on cardiopulmonary parameters during 1.5 MAC sevoflurane anaesthesia were minimal. In contrast, PEEP ventilation during 2 MAC concentration had more pronounced negative influences, especially on right cardiac parameters. In conclusion, at 1.5 MAC, a surgical anaesthesia level, sevoflurane can be used safely in healthy dogs during spontaneous and controlled ventilation (IPPV and PEEP of 5 cm H2O).  相似文献   

12.
Heterogeneity of Hypertrophy in Feline Hypertrophic Heart Disease   总被引:2,自引:0,他引:2  
Eighty-six cats with non-dilated left ventricular myocardial hypertrophy were studied retrospectively. Cats were categorized by two-dimensional echocardiography as having symmetric ventricular hypertrophy (Type I), asymmetric with predominant septal thickening hypertrophy (Type II), and asymmetric hypertrophy with predominant free-wall thickening (Type III). The distribution of hypertrophy was judged subjectively and objectively. Subjective and objective results were similar (P= 0.03) although overlap existed between groups. Morphologic patterns (Types I, II, and III) were compared with breed, age, sex, heart rate, percent fractional shortening, left atrial size, serum creatinine concentration, and the presence (yes/no) of pleural effusion, pulmonary edema, pericardial effusion, heart murmur, dyspnea, thromboembolism, hyperthyroidism, and being alive at the time of study. Interventricular septal thickness, left ventricular free wall thickness, percent fractional shortening, and left atrial size additionally were compared to 3-month survival. Cats with Type HI hypertrophy were more likely to experience thromboembolism than cats with Type II hypertrophy (P= 0.05) and cats with Type I hypertrophy were more likely to have heart murmurs than cats with Type III (P= 0.02). No other significant associations were found in comparison to pattern of hypertrophy. Both left atrial size and percent fractional shortening significantly correlated with 3-month survival (P < 0.001 for each). The degree of interventricular septal wall thickness was associated with 3-month survival (P= 0.02) when known hyperthyroid cats were excluded from the study group, while left ventricular free wall thickness consistently was not associated with survival. This study demonstrates the heterogeneity of hypertrophy in cats with hyper-trophic heart disease and provides predictors of survival (left atrial size, percent fractional shortening, and interventricular septal wall thickness when compared with euthanasia/spontaneous death data).  相似文献   

13.
A number of clinically important features of isoflurane anaesthesia were studied in comparison to those of halothane. Two groups of dogs were used. After light premedication, anaesthesia was induced by mask, and both groups of dogs were maintained for 30 minutes at 1.5 X MAC value of either halothane or isoflurane in a combination of oxygen and nitrous oxide (50:50). All animals were ventilating spontaneously. There was no difference in the speed of induction of the halothane and isoflurane groups. Blood pressure in both groups dropped to approximately 7.5 kPa (56 mm Hg) during maintenance anesthesia (1.5 MAC), while the heart rate was significantly higher in the isoflurane group. Individual respiratory variables were not significantly different between the two groups, however the differences between the trends of the mean values were significant (Sign-test). In general, with isoflurane, respiration rates were lower, with the tidal volume and end tidal CO2 being greater. The trends in pH and arterial pCO2 showed a slightly more severe respiratory acidosis in the isoflurane group. However, neither group showed values corresponding to any expected clinical problems. Speed of recovery (determined by times to head-lift and righting-reflex) was greater in the isoflurane group. Previously known important features of isoflurane are low biodegradability, low blood: gas partition coefficient, and decreased myocardial sensitivity to catecholamines. It is concluded from this study that isoflurane deserves a place in canine anesthesia whenever these specific pharmacologic properties are desired.  相似文献   

14.
M-mode echocardiographic structures, and cardiac function indices, PCV, and total plasma protein values were determined for 34 endurance equine athletes before (base line) and after (after race) a 161-km endurance competition and were compared. The PCV (base-line mean, 37%; after-race mean, 46%) and total plasma protein value (base-line mean, 6.9 g/dl; after-race mean, 7.5 g/dl) increased. Compared with base-line echocardiography, after-race echocardiography indicated an increase in heart rate, as determined from the simultaneous ECG recorded on the echocardiograph (base-line mean, 41 beats/min; after-race mean, 54 beats/min), and an increase in interventricular septal diastolic thickness (base-line mean, 28 mm; after-race mean, 33 mm). The septal thickening fraction (base-line mean, 59%; after-race mean, 38%), the left atrioventricular valve E to F slope (base-line mean, 224 mm/s; after-race mean, 175 mm/s), the left ventricular diastolic dimension (base-line mean, 99 mm; after-race mean, 86 mm), the fractional shortening of the left ventricle (base-line mean, 41%; after-race mean, 37%), the aortic root dimension (base-line mean, 63 mm; after-race mean, 58 mm), the caudal aortic wall excursion (base-line mean, 19 mm; after-race mean, 11 mm) and the left atrial diastolic dimension (base-line mean, 46 mm; after-race mean, 39 mm), decreased significantly (P less than 0.05). In base-line echocardiographs, late diastolic left atrioventricular valve motion was evident in 9 horses. The aberrant left atrioventricular valve motion was not evident in after-race echocardiographs. Seemingly, central vascular volume decreased in these horses during the recovery phase of severe strenuous endurance competition.  相似文献   

15.
Complete atrioventricular (AV) block was produced in 32 chloralose-anesthetized autonomically intact dogs to determine the effects of halothane, enflurane, and isoflurane on supraventricular and ventricular rate. Halothane (n = 17), enflurane (n = 6), and isoflurane (n = 9) were administered in three separate experiments in sequential minimum alveolar concentration (MAC) multiples of 0.5, 1.0, 1.5, 2.0, 1.5, and 1.0. Supraventricular rate, ventricular rate, and mean arterial blood pressure (MAP) were measured and recorded at baseline and after a 20-minute equilibration period of each inhalation anesthetic at each MAC multiple. Increasing concentrations of enflurane and isoflurane significantly decreased supraventricular rate ( P < .05). Ventricular rate was not significantly changed by sequential MAC multiples of halothane, enflurane, and isoflurane. Increasing concentrations of halothane, enflurane, and isoflurane significantly decreased MAP with enflurane producing the most significant decrease ( P < .05). Ventricular arrhythmias occurred in 5 of 17 dogs anesthetized with halothane and 1 of 9 dogs anesthetized with isoflurane. Inhalation anesthesia can significantly decrease supraventricular rate and MAP, does not alter ventricular rate, and can produce ventricular arrhythmias in dogs with complete AV block.  相似文献   

16.
OBJECTIVE: To determine the effects of nitrous oxide (N2O) on the speed and quality of mask induction with sevoflurane or isoflurane in dogs. ANIMALS: 7 healthy Beagles. PROCEDURE: Anesthesia was induced with sevoflurane or isoflurane delivered in 100% oxygen or in a 2:1 mixture of N2O and oxygen via a face mask. Each dog received all treatments with at least 1 week between treatments. Initial vaporizer settings were 0.8% for sevoflurane and 0.5% for isoflurane (0.4 times the minimum alveolar concentration [MAC]). Vaporizer settings were increased by 0.4 MAC at 15-second intervals until settings were 4.8% for sevoflurane and 3.0% for isoflurane (2.4 MAC). Times to onset and cessation of involuntary movements, loss of the palpebral reflex, negative response to tail-clamp stimulation, and endotracheal intubation were recorded, and cardiopulmonary variables were measured. RESULTS: Administration of sevoflurane resulted in a more rapid induction, compared with isoflurane. However, N2O had no effect on induction time for either agent. Heart rate, mean arterial blood pressure, cardiac output, and respiratory rate significantly increased and tidal volume significantly decreased from baseline values immediately after onset of induction in all groups. Again, concomitant administration of N2O had no effect on cardiopulmonary variables. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of N2O did not improve the rate or quality of mask induction with sevoflurane or isoflurane. The benefits provided by N2O attributable to concentrating and second gas effects appear minimal in healthy dogs when low solubility inhalation agents such as isoflurane and sevoflurane are used for mask induction.  相似文献   

17.
Echocardiographic parameters were compared between training and non-training greyhound dogs. When indexed to body weight there was a statistically significant increase (p<0.05) in the interventricular septal thickness (systole) and when indexed to body surface area there were increased interventricular septal (systole) and left ventricular free wall measurements (systole) in training compared with non-training greyhounds. When each gender was analyzed separately and echocardiographic parameters were indexed to body size, both genders had an increase in the interventricular septal thickness (diastolic in the female, systolic in the male) in the training compared with non-training greyhounds. In male training greyhounds there was additionally an increase in the left ventricular internal dimension (systole) and free wall thickness (systole) when echocardiographic parameters were indexed to body surface area compared with non-training greyhounds (p<0.05). The results indicate that certain training greyhound echocardiographic parameters are larger than non-training greyhound echocardiographic parameters. The potential effects of training, body size and gender should be considered when interpreting echocardiographic parameters in populations of greyhounds.  相似文献   

18.
OBJECTIVE: To determine the effect of hypovolemia on the minimum alveolar concentration (MAC) of isoflurane in the dog. STUDY DESIGN: Randomized, cross-over trial. ANIMAL POPULATION: Six healthy intact mixed breed female dogs weighing 18.2-29.0 kg. METHODS: Dogs were randomly assigned to determine the MAC of isoflurane in a normovolemic or hypovolemic state with a minimum of 18 days between trials. On both occasions, anesthesia was initially induced and maintained for 40 minutes with isoflurane delivered in oxygen while vascular catheters were placed in the cephalic vein and dorsal metatarsal artery. In dogs assigned to the hypovolemic group, 30 mL kg(-1) of blood was removed at 1 mL kg(-1) minute(-1) from the arterial catheter. All dogs were allowed to recover from anesthesia. Thirty minutes after the discontinuation of isoflurane, anesthesia was re-induced with isoflurane in oxygen delivered by face mask. The tracheas were intubated, and connected to an anesthetic machine with a Bain anesthetic circuit. Mechanical ventilation was instituted at a rate of 10 breaths minute(-1) with the tidal volume set to deliver 10-15 mL kg(-1). Airway gases were monitored continuously and tidal volume was adjusted to maintain an end-tidal carbon dioxide level of 35-40 mmHg (4.67-5.33 kPa). Body temperature was maintained at 37-38 degrees C (98.6-100.4 degrees F). The MAC determination was performed using an electrical stimulus applied to the toe web and MAC was defined as the mean value of end-tidal isoflurane between the concentrations at which a purposeful movement did and did not occur in response to the electrical stimulus. The MAC values were compared between groups using a Student's t-test. RESULTS: The MAC of isoflurane was significantly less in hypovolemic dogs (0.97 +/- 0.03%) compared with normovolemic dogs (1.15 +/- 0.02%) (p < 0.0079). CONCLUSIONS AND CLINICAL RELEVANCE: The MAC of isoflurane is reduced in dogs with hypovolemia resulting from hemorrhage. Veterinarians should be prepared to deliver a lower percentage of isoflurane to maintain anesthesia in hypovolemic dogs during diagnostic and therapeutic procedures.  相似文献   

19.
Purebred Beagles were inoculated with Trypanosoma cruzi isolates from a North American opossum or armadillo (Tc-W), and dog (Tc-D). Although Tc-D established infection in dogs, the dogs did not develop cardiac abnormalities. Dogs inoculated with Tc-W developed acute myocarditis associated with increases in P-R interval, atrioventricular block, depression of R wave amplitude and shifts in mean electrical axis. Echocardiograms were normal during this stage. Three Tc-W-inoculated dogs died during the acute stage. Following the acute stage, 5 of 8 Tc-W-inoculated dogs entered an indeterminate stage in which ECG changes were minor and echocardiograms were normal. Progression to the chronic stage in 5 of the 8 Tc-W-inoculated dogs was indicated by development of ventricular-based arrhythmias, mainly ventricular premature contractions, between postinoculation days 60 and 170. In some dogs, ventricular premature contractions were multifocal. Electrocardiographic abnormalities progressively degenerated to various forms of ventricular tachycardia. Worsening ECG coincided with loss of left ventricular function as measured by echocardiography. Mean percent ejection fraction and percentage of fractional shortening decreased to 63% and 52% of control values, respectively. The left ventricular free wall (LVFW) thickness decreased and % septal: % LVFW thickening ratio increased, indicating a relative preservation of septal wall motion and LVFW hypokinesis.  相似文献   

20.
Recently, the Tei-index, a noninvasive index that combines systolic and diastolic time intervals, has been proposed to assess global cardiac performance. However, the effects of isoflurane on the Tei-index have not been characterized. This study aimed at studying the effects of 1.0 minimal alveolar concentration isoflurane anesthesia on the pre-ejection period (PEP), left ventricular ejection time (LVET), PEP/LVET ratio, isovolumic relaxation time (IVRT), stroke index (SI), cardiac index (CI), heart rate (HR), and the Tei-index in healthy unpremedicated dogs. We observed significant increases in PEP, PEP/LVET ratio, IVRT, and TEI, whose maximal increases obtained throughout the study were 47%, 48%, 78%, and 56%, respectively. The LVET and HR did not change significantly, whereas the SI and CI decreased during anesthesia (29% and 26%, respectively). In conclusion, isoflurane produced direct effects on the Tei-index. The changes in systolic and diastolic parameters were supportive of this finding and were consistent with an overall impairment of left ventricular function during anesthesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号